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Abstract. Multi-objective shortest path problems deal with networks in which each are is
associated with multiple types of costs and profits. The conditions can increase number of non-
dominated paths and compounds difficulty of selecting a favorable one for Decision Maker
(DM). In this paper we suggest a hybrid method to generate a non-dominated path which fulfills
decision maker’s demands. It uses DEA in a more logical way than some previous DEA-based
approaches. We take advantage of common weights methodology. DM can give relative
importance of some cost and profit indicators. Eventually, we have a shortest path problem that
can be solved with Dijkstra’s algorithm. Two numerical examples are presented and the results

are analyzed.
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1. Introduction

The shortest path problem is one of the most important problems in network flows with wide
range of applications in different areas (telecommunications, transportations, manufacturing,
etc.). In these problems, each arc has just one cost. For example, if an arc represents a road,
this cost can be the spent money or the amount of time needed for passing the road. The
objective is to find a path with minimum cost or a path with fewest arcs; in traditional form of
the shortest path problem, there is only one objective function. There are many algorithms to
solve this problem including works of Dijkstra et al. [12] and Ahuja et al. [2]. But in real world,
it is very likely that different types of costs be allocated to one arc. For example, in arc-road
correspondence, one can divide the cost to spent money and time and add some profits like
security, desirability, etc. Therefore, for moving from a node to another, we want to find a path
which is the best solution respect to multiple objectives. That is why these problems are called
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multi-objective shortest path problems. In most cases, there is no optimal solution; therefore
one seeks non-dominated (Pareto-optimal) solutions: solutions that cannot be replaced with the
better ones. Martins et al. [20] presented two algorithms for MCSP problem. One of them was a
generalization of multiple labeling schemes algorithm of Hansen [17] for the bi-criteria case, and
the second one was the simplex method used in continuous linear multi-objective programming.
There are some works as those have done by Guerriero et al. [15], Brumbaugh-Smith et al. [5],
Mote et al. [23], Bertsekas et al. [4], Climaco et al. [8], Hamacher et al. [16], Current et al. [11],
Modesti et al. [22], Coutinho-Rodrigues et al. [10], Murthy et al. [24], Duque et al. [13], Sedeno-
Noda et al. [26], Sinha et al. [27]. DEA, firstly introduced by Charnes et al. [6], is a non-
parametric method to assess relative performance of a group of homogeneous Decision Making
Units (DMUs), it’s explained more latter. Recently, some DEA-based methods have been
suggested to generate non-dominated paths. Masoumi et al. [21] let each path from the source
node to the sink one to be a DMU that had no output and with costs as input. They showed
each non-dominated path is equivalent to a strongly efficient DMU and used FDH model.
Amirteimoori [3] extended the classical shortest path problem by considering multiple attributes
for each arc (as inputs and outputs). He obtained two measures for each arc by using DEA
models and associated the average of two measures to the arc. Then, he defined the overall
efficiency of each path, from the source node to the sink one. Finally, the efficient path, a path
with maximum efficiency, was determined.

Moreover, some methods with the same approach have been proposed in assignment
problem, we can mention some works as those have done by Zarafat Angiz et al. [29], Chen et
al. [7], Emrouznejad et al. [14]. In this paper, we suggest a method where DM’s points of view
and DEA methodology will help us to find a non-dominated multiple objective shortest path.
To accomplish that, first we convert DM’s propensities to restrictions about weight of indicators
and then we add them to a DEA model for generating a Common Set of Weights (CSW). Our
purpose is to generate a CSW coming from involvement of DM’s preferences and fairness in
evaluation of all arcs. The latter is what puts distinction between our method and some other
DEA-based methods where each arc or path is evaluated by its own weight. As matter of fact,
it seems more reasonable that arcs and paths to be assessed under the same conditions. In our
DEA-based method, we define a DMU for each arc. Since our overall intention is to decrease
cost and increase profit, therefore cost and profit of an arc are assumed to be respectively input
and output. Then, based on generated CSW, a virtual scalar cost is allocated to each arc. It
transforms the problem to a simple shortest path problem. It turns out that the scalar criterion
is non-negative and Dijkstra’s algorithm or any shortest path algorithm can be used to solve it.
This is essential from computational complexity angle. At the end, we prove that the path is
non-dominated. In this paper, we briefly review the literature and required notions in section 2
and introduce the main problem in section 3. The proposed model, including its details, is
discussed in section 4. We, also, bring two numerical examples, discuss and compare their
results in section 5.
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2. Background

In this section, we mention some necessary definitions and theorems.

