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Abstract. This paper presents a linear programming model used for decision making in the mining
process of copper concentration from sulphide minerals. The developed model enables the decision
maker to select the types of ore to be used in the mix to maximize the metallurgical recovery and
the copper grade at the end of the process. The model is of the mixture model of minerals with
added economic variables such as processing costs, electric power and others. The process has four
sub-processes that are crushing the ore, crushing the crushed ore, flotation of the ground ore to obtain
copper concentrate and drying, in which the water is extracted. The model uses a set of variables whose
size varies according to the number of lots of minerals and the number of planning days considered.
The model may be considered a considerable problem when a long period of time is planned, but
has only been implemented with 3.000 variables and 2.000 constraints. The developed model is being
implemented in the National mining company, which buys ore from small producers to produce copper
concentrate and then melt and refine it to obtain high grade copper. The generated model produces
savings of the order of thousand dollars per day, when compared to the current methods of allocating
minerals, which represents millions of dollars per year. It also produces a benefit due to the fact that
lower operating costs are obtained, with estimate savings of the order of 5% of the current cost.
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1. Introduction

The aim of this paper is to use mathematical methods for the management of the processes
of a mining company, improving the productivity by optimizing the production of copper con-
centrate. We present an application of the optimal mineral mixture and explain how the
development of the model allowed those responsible for the process to realize that the way of
managing the process was erroneous. This is because they sought to optimize only by managing
the metallurgical recovery parameters and did not consider the option of mixing the minerals.
In addition, they simultaneously sought to optimize two variables of final copper concentrate
ore and metallurgical recovery. Several runs of models showed that optimize metallurgical re-
covery produces minimum final copper law and vice versa. In the second chapter, a brief review
of the importance of mining in the country is presented, while in the third chapter, the type
of company is explained, in which the application was made, which is a state company, with a
notable role of promotion for the small mining businessman.

In chapter three, a bibliographic review is carried out searching the main applications of
operations research of the crushing, grinding and flotation processes. Chapter four shows the
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model of mineral mixture initially used following the logic of the process managers and then
another model that maximizes the copper law. Finally, the final model that was implemented
in the company was developed, consisting of maximizing the product of the final copper law
multiplied by metallurgical recovery, which gives the final tons of copper. Chapter five presents
the final conclusions of the work, including the benefit of using this type of models, and the
figure of annual savings that is of the order of one million dollars.

2. Importance of mining

2.1. Mining in Chile

Mining is one of the priority sectors in Chile representing 9% of the GDP in 2015 according to
sources from the Central Bank of Chile, the 55% of total exports and 49% represents copper
mining. Chile is known to be a mining country, because the institutional framework allows for
mining investment due to macroeconomic and political stability, among other factors, and also
because it has great geological potential as it is part of the main copper reserves in the world.
In 2015, Chile represented 30% of world copper production, leading the list with the production
of 5,764 metric tons. Currently copper leaves a series of positive milestones for the sector, since
in 2017 it closed with a value of US $ 2.79 per pound, higher than forecast price (US $ 2.40 per
pound), where the highest demand was from China, the main consumer of the “red mineral”
in the world. The metal price is projected to be US $ 3.06 per pound for 2018 and US $ 3.11
per pound for 2019 thus it will continue to be the country’s main commodity.

2.2. National mining company (ENAMI)

ENAMI is a Chilean State-run company founded in 1960, created with the purpose of promoting
the development of the mining sector at small and medium scale, providing the services required
to access the market of refined metals. Its objectives are the recognition of mining resources,
technical and credit assistance, purchase, processing and marketing, in conditions of compet-
itiveness. It is present in eight regions of the country, with five production plants. ENAMI,
concentrates its task in the management of three areas that are production, commercialization
and support to the mining sector with financing of tools that promote sustainable development
of this sector. Regarding production, it starts with the benefit of minerals, which aims to add
value to the production of small and medium-sized mining, with profit and smelting plants. On
the other hand, commercialization enables closing the cycle of development and exploitation,
which includes the purchase of minerals and mining products under market conditions and the
sale of products in globalized markets. On the other hand, with regard to promotion, it includes
the financing of tools that contribute to the sustainable development of the sector, supporting
the implementation of viable projects.

