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Abstract. In production, manufacturing and several other allied industries, it is important to apply appropriate
tools for the analysis of data in order to enhance the opportunity for product and process optimization. A
statistical tool that has successfully been used to achieve this goal is Response Surface Methodology (RSM). A
recent trend in the modeling phase of RSM involves the use of semi-parametric regression models which are
hybrids of the Ordinary Least Squares (OLS) and the Local Linear Regression (LLR) models. In this paper, we
propose a modification in the current structure of the semi-parametric Model Robust Regression 2 (MRR2) with a
view to improving its sensitivity to local trends and patterns in data. The proposed model is applied to two
multiple response optimization problems from the literature. The results of goodness-of-fits and optimal solutions
confirm that the proposed model performs better than the MRR2.
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1. Introduction

Response Surface Methodology (RSM) is a collection of statistical techniques in the modeling and analysis
of data in which a response is influenced by one or more explanatory variables [4, 6].

Three phases stand out in RSM, namely, the design of experiment phase, the Modeling phase, and
the optimization phase [22, 31].

In the modeling phase, we assume that the relationship between the response variable,y and k

explanatory variables x; x5, ..., x, takes the form:

y= f(xL X5, ...,xk) +¢& i=12,..,n (1)
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where y is a 1 X n vector of responses, f represents the true but unknown relationship between the response
variable and the k explanatory variables, €is a 1 X n vector of random errors assumed to have a normal
distribution with mean zero and constant variance, nis the sample size [23, 29].

Existing regression models applied in the estimation of the unknown function f in (1) include the
parametric regression models (e.g. the OLS), the nonparametric regression models (e.g. LLR), and the semi-
parametric regression models (e.g. the MRR1 and MRR2 models) [2, 19, 14, 25].

The aim of the optimization phase of RSM is to obtainthe setof values of the explanatory variables
(optimal setting),x = [xq, X, ..., XxJthat optimizes the fitted regression model based on the production
requirements for the study [17, 21].

For studies that involve mmultiple response,m > 1,it is essential that we get asetting of the
explanatory variables that optimize a real valued cost function based on the production requirements of all
the responses [15, 28, 30].A common real valued cost function that is applied in the optimization of multiple
response is the desirability function [1, 7, 13]

Desirability function assigns 0 < d,, (ﬁp(x)) <1 to each estimated response y,(x). Depending on
whether a particular response is to be assigned a target value, maximized, or minimized, different
desirability function can be used:

For the nominal-the-better (NTB) response where the pth response acceptable value lies between an

upper limit, U, and a lower limit, L, d, (ﬁp (x)) is given as:

N t
Yp(X)-Lp 1 ~
({ Op—Lp } ’ Ly < 5,(x) < 0y,
dp (9y(0)) = { (Up=5p0) . (2)
» \Jp Up=Ip(x)
( ) { = } , 0y <P (x) < Uy,
0, otherwise

where @, is the target value of the pthresponse.
For the larger-the-better (LTB) response, where the objective is to maximize the p** response,

d, (ﬁp (x)) is given by a one-sided transformation as:

0o 9,(X) < Ly,
~ _ $p(X)-Ly) L “ .
dy (9,(0) = {W} Ly S50 <0y, (3)
1 Ip(x) > Op,

where @, is interpreted as a large enough value of the pt" response.

When the response is of the smaller-the-better (STB) type, the objective is to minimize the p**

response and d, (37p (x)) is given by a one-sided transformation as:

L, P,(x) < By,
~ Up=9p(x)) 2 ~
dy (5,0) = {—gpf;p } B, < 5,00 < U, (4)
0 yp(x) > U )

where @,, denotes a small enough value of the pth response.
For RSM data, the values of t; and t,are taken to be 1 [5, 15 28]. The m individual desirabilities are
then combined using the geometric mean into a single scalar value given as:

D(x) = maximize ((Hg;l d, (yp(x)))l/m), (5)

The goal of the desirability function reduces to maximizing D (x) with respect to the x.
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The GA is an evolutionary optimization tool that can be applied to variety of optimization
problems including those that are not well suited for standard optimization algorithms [16, 31]. Examples of
such optimization problems include those in which the objective functions do not have closed form
expressions [25, 29]. The nonparametric and semi-parametric regression models pose this kind of problem.
Hence, the search for x that optimizes D(x) in (5),b*, N* and C* that optimize PRESS*™ in (12) and A*that
optimizes PRESS**in (15) are achieved using the GA optimization toolbox in Matlab.