2.1. Multi objective linear programming problem

The general form of a Multi-objective Linear Programming problem can be represented as

following:
Max {f,(x), ..., fi(x)} (1)
Min { hy(x), ..., he(x)}
s.t.
x€eS

where x represents the vector of decision variables, f.(x) (r =1,...,1) and h;y(x) (i =1, ..., f) are
linear objective functions, S = {xlgj x)<b;,j=1, ...,k} and g;(x)(j=1,..,k)are lincar
functions and bjeR (j = 1, ..., k).

A non-dominated solution (Pareto-optimal solution) for the above problem defines as
following:

Definitionl: xeS is a non-dominated (Pareto-optimal) solution for (1) if it satisfies following
conditions:

AxeS: ()= L =1..,.0kx < h®E=1..,/), (2)
where there is al least one strict inequality.

The following Theorem states one of methods for finding a non-dominated solution to

(1):

Theorem 1. Let a,.eR*(r=1,..,01) and BieR* (i=1,..,m) . Then, the optimal solution of
(3) is a non-dominated solution for (1).

Min y(x) = X, Bihy () — Zioafr (%) (3)
S.t.
xXeS

Proof. [18]
2.2. Data Envelopment Analysis

DEA is a quantitative non-parametric method that uses mathematical programming for
measuring and evaluating relative performance of a group of homogeneous Decision Making
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Units with the same types of inputs and outputs. Therefore, it has grown into a powerful
management tool in operations research and economics.

Let x;; denotes the data of it" (i=1,..,f)input for DMU; and y;; denotes the data of
rtht (r =1,..,1) output for it.

Let (u,v) be an arbitrary set of weights where uteR!, vteR".

The absolute efficiency of DMU, (0€{1, ...,n}), based on (u,v), is:

L
Zr=1 UWrY¥ro (4)

f
Yi_1 ViXio

The (5) shows multiplier form of input oriented CCR model for evaluating DMU,, is as
follows:
05 = Max uy, (5)
s.t.
vx, =1
uy; —vx; <0 j=1,..,n
u=z0vz=o

where, the decision variables veR/ and ueR!represent respectively the input weights and
output weights. x]-e]Rf and ijRl (G =1, ...,n) indicate respectively the vector of inputs and the
vector of outputs for DMU;.

Dual of (5) is (6) that is called envelopment form of input oriented CCR model for

assessment of DMU,.

6; = min 6 (6)
s.t.
Yiz1Aix; < 0x,
Yic1 ¥ 2o
Aj >0 ]= 1,...,n
6 is free

where, the /1]- (j=1,..,n)and @ are decision variables. x]-elRf and y]-elRl (G =1,...,n) indicate
respectively the vector of inputs and the vector of outputs for DMU;. It turns out that 85 < 1. If
65 = 1, then DMU, is efficient and otherwise inefficient.

In real problems, extra information may be lead to imposing some weight restrictions on
DEA models. Assurance region (AR) method, developed by Thompson et al. [28], impose the
weight restrictions stating the lower and upper bounds for ratio of some input and output
weights.

