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Abstract. In this manuscript, a model is proposed for the inventory planning problem with items
which deteriorate linearly with respect to time. The concept of salvage value for deteriorated items
is considered and incorporated in this model. The solution procedure of proposed optimization model
is illustrated by a couple of numerical examples. A convexity check of the average total cost function
is performed by plotting a two dimensional graph. The sensitivity test of the proposed model is
performed to study the effect of changing the least as well as the most sensitive parameters in the
proposed optimization model. Some graphical representations are constructed to discuss the outcomes
and results so obtained for a choice of various parameters.
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1. Introduction

In today’s competitive and highly growing world, Inventory planning (IP) is crucial in the
present competitive environment and is steadily gaining a lot of research attention. Firms
and Companies are facing some challenges in determining the methods to fulfill the ever-rising
customer’s demand and to remain competitive in the market while keeping the total costs
manageable. The demand depends on various factors like inventory level or stock, selling price,
time, etc. For a particular season, there are some items like ice-cream, woolen cloths, dairy-
products, green vegetables, etc., which deteriorates over time. These items are said to be as
deteriorating items. As a result of this deterioration, a fraction of items becomes obstacle.
Finally, it causes the shortages in the inventory control system, which affects the total cost
as for the inventory system as well as total profit also. So, the deterioration is justified to be
considered as an affecting factor for the inventory control system. A model for exponentially
decaying inventory system is presented in [12]. Moreover, the holding cost is also an important
factor affecting the total cost of the inventory planning, and hence the total profit. The nature
of the holding cost may be linear or nonlinear depending on time parameter. Various researchers
have considered extending the work on inventory planning for time dependent variable holding
cost. For instance, [20] proposed a variable holding cost rate EOQ model. An economic order
quantity models with non-linear holding cost was studied in [29]. In real life cases, we observe
that some industry or firm offer the permissible delay in payments to their clients. A retailer’s
pricing and lot-sizing policy for exponentially deteriorating items was suggested in [13], where
they implemented the condition of permissible delay in payments.
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An inventory control model for economic order quantity of deteriorating items under per-
missible delay in payments was developed in [5]. As an economic order quantity model, an
inventory control system for deteriorating items with time varying demand was formulated in
[7], where the partial backlogging is considered. For a single period inventory problem with
quadratic demand distribution, an expression for the total cost function was modeled in [3]
under the influence of market policies. The concept of trade credit financing is also a crucial
factor affecting the total profit of the inventory optimization problem.

A mathematical model for the inventory optimization problem was presented in [8] to de-
termine the optimal cycle time for exponentially deteriorating products under trade credit
financing. A model for an inventory problem with deteriorating items under the condition of
permissible delay in payments was proposed in [7]. The other notable contributions are in
[2, 4, 6, 8, 7]. In literature, many researchers considered time dependent quadratic demand
with or without shortages. A note on order level inventory mathematical model for a deterio-
rating item with time dependent quadratic demand was studied in [14]. An inventory model for
deteriorating items with exponential declining demand and partial backlogging was suggested
in [23]. A mathematical model for the inventory problem with stock-level dependent demand
rate and variable holding cost was studied in [1]. Due to vagueness, some researchers considered
the deterioration as a random variable following some known probabilistic distribution.

An EOQ model for deteriorating items with Weibull distribution deterioration, unit produc-
tion cost with quadratic demand and shortages was formulated in [2]. Later, an EOQ model
for a deteriorating item with time dependent quadratic demand under permissible delay in pay-
ments was modeled in [15]. Among the various patterns of demand function, the power pattern
demand has wide applications n modeling an inventory problem. An inventory model with
weibull distribution deteriorating item power pattern demand with shortage and time depen-
dent holding cost was presented in [26]. Afterwards, some researchers introduced the concept
of salvage value. Some inventory models by incorporating the concept of salvage value were
studied in [22, 25]. An economic lot-size model with non-linear holding cost was proposed in
[24], where the holding cost was dependent on both the time and quantity.