The remainder of the paper is organized as follows: A review of existing regression models in RSM is
presented in Section 2. In Section 3, the proposed modification to the current structure of the MRR2 is
presented. Using two examples from the literature and a simulation study, comparisons of results from the
proposed model and those from the MRR2 model are presented in Section 4.

The paper concludes in Section 5.

2. A Review of Regression Models Applied in RSM

Regression analysis is a statistical procedure for estimating a mean function of dependent (response)
variable using either a bivariate or multivariate paired data. Such an estimated mean function is used for
prediction [2, 24].Below is an overview of existing regression models applied in RSM

2.1.  The Ordinary Least Squares(OLS) Model

The OLS is applied for estimating the unknown parameters in the model that the experimenter assumes
adequate in the approximation of the unknown function f[22, 23].

The OLS estimate ﬁi(oLs) response in the i**data point is given as:
9 = % (XTX)1XTy = h{"y, (6)

where y is n X 1 vector of response, X isn X p model matrix,p is the number of model parameters, XTis the
transpose of the matrixX, and x; is the i'row vector of X[29].
Using matrix notation, the vector of OLS estimated response can be expressed as:

h(IOLS)

(OLS)
§OLS) = gOLS)y = hz. y, (7)

h;om)

where the 1 X n vector hEOLs) is the i row of the n x n OLS Hat matrix,
A limitation of the OLS model is that it performs poorly if the assumed model is misspecified or

inadequate for the data 25, 29].

2.2.  The Local Linear Regression (LLR)Model

The LLR model is a nonparametric regression version of the weighted least squares model. The weights
utilized in the LLR model are derived from one of the several kernel functions such as the Gaussian kernel

2,9, 10].
The LLR estimate, yi(LLR)of y;, is given as:
S(LLR) _ ~ roTyprex 3\ —1 5T+ LLR
yH =X W) TRW Y = h{ Py, (8)

where ¥;is the i*" row of the LLR model matrix X given as:
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1 xy1 %12 0 Xk

. 1 «x Xop tt Xak
X=| 7 :

’

1 Xn1 Xn2 Xnk nx(k+1)

where x;;,i = 1,2,...,n,j = 1,2, ..., k, denotes the value of the jt  explanatory variable in the i®data point,
W;* is an n x n diagonal weight matrix used for estimation of the i** response [28].
For instance, the first entry say wy™ of W;™", i = 1,is obtained from the product kernel as:
wi* =T K (""fb;i"”)/zgglnj;lx (%)l =12.,mj=12 ..k (9)
Xjj=xyj

2
where K (%) = e_( b; ) is the simplified Gaussian kernel function andb;, 0 < b; < 1,i = 1,2, ..., n, are
i

the locally adaptive smoothing parameters or bandwidths [18, 25, 26].

Smoothing in nonparametric regression is said to be done using fixed or global smoothing parameter
bif, in (9), we have b; = b, = --- = b, = b, otherwise b;,i = 1,2, ...,n, are referred to as variable or locally
adaptive smoothing parameters [3, 26]. Locally adaptive smoothing parameters have been found to perform
better than their fixed counterpart because of their comparatively better sensitivity to local trends and
patterns in the data[9, 32].

