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Abstract. Rough set theory is a powerful tool to analysis the information systems. Fuzzy rough
set is introduced as a fuzzy generalization of rough sets. This paper reviewed the most important
contributions to the rough set theory, fuzzy rough set theory and their applications. In many real
world situations, some of the attribute values for an object may be in the set–valued form. In this
paper, to handle this problem, we present a more general approach to the fuzzification of rough sets.
Specially, we define a broad family of fuzzy rough sets. This paper presents a new development for
the rough set theory by incorporating the classical rough set theory and the interval–valued fuzzy sets.
The proposed methods are illustrated by an numerical example on the real case.
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1. Introduction

For the first time, rough set theory was proposed by Pawlak [21, 22, 23, 24]. Lateron, Dubois
and Prade [6, 7] introduced fuzzy–rough set as a fuzzy generalization of rough sets. In this
paper, we present a more general approach to the fuzzification of rough sets. specifically, we
define a broad family of fuzzy-rough sets, each one of which, called an (F , τ)-fuzzy-rough set, is
determined by an implicator F and a triangular norm τ [21]. Furthermore the contribution of
current paper is to suggest a novel devlopment of the rough set theory using merging the classical
Pawlak [21] rough-set theory with the interval-valued fuzzy set theory, i.e. the interval-valued
(I-V) fuzzy informathion system which is defined by a binary interval-valued fuzzy relation
R ∈ F (i)(U × U) on the universe U . [9, 25, 28]

The presented method is applied to find the optimal subsets in the fuzzy-rough data reduc-
tion process. [3, 11, 28, 27]

Moreover, in many real world problems, some information in the data will be lost according
to the tolerance relation [2, 3, 8, 13, 27, 28, 35] or in many cases information is accessible in the
form of data table known as information system (IS). Considering this, in this paper we suggest
a fuzzy relation and construct a fuzzy rough set model for set-valued information system.

In recent years some researchers have tried to developed novel methods to deals with sit-
uations in which incomplete information are in form of fuzzy, rough or their combinations.
Huang et al. [10] developed a new multigranulation rough set model through a combination
of multigranulation rough sets with intuitionistic fuzzy rough sets called an intuitionistic fuzzy
multigranulation rough set. Liang et al. [16] at first introduced incremental mechanisms for
three representative information entropies when a group of objects are added to a decision table
and then develop a group incremental rough feature selection algorithm based on information
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entropy. An et al. [1] have proposed a data-distribution-aware FRS model that considers dis-
tribution information and incorporates it in computing lower and upper fuzzy approximations.
The proposed model considers not only the similarity between samples, but also the probability
density of classes. Sun et al. [29] defined the rough fuzzy set on a probabilistic approxima-
tion space over two universes and then defined the fuzzy probabilistic approximation over two
universes by introducing a probability measure to the approximation space over two universes
and, finally, established the fuzzy rough set model on the probabilistic approximation space
over two universes. Zhao et al. [36] were the first researchers who proposed a nested structural
classifier, called nested classifier. There are two main contributions in their work as: The first
and the most important result is that a series nested structure on the basic concepts of rough
classifiers, such as lower approximation, discenribility vector and covering vector, is discovered.

Another key result is that several algorithms to find nested discernibility vector, nested rule
and nested covering vector are designed. Wang et al. [32] defined the fuzzy decision of a sample
using the concept of fuzzy neighborhood. Then, a parameterized fuzzy relation is introduced
to characterize the fuzzy information granules, using which the fuzzy lower and upper approx-
imations of a decision are reconstructed and a new fuzzy rough set model is introduced. Yang
et al. [34] have studied incremental attribute reduction with fuzzy rough sets and applying the
incremental process, two incremental algorithms for attribute reduction with fuzzy rough sets
are presented for one incoming sample and multiple incoming samples, respectively. Sun et al.
[30] considered rough approximation of a fuzzy concept under the framework of multigranula-
tion over two different universes of discourse, i.e. multigranulation fuzzy rough set models over
two universes and presented three types of multigranulation fuzzy rough set over two universes
by the constructive approach, respectively. Lin et al. [17] introduced fuzzy mutual information
to evaluate the quality of features in multi-label learning, and have designed efficient algorithms
to conduct multi-label feature selection when the feature space is completely known or partially
known in advance. Lin et al. [19] proposed a novel fuzzy rough set model for attribute reduction
in multi-label learning. The authors at first defined the score vector of each sample to evaluate
the probability of being different class’s sample with respect to the target sample, and then,
local sampling is leveraged to construct a robust distance between samples. Wang et al. [31]
introduced distance measures into fuzzy rough sets and proposed a novel method for attribute
reduction. Wang et al. [31] at first constructed a fuzzy rough set model based on distance
measure with a fixed parameter. Then, the fixed distance parameter is replaced by a variable
one to better characterize attribute reduction with fuzzy rough sets. To select more effective
feature genes, Xu et al. [33] proposed a new rough uncertainty metric model. To do this, Xu
et al. [33] constructed the fuzzy neighborhood granule of the sample by combining the fuzzy
similarity relation with the neighborhood radius in the rough set, and the rough decision has
defined by using the fuzzy similarity relation and the decision equivalence class. Then, the fuzzy
neighborhood granule and the rough decision have introduced into the conditional entropy, and
the rough uncertainty metric model has proposed.