Numerous types of ranking methods have been suggested by researchers for distinctions
among performance of efficient DMUs. Common weights methodology was introduced by Cook
et al. [9] and Roll et al. [25]. In general, ranking methods with common set of weights can
provide evaluation of units under equal conditions. Therefore, it is fairer. It is also worth to
mention that most of these methods are able to rank all the DMUs (e.g. [12]).
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3. Problem definition

Suppose G = (V,A) be a directed graph where V and A jrespectively, indicate the set of nodes
and the set of arcs in G, |A|=m. (i,j)€A if and only if there is an arc from ith node to jth node
in the network. Let N = (G,c,p,s,t) be a network with distinguished nodes s and t as
respectively the source node and destination (sink) node. ¢ and p represent the arc weights. In
fact, there are a finite number of indicators to evaluate each arc. for conveniences, we call those
DM wishes to be increased, profit indicators and those he/she wishes to be decreased, cost
indicators.

It’s assumed that the indicators satisfy the following assumptions:

e Number and types of allocated indicators are equal for all the arcs.

e There are f cost indicators and | profit indicators.

e When a unit of flow passes through arc (i, ))€A, amount of the k**(k = 1,..., f) type of
cost is Cikj and it is a non-negative integer number.

e When a unit of flow passes through arc (i, j)eA, amount of the r**(r =1,...,1) type of
profit is pj; and it is a non-negative integer number.

o V(i,)eA (Fke{1,..f}: cf>0)and 3re(1,..1}: p;>0).

Let Pg; denotes the set of all path from s to t (s-t paths) in graph G and PeP;, .When a
unit of flow passes through P,amounts of costs and profits are respectively, ¢, (P) =
2. ))eA®) cikj (k=1,..,f)and p,(P) = X jeary Pi; (r = 1,...[) where A(P)is the set of arcs in
path P.

Definition 2. PePy, is a non-dominated (Pareto-optimal) s-t path in graph G if satisfies
following conditions:

3PPy : (p,(P) = p,(P)(r=1,...0,¢;(P) < ¢;(P) (i=1,...,f), (7)

where there is al least one strict inequality.

Our objective is to find a s-t path so that when a unit of flow passes through it, amount
of each indicator be optimum comparing to other s-t paths. It means amount of cost indicators
are minimum and the amount of profit indicators are maximum. We call this s-t path an
optimal s-t path.

Now we are ready to formulate this Multi Objective Shortest Path Problem as follows:

max{Xjea Pjj Xij - L(ijyea p%j Xij} (8)
; f
min{}jea Cilj Xijs o i)ea Cij Xij}
s.t.
1 i=s
Zje N+(@) Xij — st N-@Xi =10 i#s,t
-1 i=t

x;;€{0,1} (i,j)eA
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where, for cach ieV, N*(i) = {jl(i,j)eAtand N~(i) = {j|(j,i)eA}. All x;eA are decision
variables. Foe each (i, j)€A, pirj (r=1,..,0) and cil; (k=1,...,f) are respectively the profit and

cost parameters.
4. A Method for Determining a Favorable Non-dominated s-t Path

Here, we propose a DEA-based approach to introduce a favorable non-dominated s-t path to
DM. In comparison with some former works in this area, we attain to utilizing DEA approach in
a more logical way. To observe equal and fair conditions, we use common weights methodology
to evaluate the arcs of network and consequently the s-t paths. It is also worth in terms of
computational aspect. In the following, we elaborate the process.

4.1. Step one: Network as a DEA structure

Consider N = (G,c,p,s,t) with the prior mentioned characteristics (Section 3). Firstly, we
correspond each arc (i, j)€ A to a decision making unit DMU;; for which the consumed inputs and
produced outputs vectors are equal to the cost and profit vectors of the arc, respectively. That
means [xf, ...,xf;] = [cilj, ,(fj] and [yilj, ...,yi’j] = [pilj, ...,p%], where xff (k=1,..,f) and y| (r =
1,...,s) denotes respectively amounts of the i™ input and the r™ output for DMU; - Given a set
of weighs (u, v), where ufeRL, and vte]R{j;o, the weighted sum of the inputs (costs), Y-, vkc{‘j ,
is considered as a virtual input (cost) and the weighted sum of outputs (profits), YI_, urpg, is

considered as a virtual output (profit).
4.2. Step Two: Generating a Common Set of Weights

Here, we discuss how a DEA model will be part of finding a favorable s-t path. Definition of the
scalar criterion to evaluate arcs (to be discussed later) indicates that the weights used play an
essential role in its computation. Hence, we take advantage of common weights methodology in
DEA. Also, we want to involve the DM’s points of view in process of choosing the CSW and
eventually the obtained non-dominated s-t path. Having said that, we explain how to obtain a
common set of weights in two steps:

i. Dealing with DM’s Preferences

ii. Using a DEA model to generate a CSW.