In real-world scenario, the exact predictions of most of the uncertain variables and pa-
rameters are not easily available. The fuzzy goal programming was studied in [9], where an
application to the field of multi-objective linear fractional inventory model was presented. A
partial backlogging inventory model for deteriorating items with time-varying demand and
holding cost was suggested in [10] by using an interval number approach. A partial backlog-
ging inventory model for deteriorating items with time-varying demand and holding cost was
developed in [11]. A multi-objective linear fractional inventory model of multi-products with
price-dependant demand rate is formulated in fuzzy environment in [16]. An investigation of
two-warehouse inventory problems in interval environment was presented under inflation via
particle swarm optimization in [4]. The unavailability of correct data in real-world scenario re-
sults the uncertainty in demand rate. This challenges significantly for modeling an appropriate
inventory control model. Over the last few decades, a huge number of research articles have
published the multi criteria decision making (MCDM) methods in inventory planning problems.
The fuzzy approaches for some MCDM methods in inventory control models were suggested
in [17]. For two parameters Weibull deterioration and declining demand under shortages, an
inventory model was developed in [22].

An inventory optimization model with variable holding cost and partial backlogging was
formulated under interval uncertainty by applying the global criteria method in [18]. There are
different trade credits, which a firm or industry can offer to its clients. Some inventory models
for stock-dependent demand and time varying holding cost under different trade credits was
modeled in [27].

An EOQ model with quadratic time-sensitive demand and parabolic-time linked holding
cost was formulated in [28]. A model for inventory optimization model for quadratic increasing
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holding cost and linearly increasing deterministic demand was presented in [19]. In this arti-
cle, we study a deterministic inventory planning problem for time-varying linear demand and
parabolic time dependent holding cost with salvage value. Our aim is to determine the optimal
total inventory cost. In short, the remainder of this manuscript is designed to organize as cited
bellow. In the section 2, we discuss a list of notations used and assumption undertaken. Fol-
lowing the section 3, we develop a mathematical optimization model of the proposed inventory
control problem. In the section 4, we give an algorithm for the proposed model. In section
5, some numerical experimentation is carried out. Following the section 6, we discuss some
particular cases. The sensitivity test and graphical representations are recorded in section 7.
The observations and discussions are presented in section 8. In the last, we conclude and give
some future research scope in the section 9.

2. Notations, assumptions and holding cost justification

The proposed model is presented under the following assumptions and notations:

2.1. Notations

Symbol Meaning Symbol Meaning

C1(t)
holding cost

for per unit per time unit
Q order quantity

C2
purchasing

cost per unit
CH

holding cost
for a cycle

C3
order cost per

order
CD

cost of
deterioration for a cycle

θ deterioration ATC
average total

cost per unit time per cycle

T duration of a cycle I(t)
level of

inventory during interval [0, T]

η
salvage

coefficient
R(t) Demand rate

Table 1: List of notations

2.2. Assumptions

1. A deterministic inventory system with single type of item only is considered.

2. No shortages are permitted.

3. Infinite planning horizon, and hence zero lead time is considered.

4. All replenishment cycles are identical. Therefore, only a typical planning cycle of time-
length T is discussed. Thereby, the planning horizon is the interval [0, T ].

5. Demand rate R(t) is deterministic as well as linearly increasing function of time, and
defined by the expression (for some constants a > 0, and b > 0 ):

R(t) = a+ bt.
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6. Deteriorating rate θ, 0 < θ < 1, is assumed to be a constant, starts as soon as the items
are received in the inventory. Also, the deteriorated items are not allowed to repair or
replace during the entire cycle time.

7. For salvage value, we apply the concept as adopted by [21, 25]. Salvage value per unit, is
equal to ηC2, 0 ≤ η < 1, and is associated with the deteriorated items.

8. As assumed by [28, 19], the holding cost is parabolic function of time, and defined by the
following expression (for some constants h > 0, g > 0):

C1(t) = h+ gt2.