This paper is organized as follows. We first will review the basic of the fuzzy rough sets
in Section 2. In Section 3, the interval-valued fuzzy information system is reviewed. Section
4 compares the interval-valued fuzzy rough set model with the other rough set models. In
Section 5, data reduction of the interval-valued fuzzy information system is presented. Section
6 presents a Fuzzy rough set model for the data reduction of set-valued data. In Section 7 a
numerical example is presented to illustrate the contribution of the current paper. Finally, the
conclusion remarks of the paper are given in Section 8.
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2. Fundementals of the fuzzy rough sets

In this section we introduce the definitions of fuzzy rough approximations and fuzzy rough
sets. Assume X be a nonempty universe and assume that R̃ be an equivalence relation on X.
The following notation will be used. Given a nonempty universe X, by P (X) we will denote a
power-set on X. The following notation will be used. Given a nonempty universe X, by P (X)
we will denote a power-set on X. If R is an equivalence relation on X then for every x ∈ X, [x]R
stands for the equivalence class of R with the representant x, i.e. [x]R = {y ∈ X : (x, y) ∈ R}.
Finally, for any Z ⊆ X, we write Z to denote the complementation of Z in X, that is the set
X \ Z.

Definition 1. A pair ZS = (X,R), where X 6= ∅ and R is an equivalence relation on X is
called an approximation space.

Definition 2. For an approximation space ZS = (X,R), by a rough approximation in ZS we
mean a mapping

APrZs : P(X)→ P(X)× P(X),

defined by for every Z ∈ P(X), APrZs(Z) = (ZS(Z), ZS(Z)) where

ZS(Z) = {x ∈ X; [x]R ⊆ Z},
ZS(Z) = {x ∈ X; [x]R ∩ Z 6= ∅}.

ZS(Z) is called a lower rough approximation of Z in ZS. where as ZS(Z) is called an upper
rough approximation of Z in Zs.

Definition 3. Given an approximation space ZS = (X,R), a pair (L,U) ∈ P(X) × P(X) is
called a rough set in Zs iff (L,U) = APrZs(Z) for some Z ∈ P(X).

For any approximation space Zs = (X,R), a subset Z ⊆ X is called definable in Zs iff
Zs(Z) = Zs(Z).

3. A review on the I–V fuzzy information system

Assume that I = [0, 1]. Also, assume that [I] = {[α, β] : α ≤ β, α, β ∈ I}. for any α ∈ I, define
α = [α, α]. obviously, α ∈ [I].

Definition 4. If ∀αi ∈ I, i ∈ J , we define

maxi∈Jαi = sup{αi : i ∈ J},
mini∈Jαi = inf{αi : i ∈ J},
maxi∈J [αi, βi] = [maxi∈Jαi,maxi∈Jβi],

mini∈J [αi, βi] = [mini∈Jαi,mini∈Jβi].

Particular for [αi, βi] ∈ [I] , i = 1, 2, we define

[αiβi] = [α2, β2] iff α1 = α2, β1 = β2;

[α1, β1] ≤ [α2, β2] iff α1 ≤ α2, β1 ≤ β2
[α1, β1] < [α2, β2] iff [α1, β1] ≤ [α2, β2]but[α1, β1] 6= [α2, β2]

Definition 5. Assume that X be an ordinary non-empty set. Then the mapping Z : X → [I]
is called an I-V fuzzy set in X. All I-V fuzzy set on X are denoted as F (i)(X).
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Definition 6. If Z ∈ F (i)(X) Assume that Z(x) = [Z−(x), Z+(x)]. where x ∈ X, then two
fuzzy sets Z− : X → I, and Z+ : X → I are called the lower fuzzy set and the upper fuzzy set
about Z, respectively.