4.2.1. Dealing with DM’s Preferences

In our method, DM is asked to determine relative importance of the cost and profit factors, if
there are any. He/she is not forced to give an exact value; giving bounds of it (at least one) will
work in this case. DM’s points of view will appear in the model as weight restrictions. Let i#j be
two arbitrary indicators that DM intends to express his preferences through them. The following

formula is generally how we consider the DM’s intuition:
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weight of ith indicator

$ij < <&y (9)

weight of jth indicator
where satisfies the following:

e It is possible that the indicators be of any type (cost or profit).

o §eRYU{0}, §jeRY U {+00}

e If DM only determines the lower bound ¢&;;, then & ; is set to +00.

e If DM only determines the upper bound§; j» then &;;is set to be 0.

o &< & i » the equation occurs when DM state the relative importance exactly.

It is worth to mention that DM is supposed to logically assign bounds. It means that,
for example, if indicator i is more important than indicator j (for any type of cost or profit) then
&;; must be greater than 1. Also, at most one formula for each pair of factors is considered. In
Section 5, we discuss several different cases and investigate alteration of the parameters and its
effects on the final results.

4.2.2. Using a DEA model to generate a CSW

Here, we present a DEA model using assurance region method to generate a CSW. This model
has been influenced by Liu and Peng’s work [19] which is computationally simple to use. The
aim behind the model is to maximize the efficiencies of DMUs by maximizing their summation.
The assurance region restrictions carry DM’s points of view. The main model to generate a
CSW, in a general form, comes as follows:

Srei Uep)
Max Z(i,j)EA Thoq vicch N
s.t.
i1 urp] )
Doyt _ v(ij)eA
et Vicel (])
V] Y. |
LRRES f < Ty viIeh
ur Q I
B..< ” < B V(rr')e I
Vi —
le(g I = Yik V(Lk)g e
e V(i,j)eA
u, =& P
Vi =€ k=1,.., f

(11) is solved instead of (10) (Refer to [13] for more explanations).

Min Z Ay (11)

(i,j)eA
s.t.
r=1 Urpj; — Vit chi]; +4;=0 V(ij)eA
—VUg + (lkkka, <0
Vg — Qv <0
-u,+Bupr<0
ur'Brr'ur'SO

} v(kk)e I

} v(rr)ely
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-ur+YrkaS0 }
_ V(r,K)el;
ur'YrkaSO ( ) of
0420 v(ij)eA
u. =& r=1,..,1 }
Vg = &€ k=1,..,f
where, v, (k=1,...,f) , u,(r=1,..,0) and A;(i,j)eA are decision variables. For

each (i,)€A, (-,5 (k=1,..,f) and p% (r=1,...,1) are respectively cost and profit parameters.
The constraints of (1) guarantee that the efficiency of each DMU don’t exceed one. The
constraints of (2), (3) and (4) state weight restrictions about the relative importance and
priority of cost and profit indicators. I} denotes the set of the ordered pairs of input indicators’
indexes which DM has given some information about their relative importance. This set satisfy
the following properties: if (i, k)el} then (k,i) & I3; for all i€V, (i,i) € Iy . Plus, there are similar
statements about [, (related to output indicators’ indexes) and [} (related to input and output
indicators’ indexes). The weight restrictions are given in a general form regarding to (9). The
parameters oqe and e (V(k,k')ely) are respectively the lower and upper bounds of the relative
importance of the input indicator k to k' and the parameters B, and B, (V(r,r')ely) are
respectively the lower and upper bounds of the relative importance of the output indicator r to
r' . Also, v, and y, (¥(r,k)el'y) are respectively the lower and upper bounds of the relative
importance of the output indicator r to input indicator k. However, practically, the weight
restrictions of (2), (3) and (4) stands only for positive finite bounds (the rest are redundant, and
so they are removed). All of these parameters are determined by DM. If he/she has no
preference then we do not use the weight restrictions. ¢ is a positive Archimedean infinitesimal
constant. The batch constraints (6) guaranties that all weights in feasible solutions are non-zero.