The locally adaptive smoothing parameter selector presented in [§8] is given as:

_ b*NTC-y)

bi = T(cn-1) ) i= 1, o n (10)

where b* is the fixed optimal smoothing parameter selected based on the minimization of the Penalized
Prediction Error Sum of Squares (PRESS™), T = Yy;, C =0, N > 0 are data-driven tuning parameters.
In matrix notation, the LLR estimates of the response can be expressed as:

(LLR)
hy
(LLR)
y(LLR) — H(LLR)y = hz v, (11)

h;LLR)

where HEHR is the n x nLLR Hat matrix, and hELLR) =%X"W;X)T1XTW;tis the i*® row vector of the
LLR Hat matrix estimating y; [20].

The smoothing parameter is the most crucial parameter in nonparametric regression procedure
because the choice selected determines the shape of the fitted curve [12].

For RSM, the set of optimal smoothing parameters ® = [b], b3, ...,b;] from locally adaptive
smoothing parameters selector in (10) are derived from the optimal values C* and N* of C and N,
respectively, based on the minimization of the PRESS** [8].

The form of the PRESS™ criterion for selecting the smoothing parameters is given as:

S (vi-9MP)

n—trace(HLLR) (®))+(n-k-1)

PRESS™*(by, by, ..., by) =

sstsmax—ss%7 (12)
SSEmax
where SSE 4, is the maximum Sum of Squared Errors obtained asbq, by, ..., b, tend to infinity, SSEg is the
Sum of Squared Errors associated with a set of smoothing parametersby, by, ..., by, tr(H (LLR)CD) is the trace
of the LLR Hat matrix and ﬁi(:LiR) is the leave-one-out cross-validation estimate of y; with the it*
observation left out [19, 25, 29].
The goal is to minimize PRESS** with respect to (b, by, ...,b,). PRESS*™ was developed as an

alternative to Prediction ErrorSum of Squares (PRESS) which tends to overfit the data [20, 25, 29].
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The LLR model is flexible and can capture local trends which may be overlooked by the OLS
model. However, its performance is generally poor when applied in studies that involvek > 1 explanatory
variables. This poor performance is referred to as‘curse of dimensionality’ in the nonparametric regression
literature [11].

2.3. Semi-parametric Regression Models

Semi-parametric regression models are ideal in situations where a researcher has partial knowledge of the
model that can be used to estimatef in (1). However, this model is deficient in the capture of local trends in
the entire range of the data points [20, 29].

An overview of the Model Robust Regression 1 (MRR1) and the Model Robust Regression 2
(MRR2) models is presented in the subsections that follow.

2.3.1. The MRR1 Model

The MRR1 model is a convex combination of the OLS and the LLR models given in (6) and (8),
respectively, via a mixing parameter, 4, 0 < A < 1[19, 25].

The MRRI estimate, y}”’*“) of y; is given as:
&(MRR1) _ 1= D (XTX)~"1xT = T ¥\ -1 %T Y **
¥ =( Y, XTX) X"y + 2%, X"Wi X)) 1 X"wity, (13)

In matrix notation, the vector of MRR1 estimates of the responses may be expressed as:
(MRR1)
hy

S(MRR1 MRR1 R MRRL)
y( ) = HC )y =|N2 y, (14)

h;MRRl)

where thel X n vector, hEMRRl) = (1 - D, XTX)XT + 2%, (X"W;"X) "1 XTW7"is the i*" row of the MRR1
Hat matrix, HMRRD[25].

The optimal value A*of A, may be selected based on the minimization of the form of the PRESS™*
criterion given as:

Sy (-9 MFRD)?

15)
_ MRR1 —k—1)35Emax—SSEq’ (
n—tr(HMRRD (®,2))+(n—k-1) SSEmax

minimize PRESS**(1) =

where ®=[bj,b3,...,b;;] denotes optimal smoothing parameters, SSEq is the Sum of Squared Errors
associated with the set of the optimal smoothing parameters,[by, b3, ..., by], tr (H (MRR1) (@, /1)) is the trace of

MRR1 Hat matrix, and ﬁi(fiRRl)(db, A) is the leave-one-out cross-validation MRR1 estimate of y; [19, 20, 25].
A computer program for a regression model coupled into the GA toolbox in Matlab obtains the
optimal values of @ in (10) (and, by extension,A*) based on the minimization of PRESS**.