Definition 7. Assume that Z ∈ F (i)(X), [λ1, λ2] ∈ [I], we call Z[λ1,λ2] = {x ∈ X;Z−(x) ≥
λ1, Z

+(x) ≥ λ2}, and Z(λ1,λ2) = {x ∈ X;Z−(x) > λ1, Z
+(x) > λ2}, the [λ1, λ2]-level set of Z

and (λ1, λ2)-level set of Z, respectively. Where (λ1, λ2) in Z(λ1,λ2) is not an interval, it is only
a sign, and we may admit λ1 = λ2, clearly, x ∈ Z[λ1,λ2] iff Z[λ1,λ2] ≥ [λ1, λ2].

Definition 8. Assume that Z ∈ F (i)(X), [λ1, λ2] ∈ [I], we define

([λ1, λ2]Z)(x) = [λ1, λ2]min[Z−(x), Z+(x)].

3.1. The rough approximation of a crisp set on the I–V fuzzy informa-
tion system

Assume that U be a non-empty finite universe. A binary I-V fuzzy subset R̃ of U ×U is called
an intertval-valued fuzzy relation in U .

Definition 9. Assume that U be a non-empty finite universe. for the I-V fuzzy relation R̃
(R̃ ∈ F (i)(U × U)) of the universe U :

1. R̃ is reflexive, if R̃(x, y) = 1, ∀ x, y ∈ U ,

2. R̃ is symetric, if R̃(x, y) = R̃(y, x), ∀ x, y ∈ U ,

3. R̃ is transitive, if R̃(x, z) ≥ R̃(x, y)minR̃(y, z) ∀ x, y, z ∈ U .

If the fuzzy relation R̃ is reflexive, symmetric and transitive, then R̃ is an I-V fuzzy equiv-
alence relation.

Definition 10. Assume that (U, R̃) be an I-V fuzzy information system for any x ∈ U , call
[x](i) : U → [x], y → R̃(x, y) the I-V fuzzy neighborhood of x. Assume that U be a non-empty
finite universe for any crisp set X (X ⊆ U) of U , define

R̃(X)(y) = min
x∈X

(1− R̃(x, y)),

R̃(X)(y) = max
x∈X

R̃(x, y)for anyy ∈ U.

Obviously we can obtain following relationships:

R̃(X)(y) =

[
min
x/∈X

(1− R̃+(x, y),min
x/∈X

(1− R̃−(x, y))

]
,

R̃(X)(y) =

[
max
x∈X

R̃−(x, y),max
x∈X

R̃+(x, y)

]
.

Definition 11. Assume that (U, R̃) be an I-V fuzzy information system and Z be the I-V fuzzy
set of universe U . Define the I-V fuzzy upper approximation R̃(Z) and the I-V fuzzy upper

approximation R̃(Z) of Z in the I-V fuzzy information system (U, R̃) as follows, respectively
for any x ∈ U .

R̃(Z)(x) = min{Z(y)max(1− R̃(x, y)) : y ∈ U},

R̃(Z)(x) = max{Z(y)min ˜̃R(x, y) : y ∈ U}.
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Clearly, the above definition implies equivalence of the following form:

R̃(Z)(x) = miny∈U (Z(y)max(i− R̃(x, y))

= [miny∈U (Z−(y)max(1− R̃+(x, y)),min(Z+(y)max(1− R̃−(x, y)))]

∀x ∈ U,

R̃(Z)(x) = maxy∈U (Z(y)minR̃(x, y))

=
[
maxy∈U (Z−(y)minR̃−(x, y)),maxy∈U (Z+(y)minR̃+(x, y))

]
, ∀x ∈ U.

4. Comparision of the I–V fuzzy rough set model with other models

In this section, we will review the relationships between the I-V fuzzy rough set with the other
classical pawlak [21] rought set model by changing the relations and the subsets of the universe
U . It is trivial to show that the I-V fuzzy rough set model is an development of the classical
pawlak [21] R̃S model.

Case 1. If Z ∈ F (U), R̃ ∈ F (i)(U × U). For any a ∈ [0, 1] write a = [a, a] ∈ [I] then

R̃(Z)(x) = miny∈U (Z(y)max(1− − R̃(x, y)))

miny∈U [Z(y), Z(y)]max(1− R̃(x, y))

= [miny∈U (Z(y)max(1− R̃+(x, y))),miny∈U (Z(y),max(1− R̃−(x, y))]

R̃(Z)(x) = maxy∈UZ(y)minR̃(x, y)

= maxy∈U (Z(y)min[R̃−(x, y), R̃+(x, y)])

= maxy∈U ([Z(y), Z(y)]min[R̃−(x, y), R̃+(x, y)])

=
[
maxy∈U (Z(y)minR̃−(x, y)),maxy∈U (Z(y)minR̃+(x, y))

]
for any x ∈ U .