2.2.1. Production processes of copper concentrate

The production process of copper concentrate is shown in the Figure 1.

3. Review of the literature

3.1. The use of OR in crushing processes

Due to the importance of crushing plants for mining companies, Svedensten and Magnus [17],
presented a method for the modeling and optimization of crushing plants, where the modeling
is represented with the different production units, rock materials and economy of the plant. A
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Figure 1: The process of the production the copper concentrate

model that considers customer demand is included, thus an optimization problem and a genetic
evolutionary algorithm are formulated. In the crushing process Itävou et al. [9] present an
effective way to produce models of dynamic processes based on established models of steady
state in order to make a simulator that allows for developing control methods to make the
most of the capacity of the crushers. The modeling for this control design is related to the
dependence between the input and output of a crusher. On the other hand, Asbjörnsson et al.
[1] created a wear function for an existing model that is related to the size of the particle, with
the purpose of obtaining the transitory consequences of wear of a crusher. Here the modeling is
carried out according to the function of Swebrec and the Correlation model is implemented in
a simulation software with simulated events. According to Gang et al. [5] the geometry of the
chamber of a crusher is a key factor for its performance, since its design integrates the quality
of the product, as well as the crushing efficiency. Then, a population balance model is made
combining the empirical model to predict the shape of the particle with the size distribution
model, having a size reduction model and a scale prediction model as restrictions.

3.2. The use of OR in grinding processes

In the milling circuit, Mendez et al. [11] and [12] propose a linear model from a classification of
the mill allowing for the rapid increase in the buoyancy index, where the particles are defined
by size and chemical composition, introducing a parameter that represents a class of particles
that delivers material to another one. Regarding the particle size distribution of industrial
discharges from ball mills, Gharehgheshlagh et al. [6] propose a perfect mixing model for the
investigation of their level of precision and thus simulate the particle size distribution.

3.3. The use of the OR in the flotation process

In the flotation process there is uncertainty in the design of the circuit, which is why Jamett et
al., [10] analyze the effect of stochastic uncertainty in circuit design and analyze various strate-
gies to improve the flotation circuit using variables such as the price of copper and the ore grade,
resulting in the problem of nonlinear optimization with two-stage mixed stochastic integers (TS
- MINLP). The first stage refers to the design and the second, to the operational stage. On the
other hand, Montenegro et al. [13] propose a methodology to analyze and/or design processes
in which it is necessary to have several stages to achieve the separation objectives and where
it is not possible to define the operating conditions with exactitude. Another method for the
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design of flotation circuits is presented by Cisternas et al. [3] based on a mixed-integer linear
programming model (MILP), using the development of two superstructures hierarchized by the
procedure and the tasks to be developed and then modeling said superstructures in order to
maximize the benefits. Subsequently, Cisternas et al. [4] propose the optimal selection of the
circuit through an objective function where the values of the structural and operative variables
can be determined.

The separation of minerals by foam that are carried out in the flotation circuit is done
through modeling and experience, so Hu et al., [8] expose an optimization methodology using
a genetic algorithm with the modeling of pulp and foam in each flotation cell to determine the
optimal design. The separation efficiency and the selectivity index are important for flotation,
which is why Salmani Nuri et al. [17] propose an optimization of both factors (separation
efficiency and selectivity index), through the artificial hybrid neural network (ANN) and a
genetic algorithm (GA), selecting as input variables the dose of the reagent, pH, feed rate,
among others, that must be optimized to achieve the desired values, using the MLP structure
for ANN modeling. On the other hand, Pirouzan et al. [16] pose a problem of optimization of
the configuration of the flotation circuit using metallurgical parameters such as the yield and
the content of the mineral in addition to the genetic algorithm. According to Nakhaei et al. [15]
flotation is a multivariate process, so its optimization guarantees the metallurgical performance
of the process through the ore grade and recovery of the concentrate.