2.3. Justification for taking parabolic holding cost

Holding cost is related to various costs, for example, space of the ware house, insurance, pro-
tection, cost of capital tied up, etc. Also, it can be considered as function of multiple causes.
Holding cost depends on various causes. All these causes may occur at a time. Linear time-
dependence of holding cost implies a uniform change in the holding cost of the item per unit
time. This is rarely observed to happen in the real market system. Moreover, an exponentially
time-varying holding cost also appears to be unrealistic, since an exponential rate of change is
very high and it is doubtful whether the holding cost of any item may undergo such a high rate
of change as exponential. An alternative as well as more realistic idea is to take the parabolic
time-dependent holding cost which may express all types of time-dependence depending on the
signs of the parameters of the time-parabolic holding cost. Thus, it is justified to consider the
time-dependent parabolic holding cost.

3. Mathematical model formulation

The level of inventory depletes as a result of the market demand as well as the deterioration.
The shortages are not permitted. The governing differential equation is as follows:

dI(t)

dt
+ θI(t) = −(a+ bt), 0 ≤ t ≤ T (1)

with boundary condition I(t) = 0 at t = T. Solving equation (1) and then applying the
boundary condition, we obtain

I(t) =

(
a− b

θ

)(
eθ(T−t) − 1

θ

)
+

(
bT

θ

)
eθ(T−t) − bt

θ
, (2)

and, the order quantity:

Q = I(0) =

(
a− b

θ

)(
eθT − 1

θ

)
+

(
bT

θ

)
eθT . (3)
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Holding cost per cycle:

CH =

∫ T

0

C1(t)I(t)dt

=

∫ T

0

(
h+ gt2

){(
a− b

θ

)(
eθ(T−t) − 1

θ

)
+

(
bT

θ

)
eθ(T−t) − bt

θ

}

=

(
aθ − b

θ2
+
bT

θ

){
h+ gT 2

θ
− 2gT

θ2
− 2g

θ3
+

(
h

θ
+

2g

θ3

)
eθT

}

−

(
aθ − b

θ2
+
bT

θ

)(
hT +

gT 3

3

)
. (4)

Deterioration cost per cycle:

CD = C2

(
Q−

∫ T

0

R(t)dt

)
= C2

{(
a− b

θ

)(
eθT − 1

θ

)
+

(
bTeθT

θ

)
−

(
aT − bT 2

2

)}
. (5)

Salvage value of deteriorated items:

SV = η · Deterioration cost per cycle

SV = ηC2

{(
a− b

θ

)(
eθT − 1

θ

)
+

(
bTeθT

θ

)
−

(
aT − bT 2

2

)}
. (6)

Average of total cost per unit time per cycle:

ATC =
1

T
[Ordering Cost + Holding Cost + Deteriorating Cost - Salvage Value]

=
1

T
[C3 + CD + CH − SV ]

=
1

T

[
C3 + C2

{(
a− b

θ

)(
eθT − 1

θ

)
+

(
bTeθT

θ

)
−

(
aT − bT 2

2

)}
+

+

(
aθ − b

θ2
+
bT

θ

){
h+ gT 2

θ
− 2gT

θ2
− 2g

θ3
+

(
h

θ
+

2g

θ3

)
eθT

}

−

(
aθ − b

θ2
+
bT

θ

)(
hT +

gT 3

3

)
− ηC2

{(
a− b

θ

)(
eθT − 1

θ

)
+

(
bTeθT

θ

)

−

(
aT − bT 2

2

)}]

=
1

T

[
C3 +

(
aθ − b

θ2
+
bT

θ

){
h+ gT 2

θ
− 2gT

θ2
− 2g

θ3
+

(
h

θ
+

2g

θ3

)
eθT

}

−

(
aθ − b

θ2
+
bT

θ

)(
hT +

gT 3

3

)

+C2(1 − η)

{(
a− b

θ

)(
eθT − 1

θ

)
+

(
bTeθT

θ

)
−

(
aT − bT 2

2

)}]
.
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Now, we expand the exponential term, and ignoring second and higher power of θ for small
value of θ, i.e., eθT = 1 + θT, we obtain the approximate expression for ATC as:

ATC =
1

T

[
C3 +

(
aθ − b

θ2
+
bT

θ

){
h+ gT 2

θ
− 2gT

θ2
− 2g

θ3
+

(
h

θ
+

2g

θ3

)
(1 + θT )

}

−

(
aθ − b

θ2
+
bT

θ

)(
hT +

gT 3

3

)

+C2(1 − η)

{(
a− b

θ

)
T +

(
bT (1 + θT )

θ

)
−

(
aT − bT 2

2

)}]
.