A drawback in the application of the MRR1 model is the problem associated with convex

§OLS) HULR)) yi(MRRl) < max

combination of two quantities or functions. Notice that for 0 <A < 1, min | ; A

[yFOLS),ﬁi(LLR)]. Hence, in data points where both the OLS and the LLR estimates of the response are either
larger or smaller than the true value of the response from (1), the MRR1 estimates will be larger or smaller,

respectively, than the true value of the response from (1) [ 20, 25].

2.3.2. MRR2 Model

The MRR2 model was proposed by [19]. It combines both the OLS estimates of the response and LLR
estimates of the OLS residuals via a mixing parameter, A, 0 < A <1.
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The MRR2 estimate, yi(MRRz)of Vi, is given as:
FMERD = X, (XTX) Xy + 2% (XTW; X)) KXW (I - X(XTX) "1 XT)y,
=x;(XTX) Xy + A%; (XTw;X)'IXTW§r<0LS>, (16)

where (@S is the n x 1 vector of the OLS residuals,Jis an n X n identity matrix and Wjis a nxn
diagonal weights matrix for estimating the i**OLS residual [29].
Equation (16) may be expressed in matrix form as:

thRRZ)

(MRR2)
h; . L, = H(MRR2),, (17)

y(MRRZ) — [

hglMRRZ)

where R = x,(XTX)"1XT + A%, (XTW;XT)"1XTW; (I — X(XTX)"1XT) is the i row of the n x n MRR2
Hat matrix, HMRR2[20, 25, 29].The optimal values of ® andA*are selected using (12) and (15), respectively,
with MRR2 replacing LLR in (12) and MRR1 in (15).

The MRR2 is robust, flexible, and presently considered a better regression model than the OLS,
LLR and the MRRI1 for data emanating from response surface studies [25, 29]. However, it enjoys only a
fractional advantage of the flexibility that the LLR model can offer since only the OLS residuals are
considered by its LLR component.

3. Methodology (Modification of the MRR2 Model)

We propose a modification in the structure and configuration of the MRR2 model in order to accomplish a

blend of the philosophy of both the MRR1 and the MRR2 models.

In order to achieve our purpose, the following objectives are considered:

(i) The inclusion of a LLR component that estimates the observed (raw) response just as in the case of
the MRR1 model in (13) in order to fully utilize the flexibility of the LLR model. This provides better
opportunity for capturing more local trends and pattern in the data.

(ii) The adoption of‘smoothing of residuals’ in the MRR2 model in (16) in order to retain the advantage of
MRR2 over the MRR1 model. However, unlike the MRR2 model that uses only the residuals from the
OLS estimates, the proposed model utilizes the combined residuals obtained from both the OLS and
the LLR estimates of response.

The expression for the combined residuals is given as:

OLS+LLR
r ) _

yi= O +3M), i=12,.m, (13)

For ease of reference, we designate the proposed model as the Modified MRR2 (MMRR2) model.

Based on the objectives, the estimate, yi(MMRRZ)ofyi,i =1,2,...,n,is given as:

~(MMRR2)
i

= 5 (XTX) " XTy + %(XTwWiX) " XTwiy +
2% (XWX XTW, [T - (XXTX)7XT + )?()?Tw;*)?)_l)?Tw;*)] y,
= 5;(XTX)"XTy + % XTW; X)IXTW;y + 2% (XTW,X) " XTW r(OLS+LLR),

— hEOLS)y + hELLR)y +lhELLR)r(0LS+LLR)’ (19)
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where I is the n X n identity matrix, the hgms)y and hELLR)y are OLS and LLR estimates of i®*response, as
in (6) and (8), respectively, and the hELLR)r(O"s“"'R) is the LLR estimateof the i combined residual,
rOLSHLLR) "agin (18), i = 1,2, ..., n.