Due to the dynamics of the flotation circuits Bouchard et al. [2] present a framework for
the simulation of these circuits, emphasizing water, solid and gas flows and the effect they
have on the level of the pulp and the outflow rates. This is done aiming to use a dynamic
simulator in a non-linear control strategy that is based on models to maintain critical process
variables. Currently, there are new economic and environmental challenges, where Gruzdeva
et al. [7] emphasize thatthey propose a deterministic framework of bio-objective mathematical
programming, combined with experimental design and regression analysis, in order to optimize
the performance of the flotation and determine the optimum conditions of operation satisfying
the needs of the process, maximizing the degree of concentration and recovery. Although the
study of the sulfide mining processes is very time consuming, only five publications cover more
than one process, either crushing and grinding or milling and flotation, or covering the three
processes (crushing, grinding and flotation). The drying process is not contemplated in the
bibliographic analysis, as it has not yielded results, but it does mention the process carried out
in this stage, where copper concentrate with a permitted humidity of 12 to 14% is obtained.
On the other hand, the vast majority of publications refer to improving the flotation process,
35 studies of which are found, while the rest of the publications are related to the crushing and
/ or grinding process.

Taking into account that the studies have objectives which may be economic, social or
technological, among others, the vast majority of publications aim to improve the process
with respect to the economic and technological axis. Regarding the economic objective, there
are 7 publications, while the technological axis has an impact of 40% of the total of studies.
Publications that contemplate two axes make up 35% of a total of 52 publications. Therefore,
with this information the vast majority of the research seeks to improve some process (crushing,
grinding or flotation) in the technological field related to the production of copper concentrate
to increase the copper law and in turn increase the recovery of the concentrate coppermade.

4. Mix of minerals

The problem studied in this work is to improve the productivity of the copper concentrate
production process. Specifically, it seeks to improve the way in which the company decides to
process the different lots of ore and this is improving the selection of minerals. The lots come
from small producers of copper ore in the form of rocks and are stored after obtaining samples to
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study the ore grade of each of them. Subsequently, the company processes the batches by order
of arrival. In an initiative of the company to improve productivity, the process and production
obtained was studied and it was concluded that it may be improved by using other ways of
deciding which lots to process, for example mixing lots from different mines in the same litter.

It is evident that at the end of a long period of time all the minerals from different copper
mines must be processed, but the way in which the lots are combined affects improving the value
of the variables that are considered critical in the process. These variables are the law of final
copper concentrate and metallurgical recovery. The law of final copper concentrate depends
on the copper law upon entry and metallurgical recovery. The production process consists of
three stages: crushing, grinding and flotation. Only the flotation process has the possibility of
improving productivity through the control of process parameters such as the amount of foam,
the amount of reagents, the amount of air consumed and other parameters. These parameters
affect metallurgical recovery and are the only variable that is ”managed” during the process, in
order to maximize recovery. Minerals can only yield the amount of copper they carry and this
amount is given by the ore grade on entry. Therefore it is key to be able to control the mixture
of input minerals. For this reason, Model 1 is proposed, which maximizes copper recovery.

Model 1: Maximizing copper recovery

max

n∑
i=1

Rixi

Copper concentrate grade constraint∑n
i=1 Lixi∑n
i=1 xi

≥ α. (1)

Batch mineral availability

xi ≤ di, i = 1, . . . , n. (2)

Mineral processing capacity of the plant in a day:

n∑
i=1

xi ≤ Cap. (3)

Restrictions of non-negativity

xi ≥, i = 1, . . . , n. (4)

Parameters:

Li : concentrate grade of the batch i,

Ri : metallurgical recovery of the batch i,

α : minimum concentrate grade of the final production,

Cap : capacity of the plant in a day,

di : availability of the batch i.