The following expression is resulted by some algebraic simplifications:

ATC =
1

T

[
C3 +

(
aθ − b

θ2
+
bT

θ

)(
2h

θ
+
gT 2

θ
− gT 3

3

)
+ C2(q − η)

(
3bT 2

2

)]
. (7)

Also

Q =

(
a− b

θ

)(
eθT − 1

θ

)
+

(
bT

θ

)
eθT = aT − bT

θ
+
bT

θ
+ bT 2 = aT + bT 2, (8)

d(ATC)

dt
=

=
1

T

[(
aθ − b

θ2
+
bT

θ

)(
2gT

θ
− gT 2

)
+

(
b

θ

)(
2h

θ
+
gT 2

θ
− gT 3

3

)
+ C2(1 − η)(3bT )

]

− 1

T 2

[
C3 +

(
aθ − b

θ2
+
bT

θ

)(
2h

θ
+
gT 2

θ
− gT 3

3

)
+ C2(1 − η)

(
3bT 2

2

)]
, (9)

d2(ATC)

dT 2
=

=
1

T

[(
aθ − b

θ2
+
bT

θ

)(
2g

θ
− 2gT

)
+

(
b

θ

)(
2gT

θ
− gT 2

)

+

(
b

θ

)(
2gT

θ
− gT 2

)
+ 3bC2(1 − η)

]

− 1

T 2

[(
aθ − b

θ2
+
bT

θ

)(
2gT

θ
− gT 2

)
+

(
b

θ

)(
2h

θ
+
gT 2

θ
− gT 3

3

)
+ C2(1 − η)(3bT )

]

− 1

T 2

[
b

θ

(
2h

θ
+
gT 2

θ
− gT 3

3

)
+

(
aθ − b

θ2
+
bT

θ

)(
2gT

θ
− gT 2

)
+ C2(1 − η)3bT

]

+
2

T 3

[
C3 +

(
aθ − b

θ2
+
bT

θ

)(
2h

θ
+
gT 2

θ
− gT 3

3

)
+ C2(1 − η)

(
3bT 2

2

)]
. (10)

The objective is to compute the optimum value of T so that the cost function ATC attains its
minimum value. That value of T , for which the total cost ATC is minimized, is the solution of
the equation:

d(ATC)

dT
= 0, (11)
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satisfying the sufficient condition:

d2(ATC)

dT 2
> 0. (12)

The optimum solution of equation (7) is determined by applying software MATHEMATICA.

4. Algorithm

To determine the solution, the following algorithm is adopted:

Step 1. Initialize the problem and parameters.
Input: the numerical values of input parameters;

Step 2. Determine the value of T , by using equation (11)

Step 4. Check the convexity for optimality of T by equation (12);

Step 5. Determine the optimal value of Q, and minimum value of ATC.

Step 6. Output: minimum total cost.

5. Numerical experimentation

Example 1. (Small Data) Consider the input parameter values, in proper units, as: C1(t) =
h+ gt2 for h = 3, g = 0.6, C2 = 12, C3 = 120, θ = 0.06, η = 0.05, R(t) = a+ bt for a = 20, and
b = 0.5 . Applying the above algorithm, we obtain the optimal solution for (7) as:

ATC =
1

T

[
120 +

(
20 · 0.06 − 0.5

0.062
+

0.5T

0.06

)
·

(
2 · 3

0.06
+

0.06T 2

0.06
− 0.6 · T 3

3

)