Assume that (u",v",A") be the optimal solution of (11). We accept (u" v as the
common set of weights. Also, (11) can be rewritten as (12):

Min 1,,.A (12)
s.t.
uP-vC+4=0
vA<O0

uB<o0
[wvlC <0

A20

uzel,

vzelg

where, AeR™, uteR!(output variables), v'eR/ (input variables) are vectors of decision
variables. C=[¢jj]gxm and P=[p;j]ixm denote respectively the matrixes of arc costs and arc profits.
AeRryq , BeRyyp, and CeRypyxp contains the multipliers of assurance region constrains of (11).
Regarding to the previous explanations about the bounds of weight ratios derived from DM'’s
preferences, it is evident that: |I;| < a < 2|I}|, [Ip| £ b < 2|I,| and |I;| < h < 2|I,;|. For above
inequalities, the minimum occur when there is no weight ratio with two positive finite bounds,
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and the maximum occur when both of lower and upper bounds of for the weight ratios are
positive and finite.

In short, the interaction with DM is placed in this part and it finally leads to choosing a
favorable s-t path based on DM preferences.

4.3. Determining the Scalar Criterion

Now, we use a scalar criterion to assess each arc. Let (u',v") be the generated CSW. We
consider the following scalar criterion, obtained based on the CSW, for each arc (i,j)eA :

f 1
— * k *r <
Ay= Vi Cij - § U, pj (13)
k=1 r=1

When a unit of flow passes through an arc (i,j), the more amounts of profits and the
less amounts of costs make that arc more desirable for DM. Therefore according definition of
(13), a lesser Ay is more favorable; it puts the scalar in the cost category. We allocate these
scalars to arcs of the network as virtual costs. The constrains (1) of model (11) guarantee that
220 (V(i,j)eA). Therefore, each arc is allocated a non-negative virtual cost instead of several

costs and profits. Now, let PePy; (the set of all s-t paths) be an arbitrary s-t path. We define

®=) ) (14)

where A(P) is the set of all arcs of P. According to above discussion, a lesser A(P) is more
favorable for DM, therefore, we intend to find a s-t path P with minimum amount of A(P).

4.4. Finding a Favorable s-t Path

In (4.3), each s-t path P is associated with a virtual scalar cost A(P). In this section, we aim to
find a shortest s-t path respect to the virtual cost as a favorable s-t path. Thus, the following
shortest path problem is solved:

Min X jyea dijXij (15)
s.t.
1 i=s

Z X;j - Z ;=10 i#st
jEN* (D jeN-(0)

-1 i=t
x;;€{0,1}  (i,j)ed

where x;; (i,j)€A are the decision variables and 4;; (i, ))€A are the cost parameters. It is evident
that each shortest path from the source node s to the destination node t corresponds to an

optimal solution to (15) [1].
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As mentioned in (4.3), the virtual scalar cost allocated to each arc is non-negative so
one can use Dijkstra’s algorithm for obtaining a shortest s-t path. Theorem 3 guaranties that the
obtained s-t path is non-dominated which is a worthwhile point.

Theorem 3. A s-t path P with minimum A(P) is non-dominated.

Proof: The batch constraints (6) of (11) guarantees that the components of the generated CSW
are positive, so the remained proof is easy.

5. Numerical examples

In this section, we apply our method on two numerical examples and investigate the results.
The first example is relatively small because small-sized problems allow the details to be

thoroughly discussed.