Decision variables:

xi : quantity of batch i to produce.
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lot Available Copper % Recovery % lot Available Copper % Recovery %
1 715 0.97 85.0 12 703 1.11 79.8
2 713 0.97 81.0 13 719 1.10 86.0
3 712 1.01 84.6 14 709 0.95 73.5
4 711 0.97 83.1 15 697 1.06 72.4
5 707 0.97 83.9 16 622 1.33 85.7
6 724 0.98 88.1 17 703 1.06 72.6
7 722 1.05 85.3 18 705 1.01 77.9
8 707 1.14 80.5 19 684 0.98 81.3
9 712 1.13 80.4 20 697 0.89 78.2
10 705 1.13 83.7 21 704 0.91 86.2
11 495 1.05 78.9 Total 14568

Table 1: Characteristics of copper law and metallurgical recovery of different minerals for one
day, from 21 different mining suppliers

The following table shows mineral availability data for the different lots with different ore
grades and metallurgical recovery. The law is known from the study of the mineral at the
purchase and the recovery is known from the characteristics of the mine from which the ore
comes.

First, we solve model 1 with the data of Table 1, but without considering restriction (1).
The results are recovery R = 83.83 and concentrate grade α = 26.883.
Copper concentrate grade constraint∑n

i=1 Lixi∑n
i=1 xi

≥ αk, αk = α+ k · step; k = 1, . . . , 6, step = 0.125.

k Recovery Concentrate grade
0 83.83 26.883
1 83.76 27.008
2 83.54 27.133
3 83.28 27.258
4 82.52 27.383
5 81.77 27.508
6 80.62 27.633

Table 2: Results of Model 1

Figure 2 shows the recovery values for different values of copper grade, which are modified
in 0.125% intervals in each section. The recovery value decreases, which reflects the thesis
that both variables are opposed. The idea of the model is to represent the way of managing
the current production process, which consists of maximizing the metallurgical recovery given a
level of copper grade of the mineral. These points were obtained by solving several optimization
models, and represent the Pareto possibilities frontier, that is, the different combinations of
recovery points and copper law that deliver the optimum of both variables. It was found that
the company does not operate regularly on this border, losing optimality, which results in the
loss of tons of fine copper. For example, point A corresponds to any production shift with copper
grade values of 27.20% and metallurgical recovery of 82.0%. It is observed that this point is far
from the efficient border, because for a given value of copper grade it can be improved up to
point B, with a metallurgical recovery of 83.25, increasing the total fine copper tons. By way
of contrast we tested the model that could be considered opposite to Model 1, called Model 2.
That is, to maximize the copper grade subject to a given value of metallurgical recovery and
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Figure 2: Max concentrate grade vs metallurgical recovery Model 1

also complying with the mineral availability restriction of each lot and a restriction of daily
plant capacity.

Model 2: Maximizing the copper concentrate grade

max

n∑
i=1

Lixi.

Metallurgical recovery ∑n
i=1Rxi∑n
i=1 xi

≥ R. (5)

Batch mineral availability
xi ≤ di, i1, . . . , n. (6)

Mineral processing capacity of the plant in a day

n∑
i=1

xi ≤ Cap . (7)

Restrictions of non-negativity
xi ≥ 0 i = 1, . . . , n. (8)

Parameters:

R : minimum recovery,

Rk : metallurgical recovery in iteration k.

Metallurgical recovery∑n
i=1Rxi∑n
i=1 xi

≥ Rk, Rk = R+ k · step; k = 1, . . . , 7, step = 0.5; R = 80.62.

Model 2 shows the same inverse relationship between copper law and recovery as Model 1
and a similar Pareto type border, which confirms the inverse relationship already explained.
Finally, a model that maximizes the product of the final copper law by metallurgical recovery
is proposed, which multiplied by the amount of processed ore delivers the tons of fine copper
obtained. This will be named Model 3.
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Concentrate
grade

Recovery

27.633 80.62
27.590 81.12
27.528 81.62
27.448 82.12
27.368 82.62
27.285 83.12
27.090 83.62

Table 3: Results of Model 2

Figure 3: Max concentrate grade vs metallurgical recovery Model 2

Model 3: Maximizing the final tons

maxTons =

n∑
i=1

RiLixi.

Metallurgical recovery ∑n
i=1Rxi∑n
i=1 xi

≥ Rk. (9)

Batch mineral availability
xi ≤ di, i = 1, . . . , n.

Mineral processing capacity of the plant in a day:

n∑
i=1

xi ≤ Cap.