+12 · (1 − 0.05) ·

(
3 · 0.5 · T 2

2

)]
,

T = 2.9955; Q = 64.3965; ATC = 13568.8 . And, d2(ATC)
dT 2 > 0 which implies the convexity of

the function ATC.
Example 2. (Medium Data) Consider the input parameter values, in proper units, as:
C1(t) = h + gt2 for h = 4, g = 0.9, C2 = 30, C3 = 140, θ = 0.08, η = 0.1, R(t) = a + bt for
a = 30, and b = 0.7 . Applying the above algorithm, we obtain the optimal solution for (7) as:

ATC =
1

T

[
140 +

(
30 · 0.08 − 0.7

0.082
+

0.7 · T
0.08

)
·

(
2 · 4

0.08
+

0.9T 2

0.08
− 0.9 · T 3

3

)

+30 · (1 − 0.1) ·

(
3 · 0.7 · T 2

2

)]
,

T = 2.9547; Q = 94.7522; ATC = 18921.50 . And d2(ATC)
dT 2 > 0 which implies the convexity of

the function ATC.
Example 3. (Large Data) Consider the input parameter values, in proper units, as: C1(t) =
h+ gt2 for h = 6, g = 1.4, C2 = 60, C3 = 180, θ = 0.09, η = 0.7, R(t) = a+ bt for a = 40, and
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b = 1.2 . Applying the above algorithm, we obtain the optimal solution for (7) as:

ATC =
1

T

[
180 +

(
40 · 0.09 − 1.2

0.092
+

1.2 · T
0.09

)
·

(
2 · 6

0.09
+

1.4 · T 2

0.09
− 1.4 · T 3

3

)

+60 · (1 − 0.7) ·

(
3 · 1.2 · T 2

2

)]
,

T = 2.8506; Q = 123.7750; ATC = 29348.40 . And d2(ATC)
dT 2 > 0 which implies the convexity of

the function ATC.

6. Particular cases

Case 1: Constant demand rate. We take b = 0 in the demand rate R(t) = a+ bt, and we
obtain constant demand rate R(t) = a. Thereby

ATC =
1

T

[
C3 +

(
a

θ

)(
2h

θ
+

gT 2

θ − gT 3

3

)]
.

Case 2: Constant holding cost

ATC =
1

T

[
C3 +

(
aθ − b

θ2
+
bT

θ

)(
2h

θ
− gT 3

3

)
+ C2(1 − η)

(
3bT 2

2

)]
.

Case 3: No salvage

ATC =
1

T

[
C3 +

(
aθ − b

θ2
+
bT

θ

)(
2h

θ
+
gT 2

θ
− gT 3

3

)
+ C2

(
3bT 2

2

)]
.

7. Sensitivity test and graphical representations

To test the flexibility of the model, we observe the impact of changes in different parameters
against average total cost. The values of each parameter are changed by 40%, 20%, -20%
and -40%, treating only one parameter at a time, while maintaining the remaining parameters
unaltered. The obtained results are depicted in Table 2 below:

Additionally, we verify the convexity of average total cost function by plotting the graphs
(Figure 1, Figure 2 and Figure 3).

8. Observations and discussion

Carefully analyzing the sensitivity test Table 2, we observing the following points:

(1) Effect due to change in holding cost parameter (h): The cycle time T , optimal
order quantity Q, and the average total cost ATC increase as the holding cost parameter
h increases (Figure 4).