Example 1. Consider N = (G, ¢, p,s,t) illustrated in Figure 1. G=(V,A) is a directed graph
where V is the set of nodes and A is the set of arcs (V ={1,2,..,13} and |A| =19). In the

network for passing of each unit of flow from each arc (i,j), there are two types of expense, (:ilj

2
ij o

destination node, t, is set to node labeled by 13.

and ¢ , and one type of profit, pilj. The source node, s, is set to node labeled by 1 and the

Table 1 demonstrates all the s-t paths of the network, values of costs, values of profits
and state of each path including weather it is dominated and paths dominate it. We denote set
of dominant paths on path P with D(P). We put some weight restrictions for the example and
afterwards generate the CSW in each case (Table 2). In each case, using generated CSW, x;; is
computed for each arc (i,j) and then value of A(P) is determined for each s-t path p (Table 3).
Table 4 shows the shortest s-t paths in each case. Also in order to do better comparison, we sort
s-t paths in each case by value of A(P). The path with the least A(P) outranks others (Table 5).

In this example, coefficients are more diverse and their influence on the generated
CSWs is recognizable. In each case, indicators which weigh more play a greater role in
computation of A. For example, in case 1, since weight of cost in the second type is more than it
in the first type, one unit difference in the second type is more effectively than one unit
difference in the first type. It is why A(P1) is less than A(P3) and consequently P1 outranks P3.
Theoretically, A(P) for a dominated s-t path P is more than a s-t path which dominates it and
therefore ranks lower. Table 5 indicates that in this method a dominated s-t path can outranks
some non-dominated s-t paths, for instance P2. It does not contradict the results because
mentioned relation is between a dominated s-t path and the s-t paths dominated it. For
example, P2 is dominated by P1. However, this path, in some indicators, is better than some of
non-dominated paths like P4 and P7. It concludes, when all the cost and profit indicators are
evaluated under a CSW, a dominated s-t path can have better rank than a non-dominated s-t
path which does not dominate it. Finally, for a better illustration, Figure 2 shows A(P) for each
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s-t path, P, in each case, and Figure 3 shows the ranking scores of all s-t paths with all cases of
weight restrictions.

Example 2. This example is bigger and has thirty nodes and one hundred arcs. Three cost and
three profit indicators are considered to evaluate the arcs. This network can be assumed as a
road network where nodes are cities and each arc (i,j) is a route between city i and city j. In this
way, it can be assumed that 1%, 2" and 3" cost indicators are respectively fuel consumption,
travel time and expenses that 1%, 2" and 3t profit indicators are respectively earned income,
safety factor and desirability. Therefore, the purpose is finding a favorable path between city 1
(the source node) and city 23 (the destination node). Since different people may have different
priorities when it comes to road trips, various cases are considered for level of importance of
indicators. In each case, we determine weight restrictions and compute the correspondent CSW
(Table 6). Table 7 present an obtained favorable s-t path for each case, P for case i. For
comparison, Table 8, considering all the cases, demonstrates the virtual costs for each of the
favorable s-t paths. It is worth to point out that although in each case role of indicators with
more relative importance is undeniable in selecting the favorable s-t path, but one cannot ignore
the other indicators. There are cases where values of these indicators nullify effects of indicators
with high relative importance. Comparison of and P*® accentuate this matter. Interestingly, in
case 2 importance, and therefore influence, of the first type profit is more third type cost. Here,
regarding first type profit, P*®is better than P*® but not in the third type cost (Table 7).
Although, preference of the first type profit to the third type cost could not prevent P*® from