Restrictions of non-negativity
xi ≥ 0, i = 1, . . . , n.

Solving this problem

Rk = R+ k · step, k = 1, . . . , 7, step = 0.5; R = 80.62.
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Concentrate grade Recovery Ton copper
27.633 80.62 89.10
27.590 81.12 89.52
27.528 81.62 89.87
27.448 82.12 90.15
27.368 82.62 90.44
27.285 83.12 90.71
27.090 83.62 90.61

Table 4: Results of Model 3

Figure 4: Max concentrate grade vs metallurgical recovery Model 3

Finally, the model that will be used in the process will be Model 3 with restrictions (2) and (3).
This expression results in the maximization of the tons of copper at the end of the process. To
this model of mineral mixture, economic variables and restrictions will be added. That is to say,
revenues and costs, in order to represent the economic decision for the company, incorporating
all the other concepts, such operational expenses, maintenance costs, cost of electrical energy,
costs of the processes of crushing, grinding, flotation and drying, inventory costs in the different
stages of the process will be added. It also incorporates the capacities of the processes that
are a limitation to the desirable production quotas. This process and its variables are shown in
Figure 5.

Model 4: Integral model considering inventory and sales price of the grade concentrate Sub-
script

• Daily shifts for the sulphide process, t = 1, 2, . . . , T

• Batch of mineral, j = 1, 2, . . . , J

Decision variables
For t = 1, . . . , T and for j = 1, 2, . . . , J :

xCjt = Flow of tons of ore obtained in the crushing process of lot j at time t.

xCI
jt = Flow of tons of ore obtained in the crushing process that passes to inventory of lot
j at time t.

xCM
jt = Flow of tons of ore that enters the grinding process from the crushing process of

lot j at time t.
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Figure 5: Diagram of the process with its material flows and variable names

xIMjt = Flow of tons of ore that enters the grinding process from the inventory of lot j at
time t.

xMjt = Flow of tons of ore obtained in the milling process of lot j at time t.

xMI
jt = Flow of tons of ore obtained in the grinding process that passes to inventory of

lot j at time t.

xMF
jt = Flow of tons of ore entering the flotation process from the milling process of lot
j at time t.

xIFjt = Flow of tons of ore that enter the flotation process from inventory of lot j at time
t.

xFjt = Flow of tons of ore obtained in the flotation process of lot j at time t.

Zjt =Flow of tons of ore obtained in the drying process of lot j at time t.

ICjt =Inventory by tons of ore obtained in the crushing process of lot j at time t.

IMjt = Inventory for tons of ore obtained in the milling process of lot j at time t.

Parameters
For t = 1, . . . , T and for j = 1, 2, . . . , J :

Pjt : price of a ton of copper concentrate on day j on shift t.

CC
j : cost of the crushing process that depends on the ore (per ton) of day j.

CM
j : cost of the milling process that depends on the mineral (per ton) of the day j.

CF
j : cost of the flotation process that depends on the mineral (per ton) of day j.

CS
j : cost of the drying process that depends on the mineral (per ton) of day j.

CIC : unit inventory cost per ton after the crushing process.

CIM : unit inventory cost per ton after the grinding process.
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Ej : energy cost of mining sulfide processes.

M j : maintenance cost of mining sulfide processes.

CAP jt : processing capacity of incoming minerals (in tons) to the crushing process on
day j, in turn t.

CAPmjt : processing capacity of incoming minerals (in tons) to the grinding process on
day j, on shift t.

CAPf jt : processing capacity of incoming minerals (in tons) to the flotation process on
day j, in turn t.

β : humidity rate of the drying process.

dispchjt : availability of incoming minerals (in tons) to the crushing process on day j, in
turn t.

dispcmjt : availability of incoming minerals (in tons) to the grinding process on day j, on
shift t.

dispmfjt : availability of incoming minerals (in tons) to the flotation process on day j,
on shift t.