(2) Effect due to change in holding cost parameter (g): The cycle time T , and optimal
order quantity Q decrease as the holding cost parameter g increases. While the average
total cost ATC increases as the holding cost parameter g increases.
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INPUT DATA OUTPUT DATA
Parameter Change in parameter (%) Parameter value T Q ATC

–40 1.80 2.3500 47.7613 10329.0
h = 3 –20 2.40 2.6962 57.5587 12036.70

+20 3.60 3.2722 70.7976 14975.50
+40 4.20 3.5221 76.6446 16286.90
–40 0.36 3.8276 83.8773 10777.60

g = 0.6 –20 0.48 3.3370 72.3078 122262.0
+20 0.72 2.7486 58.7494 14749.60
+40 0.84 2.5525 54.3076 15835.0
–40 7.2 3.0017 64.5391 13558.0

C2 = 12 –20 9.6 3.0006 64.5138 13563.70
+20 14.4 2.9983 64.4609 13573.90
+40 16.8 2.9972 64.4356 13579.10
–40 72 2.9959 64.4057 13552.80

C3 = 120 –20 96 2.9977 64.4471 13560.80
+20 144 3.0012 64.5276 13576.80
+40 168 3.0030 64.5690 13584.80
–40 0.036 2.7167 58.0242 21884.70

θ = 0.06 –20 0.048 2.9030 62.2737 17919.80
+20 0.072 3.0728 66.1770 10368.40
+40 0.084 3.1386 67.6974 8097.84
–40 12 2.5598 54.4723 5291.77

a = 20 –20 16 2.8608 61.3081 9455.55
+20 24 3.0807 66.3594 17664.90
+40 28 3.1344 67.6002 21753.10
–40 0.3 3.1860 68.7953 16333.50

b = 0.5 –20 0.4 3.0977 66.7519 14957.80
+20 0.6 2.8885 61.9417 12163.40
+40 0.7 2.7605 59.0202 10736.80
–40 0.03 2.9993 64.4819 13569.30

η = 0.05 -20 0.04 2.9994 64.4862 13569.10
+20 0.06 2.9995 64.4885 13568.50
+40 0.07 2.9996 64.4908 13568.30

Table 2: Sensitivity test (Example 1)

(3) Effect due to change in purchasing cost (C2): The cycle time T , and optimal order
quantity Q slightly decrease as the purchasing cost C2 increases. While the average total
cost ATC slightly increases as the purchasing cost C2 increases.

(4) Effect due to change in ordering cost (C3): The cycle time T , optimal order quantity
Q, and the average total cost ATC increase slightly as the ordering cost parameter C3

increases.

(5) Effect due to change in deterioration (θ): The cycle time T and optimal order
quantity Q increase as the deterioration θ increases. While the average total cost ATC
decreases as the deterioration θ increases.

(6) Effect due to change in demand constant (a): The cycle time T , order quantity
Q, and total cost ATC increase as demand constant a increases.
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Figure 1: Convexity of average cost function ATC (Example 1)

Figure 2: Convexity of average cost function ATC (Example 2)

(7) Effect due to change in demand constant (b): The cycle time T , optimal order
quantity Q, and the average total cost ATC decrease as the demand constant b increases.

(8) Effect due to change in salvage coefficient (η): The cycle time T and optimal order
quantity Q increase as the salvage coefficient η increases. While the average total cost
ATC slightly decreases as the salvage coefficient η increases. Additionally, the deteriora-
tion is the most sensitive parameter, while the salvage coefficient η is the least sensitive
parameter.

9. Conclusions and future research scope

In this study, a deterministic inventory model for time-dependant linear demand and parabolic
holding cost with no shortages is presented. Salvage value is also incorporated in the model. An
expression for average total cost function is derived. Additionally, for its practical applications,
we illustrated three numerical examples conducting a test for sensitivity. All calculation works in
all the three numerical examples are performed by applying the computer packages LINGO. The
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Figure 3: Convexity of average cost function ATC (Example 3)

Figure 4: Effect of variation of h to T, Q, and ATC

obtained results are discussed, and demonstrates that the effect of variation of rate of changes of
the demand constants (a and b), and ordering cost on the inventory system behavior is the most
significant. Additionally, the salvage coefficient η possess the least impact on the parameters of
the system. The model is suggested to the industries and retailers to determine accurately the
optimal value of average total cost. The proposed model might be useful in dealing with the
problems of seasonal products, because of the tendency of demand rate and salvage value. This
manuscript may be further extended for permitting shortages, freight charges and advertisement
costs. Stochastic nature of demand may also be another direction for future research.
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