Equation (19) may be expressed in matrix form as:

I'thMRRZ)'I

(MMRR?2)

y(MMRRZ) — |h2 . |y — H(MRRZ)y’ (20)
hglMMRRZ)

where the 1Xxn vector, hEMMRRZ) =x;(XTX)71XT + fi(XTWI*X)_l)?TW}‘* + 2% XTw X)"1XTw; [I -
(X(XTX)~1XT + X(}?Tw;*)?)‘lﬂw;f*)]is the it" row of the n x n MMRR2 Hat matrix, H(MMRR2)_

4. Application

Two multiple response problems are used in order to compare the performance of the proposed model with
that of the MRR2 model. The goodness-of-fits used for comparison include the Sum of Squared
Errors(SSE), the Coefficient of Determination, (R?), the Prediction Error Sum of Squares, (PRESS), and

two versions of the penalized PRESS criteria, namely the PRESS** criterion given in (15) and the PRESS*

2
criterion given as: PRESS™ = %, where PRESS = Z?ﬂ(yi - 371(31) ,ﬁifzi is the leave-one-out estimated
value of y;, tr(H®) is the trace of the Hat matrix, and (.) refers to any of the regression models MRR2 or

MMRR2.

4.1. The Chemical Process Data

This problem was analysed in [14, 15]. The aim of the study was to get the setting of the explanatory
variables x; and x, (representing reaction time and temperature, respectively) that would simultancously
optimize three quality measures of a chemical solution y;, y, and y; (representing yield, viscosity, and
molecular weight, respectively). The process requirements for each response are as follows:

Maximize y; with lower limit L = 78.5, and a large enough value @ = 80;

v, should take a value in the range L = 62 and U = 68 with @ =65;

Minimize y;with upper limit U = 3300 and a small enough value @ = 3100.
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i X1 X2 V1 Y2 V3
1 0.1464 0.1464 76.5 62 2940
2 0.8536 0.1464 78.0 66 3680
3 0.1464 0.8536 77.0 60 3470
4 0.8536 0.8536 79.5 59 3890
5 0.0000 0.5000 75.6 71 3020
6 1.0000 0.5000 78.4 68 3360
7 0.5000 0.0000 77.0 57 3150
8 0.5000 1.0000 78.5 58 3630
9 0.5000 0.5000 79.9 72 3480
10 0.5000 0.5000 80.3 69 3200
11 0.5000 0.5000 80.0 68 3410
12 0.5000 0.5000 79.7 70 3290
13 0.5000 0.5000 79.8 71 3500

Table 1: Chemical process data

As it is the procedure when nonparametric regression is involved, the real values of the explanatory

variables are coded to lie between 0 and 1.The data collected via a Central Composite Design is presented

in Table 1. A full second-order polynomial model is specified for fitting each response using the OLS model

[24, 28].
Proposed model (MMRR2) MRR2
NW™H | CcW™| N(W) | ¢(W) |b*(W™)| b*(W) A* N* c* b* A*
Y1 | 3.5579 0.0500 | 4.2015 | 0.0841 | 0.5985 | 0.2917 | 1.0000 | 12.9930 | 1.0000 | 0.2611 | 0.6973
Y2 | 6.5539 | 16.9999 | 3.1839 | 0.0950 | 0.5490 | 0.3893 | 1.0000 | 13.7602 | 0.0000 | 0.2670 | 1.0000
Y3 | 18.4685 | 0.1447 | 4.2078 | 0.0944 | 0.3833 | 0.2734 | 1.0000 | 4.4073 | 0.0937 | 0.2599 | 1.0000

Table 2: Optimal values of the tuning parameters, fized bandwidth and mizing parameter of
the MMRR2 and the MRR2 models for the chemical process data

The optimal values of the tuning parameters, fixed optimal smoothing parameter, and mixing

parameter for the MMRR2 and MRR2 models for each response are presented in

the comparison of goodness-of-fit for both models.