Constraints
xCjt ≤ CAPjt (10)

T∑
t=1

xCjt ≤
T∑

t=1

CAPjt, ∀j (11)

T∑
t=1

xCM
jt +

T∑
t=1

xIMjt ≤
T∑

t=1

CAPmjt, ∀j (12)

T∑
t=1

xMF
jt +

T∑
t=1

xIFjt ≤
T∑

t=1

CAPfjt, ∀j (13)

xCjt ≤ dispchjt (14)

xCM
jt ≤ dispcmjt (15)

xMF
jt ≤ dispmfjt (16)

xIMjt ≤ ICj,t−1 (17)

xIFjt ≤ IMj,t−1 (18)

Constraints (10) to (18) correspond to capacity restrictions of the flow variables. The law of
conservation of mass is applied to the constraints that follow, analyzing the physical systems.
Constraints (19) and (20) equalize the amounts entered into the drying process with the quan-
tities withdrawn from the same process by applying the loss factor by evaporation of moisture
alpha at the aggregate and individual level, respectively. Restrictions (21) and (22) correspond
to typical inventory conservation restrictions for the crushing and milling process respectively.
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Restrictions (23), (24), (25) and (26) correspond to the equations of flow inflows to the crushing,
milling, flotation and drying processes, respectively.

T∑
t=1

Zjt = β ·
T∑

t=1

xFjt ∀j (19)

Zjt = β · xjt (20)

ICjt = xCI
j,t − xIMj,t + ICj,t−1 (21)

IMjt = xMI
j,t − xIFj,t + IMj,t−1 (22)

xCjt = xCM
j,t + xCI

j,t (23)

xMjt = xMF
j,t + xMI

j,t (24)

xMjt = xCM
j,t + xIMj,t (25)

xFjt = xMF
j,t + xIFj,t (26)

Objective function

maxB =

T∑
t=1

J∑
j=1

(
T∑

t=1

J∑
j=1

Pjt · Zjt − Cost

)
(27)

Cost =

T∑
t=1

J∑
j=1

(
T∑

t=1

(
CC

t + Et +Mt

)
xCjtLjRj +

T∑
t=1

(
CM

t + Et +Mt

)
xMjt

+

T∑
t=1

(
CF

t + Et +Mt

)
xFjt +

T∑
t=1

(
CS

t + Et +Mt

)
Zjt + CIC · ICjt + CIM · IMjt

)
(28)

The cost function is given by six terms. The first corresponds to the cost of crushing, the
second, to the cost of grinding, the third, to the cost of flotation and the fourth, to the cost of
drying. The fifth term corresponds to the cost of inventory after crushing and the sixth, to the
cost of inventory after flotation. The results obtained using Model 4 are shown in Table 5.

Inst. Days #variables #constraints
Optimal solution

(Profit USD)
Income (USD) Costs (USD)

1 10 360 430 700575 918958 218383
2 20 860 860 1342572 1761014 418442
3 40 1720 1720 2639313 3461898 822585
4 60 2580 2580 3970266 5207721 1237455
5 70 3010 3010 4608494 6044835 1436341
6 90 3870 3870 6011311 7884958 1873647

X 48 1740 2078 3212089 4213231 1001142

Table 5: Results obtained
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Six instances corresponding to different time periods were solved, as shown in Table 5.
Comparing the method of administration using the mineral mixture model, with the previous
method, called “random solution”, there are savings of the order of 66.457 dollars per day,
which in an annual projection delivers a total saving of around 25 million dollars.

5. Conclusions

The productivity of the flotation process to produce copper concentrate was studied and the
managers were convinced to use a mix of minerals to obtain more tons of fine copper at the
end of the process. In addition, the relationship between the metallurgical recovery and the
copper law of the final concentrate was studied, finding an inverse relationship, which shows
that when a combination of minerals that maximizes metallurgical recovery is chosen, this
mixture of minerals minimizes the obtained copper grade. The dilemma raised is to choose a
mixture of minerals that maximizes the amount of final copper obtained. It was found that
this term corresponds to the product of the copper law of the incoming ore multiplied by the
metallurgical recovery, which enabled building an objective function. Additionally, the mineral
mixture model was developed adding economic variables of income and costs, which produces
a total saving of around 25 million dollars per year.
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