. el
outranking P @,
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Costs and profit Non-dominancy status
P c1(P) c2(P) pl(P) non-dominated D(P)
P1 12 11 10 iy -
P2 12 13 10 X P1,P3
P3 11 12 10 v -
P4 10 14 6 v -
P5 15 13 9 iy -
P6 16 15 9 x P1,P2,P3,P5
pP7 9 20 10 J -
Table 1: s-t paths (s=1,t=13) and their characteristics
Weight restrictions CSW
Case 1 v2=2vl , ul=vl (0.000100,0.000200,0.000100
Case 2 v2=2vl (0.000100,0.000200,0.000167
Case 3 v2=5vl (0.000100,0.000500,0.000367
Case 4 v22vl (0.000100,0.000100,0.000100
Case b v222v1 (0.000100,0.000200,0.000167
Case 6 v222vl , 3vi< ul <5v2 (0.000100,0.000400,0.000300
Table 2: The weight restrictions and generated CSWs
s-t path Casel Case2 Case3 Cased Caseb Caseb
P1 0.0024 0.00173 0.00303 0.0013 0.00307 0.0026
P2 0.0028 0.00213 0.00403 0.0015 0.00347 0.0034
P3 0.0025 0.00183 0.00343 0.0013 0.00317 0.0029
P4 0.0032 0.02798 0.005798 0.0018 0.003602 0.0048
P5 0.0032 0.02597 0.004697 0.0019 0.003803 0.004
P6 0.0037 0.03097 0.005797 0.0022 0.004303 0.0049
pP7 0.0039 0.00323 0.00723 0.0019 0.00357 0.0059

Table 3: A(P) for s-t paths

P *
Casel P1
Case2 P1
Case3 P1
Cased P1,P3
Caseb P1
Caseb P1

Table 4: The favorable s-t paths in each case
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s-t path | Casel | Case2 | Cased | Cased | Cased | Caseb

P1 1 1 1 1 1 1

P2 3 3 3 2 3 3

P3 2 2 2 1 2 2

P4 4 5 6 3 5 5

P5 4 4 4 4 6 4

P6 5 6 5 5 7 6

P7 6 7 7 4 4 7

Table 5: The ranking scores of s-t paths based on A(P)
Weight restrictions CSW
v1* v2* v3* ul* u2* u3*
Case 1 | v2=2vlul>v3u2>3ul,u2>us 0.004823 | 0.009647 0.0001 | 0.0001 | 0.563907 | 0.320912
Case 2 v22vl,ul>3v3 0.199989 0.199989 0.0001 0.0003 0.0001 5.961904
Case 3 v12v3,u22v3,u22u3,u3<ul 0.002997 0.0001 0.000109 0.0001 0.821337 0.0001
Table 6: The weight restrictions and generated CSWs
P’ o) [ o) | a®) | n®) [ p@E) [ p@) | A@)

Casel | P*: 1, 5,10, 28, 30, 23 118 432 72330 | 49100 | 3.1 2.3 0.816466
Case2 | P*?:1,18,17, 23 72 26.8 48878 | 28000 | 2.2 14 7809856
Case3 P, 1, 5, 10, 28, 30, 23 118 43.2 72330 49100 3.1 2.3 0.780849

Table 7: The favorable s-t paths in each case (s=1,t=23)

P case 1 case 2 case 3
PP —p® 10.816466 [11.02858 |0.780849
p® 0.999329 |7.899856 [0.935899

Table 8: Virtual costs for the favorable s-t paths in each case

Source node

(4,5,3)

Destination node

Figure 1: A network with 13 nodes and 19 arcs
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Hcasel

M case 2
M case 3
M case 4

M case5

W case 6
P1 P2 P3 P4 P5 P6 P7

Figure 2: A(P) for each s-t path, P, in each case. (in 10™* scale)

Mcasel

M case 2

M case 3

M case 4

M case5

W case 6

pl p2 p3 p4 p> pb6 p7

Figure 3: The ranking scores of all s-t paths with 6 different cases of weight restrictions

6. Conclusion

Heretofore, there are some researches using data envelopment analysis to solve multi-objective
shortest path problem. Considering some problems in the previous works, we suggest a new
approach using DEA to solve the problem in a more logical way. To this aim, we utilize common
weights methodology which is considerable from computational and fairness aspects.
Determining a non-dominated path is the main object in our mind. The DEA model serve well
to carry through this purpose. Also, DM’s preferences, if there are any, are considered to obtain
a favorable path among the non-dominated ones from source node to destination node.
Furthermore, we can use some polynomial-time shortest path algorithms, like Dijkstra, in this

approach.
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