Table 2. Table 3 shows

Response | Model DF PRESS™* PRESS* PRESS SSE R%(%)
Y1 MRR2 5.3185 0.2695 0.4992 2.6548 0.2714 99.0558
MMRR2 | 4.0000 0.1191 0.4134 1.6535 0.2120 99.2624

Y2 MRR2 4.6773 17.0310 42.1432 197.1171 11.2415 96.8880
MMRR2 | 4.0000 9.0119 30.8936 123.57143 10.0000 | 97.2317
Y3 MRR2 4.0000 54640 148050 592210 65720 92.3804
MMRR2 | 4.0000 48416 135380 540530 65720 92.3804

Table 3: Goodness-of-fit of the MMRR2 and the MRR2 models for the chemical process data

The results presented in Table 3 reveal that the MMRR2 model performs better in terms of all the

statistics for y; and y,.Forys;, the MMRR2 model performs as well as the MRR2 model in terms of both the
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SSE and the R? but provides significantly improved prediction statistics (PRESS**, PRESS* and PRESS).
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Figure 1: Plots of residuals from the MRR2 and MMRRZ2 models for the chemical process
data

Figure 1 shows that the residuals of ys;from both regression models overlap while those from the
MMRR2,for the most part, are closer to the zero residual line than those from the MRR2 for y; and
v,.Eight MMRR2 residuals of y; and y, are observed to lie on the zero residual line compared to zero and
one, respectively, for MRR2. This suggests that the MMRR2 provide better fits of these responses.

Model X1 X2 ¥1 ¥2 y3 dy d, d; D (%)
MRR?2 0.5180 0.2123 78.8603 66.1749 3157.7 0.2402 0.6084 0.7116 47.0216
MMRR2 | 0.5155 0.3467 79.0634 64.9985 3228.2 0.3756 0.9995 0.3589 51.2641

Table 4: Comparison of the optimal results from the desirability function of the MMRR2 and
MRR2 models for the chemical process data

Table 4 presents the optimization results of both the MMRR2 and MRR2models obtained via the

desirability function. The MMRR2 model is found to provide the settings of the explanatory variables that

give the higher desirability measure.

4.2.  The Minced Fish Quality Data

This example uses the Minced Fish Quality Data presented in [8, 28, 29]. The problem secks to obtain a
setting of three explanatory variables x; (washing temperature),x,(washing time) andx; (washing ratio of
water volume to sample weight) that would optimize four aspects of quality of minced fish including
springiness (y,), thiobarbituric acid number (y,), cooking loss (y3), and whiteness index (y,). The data
collected via a Central Composite Design is presented in Table 5.
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i X1 X2 X3 V1 V2 Y3 V4
1 0.2030 0.2030 0.2030 1.83 29.31 29.50 50.36
2 0.7970 0.2030 0.2030 1.73 39.32 19.40 48.16
3 0.2030 0.7970 0.2030 1.85 25.16 25.70 50.72
4 0.7970 0.7970 0.2030 1.67 40.18 27.10 49.69
5 0.2030 0.2030 0.7970 1.86 29.82 21.40 50.09
6 0.7970 0.2030 0.7970 1.77 32.20 24.00 50.61
7 0.2030 0.7970 0.7970 1.88 22.01 19.60 50.36
8 0.7970 0.7970 0.7970 1.66 40.02 25.10 50.42
9 0.0000 0.5000 0.5000 1.81 33.00 24.20 29.31
10 1.0000 0.5000 0.5000 1.37 51.59 30.60 50.67
11 0.5000 0.0000 0.5000 1.85 20.35 20.90 48.75
12 0.5000 1.0000 0.5000 1.92 20.53 18.90 52.79
13 0.5000 0.5000 0.0000 1.88 23.85 23.00 50.19
14 0.5000 0.5000 1.0000 1.90 20.16 21.20 50.86
15 0.5000 0.5000 0.5000 1.89 21.72 18.50 50.84
16 0.5000 0.5000 0.5000 1.88 21.21 18.60 50.93
17 0.5000 0.5000 0.5000 1.87 21.55 16.80 50.98

Table 5: Minced fish quality data

The process requirements for each response given in [29] are as follows:
Maximize y; with lower bound L=1.70, and large enough value @ = 1.92;
Minimize y, with small enough value @ =20.16 and upper bound U=21.00;
Minimize y; with small enough value @ =16.80, and upper bound U =20.00;
Maximize y, with lower bound L =45.00, and large enough value @ =50.98.

The parametric models specified for the OLS model for response variables y,and y, include the
intercept, x;and x2. The one specified for y, includes the intercept, x;, x,, x2, and x;x,and for y; we have
the intercept, x;, x,, X3, X2, X X5, X1 X3, x2[28, 29].

The optimal values of the tuning parameters, fixed smoothing parameter and mixing parameter of
the proposed model and the MRR2 models for each response are presented in Table 6. Table 7 shows the
results of the goodness-of-fit.

proposed model (MMRR2) MRR2

NWICcWH)| NW) | cw) | bW bW 7 N c b PR

Y1|2.1715| 13.7116 | 8.4216 0.1026 0.5507 | 0.1665 | 1.0000 | 8.1582 | 1.4176 | 0.1665 | 1.0000

Y2 |4.5552| 0.1474 | 5.7697 0.1066 0.2435 | 0.2744 | 1.0000 | 5.8642 | 0.1094 | 0.2567 | 0.7149

Y3 |3.0149 | 0.0395 | 4.2963 0.0874 0.4450 | 0.4013 | 1.0000 | 10.6022 | 0.0796 | 0.3646 | 0.8664

Ya | 7.3073 ] 16.5049 | 15.6914 | 24.6609 0.1201 | 0.0810 | 1.0000 | 11.0554 | 2.4078 | 0.1218 | 1.0000

Table 6: Optimal values of the tuning parameters, fired smoothing parameter and mizing
parameter of the MMRR2 and the MRR2for the minced fish quality data
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Response Model DF PRESS™ PRESS" PRESS SSE R*(%)
Y1 MRR?2 12.0000 0.0021 0.0034 0.0407 0.0123 95.7916
MMRR?2 12.0000 0.0018 0.0028 0.0333 0.0123 95.7916

Y2 MRR?2 9.1404 11.8142 21.5425 196.9073 42.0322 96.9414
MMRR?2 8.0000 11.5081 26.3707 210.9655 37.7084 | 97.2560

Y3 MRR?2 3.1016 7.5469 36.8943 114.4304 29713 08.8486
MMRR?2 2.0000 6.1772 45.1033 90.2066 2.0467 99.2069

Ya MRR2 12.0000 17.4484 37.9271 455.1257 12.1387 | 97.1990
MMRR2 12.0000 6.1794 13.4320 161.1843 12.1387 97.1990

Table 7: Comparison of goodness-of-fit of ]\gMRRQ and MRR2 for the minced fish quality

ata

Results in Table 7 shows that the proposed model provides better values for the PRESS*™*, SSE
andR? across the four responses. Overall, it is observed that the proposed model exclusively produces better
results in thirteen cells, and jointly, in additional four, thus accounting for the better results in seventeen

out of a total of twenty cells.
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Figure 2: Plots of residuals from MMRR2 and MRR2 model for the minced quality fish data

Figure 2 shows that, for all the data points, y; and y, residuals from both models overlap while
those from the MMRR2 are closer to the zero residual line than those from the MRR2 for y, and yz;.Seven
and fourteen MMRR2 residuals of y, and y;, respectively, are observed to lie squarely on the zero residual
line compared to zero and two, respectively, for MRR2.These observations indicate that the MMRR2

provides more accurate fits.

Model X1 ) X3 Y1 ¥z V3 Vs d, d, d; d, | D(%)
MRR2 | 0.3491 | 1.0000 | 0.6506 | 1.8953 | 18.9230 | 18.1057 | 51.4171 | 0.8876 | 1.0 | 0.5920 | 1.0 | 85.1387
MMRR2 | (0.4690 | 0.9341 | 0.4957 | 1.8906 | 20.0080 | 16.0660 | 51.0311 | 0.8662 | 1.0 | 1.0000 | 1.0 | 96.4736

Table 8: Comparison of the optimal results from the desirability function of the MMRR2 and
MRR2 models for the minced fish quality data

From Table 8 the MMRR2 model is found to give the setting of the explanatory variables that

corresponds to a higher desirability measure.
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4.3. Simulation Study

In the examples given in section 4.1 and 4.2, it was shown that the goodness of fits and the optimal
solutions of fits of LLRpggwere either better than or highly competitive when compared with the results
from the MRR2. In this Subsection, we compare the performances of the respective regression models via
simulated data. Each Monte Carlo simulation comprises 500 data sets based on the following underlying
models:
Underlying Model 1:

yi = 30 + 8xy; + y{4sin(3mxy;) + 5 cos(Bmxy)} + &5
Underlying Model 2:

Vi = 42 + 15x;; + 9xp; + 17x1;%5; — 19x2 — 21x3+

+y{4sin(3mxy;) — 3 cos(3mx,;) + 3sin(5mxy;x,;)} + &,

Underlying Model 3:

Vi = 35 4 11xq; + 6xp; + 20x3; — 3%1;X0; — TXpiX5; — 2X1;X5; + 5x2 + 4xZ; + 13x%;

+ y{sin(mxy;) — cos(mxy;) — cos(mwxs;) + sin(mwxyx,;) + cos(mwxy;x3;) + sin(mwxy;x3:)} + &,
where the xq;,x,; and x3; are the values of the explanatory variables, &,i = 1,2, ...,n, are the error terms
which are normally distributed with mean zero and variance 1, and s a misspecification parameter which
represents a departure of the model from one specified by the user. The values of the explanatory
variablesx, for underlying model 1, x;, x,for underlying model 2 are obtained from Table 1 while those ofx,,
x, and xsfor underlying model 3 are obtained from Table 5.

Five degrees of model misspecifications, namelyy =0.0, 0.25, 0.5, 0.75 and 1.0 are considered. For
cach of the degrees of y, a full second-order polynomial is specified by the user and this perfectly
approximates the underlying model only for the case where y = 0 and the random error terms excluded.
However, as the value of y increases, the adequacy of the specified model for the underlying model
deteriorates steadily.

The goal of the simulation study is to demonstrate the resolve of each of the regression models when
applied to studies that consist of one, two or three explanatory variables, respectively. The regression
models Average Sum of Squares of Error (AVESSE) for each degree of A are presented in Table 9.

Underlying Model Y MRR2 MMRR2
1 0.00 8.3213 8.3209
0.25 8.3606 8.3414
0.50 8.4071 8.4060
0.75 8.4083 8.4071
1.00 8.4096 8.4087
2 0.00 6.0662 5.3345
0.25 8.6776 6.0033

0.50 14.2233 11.1331

0.75 20.7073 16.3665

1.00 29.7809 22.2343
3 0.00 6.9393 6.2276
0.25 8.1300 7.2754
0.50 9.4443 8.2353

0.75 15.5143 11.5050

1.00 18.1191 13.4171

Table 9: Comparison of the AVESSE of each method for each model in the simulation studies
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Table 9 shows the AVESSE of MRR2 and that of MMRR2 for underlying model 1 is close across the
five degrees of model misspecifications. However, MMRR2 gives better AVESSE for models 2 and 3 where
the curse of dimensionality is more intense.

5. Conclusion

In this paper, we proposed a regression model that modifies the configuration of the MRR2 model. The
model combines the philosophy, and hence, the advantages of both the MRR1 and the MRR2 models.
Comparisons of the overall performances of the proposed model and the MRR2 model(in terms of goodness-
of-fit, optimal solution based on the desirability function and plots of residuals) indicate that the proposed
model leverages more from the hybridization of the OLS and the LLR models than the MRR2 model.
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