Case 2. If Z ∈ F (i)(U), R̃ ∈ F (U × U), for any x ∈ U :

R̃(Z)(x) = [miny∈U (Z−(y)max(1− R̃(x, y))),miny∈U (Z+(y)max(1− R̃(x, y)))]

R̃(Z)(x) = [maxy∈U (Z−(y)min(1− R̃(x, y))),maxy∈U (Z+(y)min(1− R̃(x, y)))]

Case 3. If Z ∈ F (i)(U), R̃ ⊆ U × U , for any y ∈ U , we have y ∈ [x]R̃, then R̃(x, y) = 1.
Therefor, for any x ∈ U :

R̃(Z)(x) = [miny∈U (Z−(y)max(1− 1),miny∈U (Z+(y)max(1− 1)]

= miny∈U [Z−(y), Z+(y)]

= [miny∈UZ
−(y),miny∈UZ

+(y)]

R̃(Z)(x) = [maxy∈U (Z−(y)min1),maxy∈U (Z+(y)min1)]

= [maxy∈UZ
−(y),maxy∈UZ

+(y)]
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Case 4. If Z ⊆ U , R̃ ∈ F (i)(U × U) Then for any x ∈ U

R̃(Z)(x) = min{Z(y)max(1− R̃(x, y)) : y ∈ U}
= min

y/∈Z
(1− R̃(x, y))

[min
y/∈Z

(1− R̃+(x, y)),min
y/∈Z

(1− R̃−(x, y))]

R̃(Z)(x) = max{Z(y)minR̃(x, y) : y ∈ U}
= max

y∈Z
R̃(x, y)

= [max
y∈Z

R̃−(x, y),max
y∈Z

R̃+(x, y)]

Case 5. If Z ∈ F (U), R̃ ∈ F (U × U) Then for any x ∈ U we have:

R̃(Z)(x) = min{Z(y)max(1− R̃(x, y)) : y ∈ U}
= min{Z(y)max(1− R̃(x, y) : y ∈ U}

R̃(Z)(x) = max{Z(y)minR̃(x, y) : y ∈ U}

Case 6. If Z ⊆ U , R̃ ∈ F (U × U) Then for any x ∈ U we have:

R̃(Z)(x) = min{Z(y)max(1− R̃(x, y)) : y ∈ U}
= min{Z(y)max(1− R̃(x, y) : y ∈ U}
= min

y/∈Z
(1− R̃(x, y))

R̃(Z)(x) = max{Z(y)minR̃(x, y) : y ∈ U}
max
y∈Z

R̃(x, y)

Case 7. If Z ⊆ U , R̃ ⊆ U × U then for any x ∈ U we have:

R̃(Z)(x) = 1⇔ ∀y ∈ U,

then there is

Z(y)max(1− R̃(x, y) = Z(y)max(1− R̃(x, y)) = 1

⇔ ∀y ∈ U, y /∈ Z implicates the (x, y) /∈ ˜̃R

⇔ ∀y /∈ Z implicates the y /∈ [x]R̃
⇔ [x]R̃⊆Z

R̃(Z)(x) = 1⇔ ∃y ∈ U, so Z(y) = 1 and R̃(x, y) = 1 is holding

⇔ Z ∩ [x]R̃ 6= ∅
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Case 8. If Z ∈ F (i)(U), R̃ ⊆ P (U × U). That is, R̃(x, y) = R̃s(x) = {y ∈ U : (x, y) ∈ R̃}.
Then for any y ∈ U . if y ∈ R̃s(x), then R̃(x, y) = 1. Therefor, for any x ∈ U

R̃(Z)(x) = min{Z(y)max(1− R̃(x, y)) : y ∈ R̃s(x)}
= min{Z(y)max(1− 1) : y ∈ R̃s(x)}
= [miny∈U (Z−(y)max(1− 1),miny∈U (Z+(y)max(1− 1))}
= miny∈U [Z−(y), Z+(y)]

= [miny∈UZ
−(y), Zy∈UZ

+(y)]

= [min{Z−(y) : y ∈ R̃s(x)},min{Z+(y) : y ∈ R̃s(x)}]
apr(Z)(x)

R̃(Z)(x) = max{Z(y)minR̃(x, y) : y ∈ U}
= max{Z(y)minR̃(x, y) : y ∈ R̃s(x)}
= max{Z(y)min1 : y ∈ R̃s(x)}
= [maxy∈U (Z−(y)min1),maxy∈U (Z+(y)min1)]

= maxy∈U [Z−(y), Z+(y)]

= [maxy∈UZ
−(y),maxy∈UZ

+(y)]

= [max{Z−(y) : y ∈ R̃S(x)},max{Z+(y) : y ∈ R̃s(x)}]
= apr(Z)(x).

5. Data reduction of the I–V fuzzy information system

Assume that (U,Z, F ) be an inbformation or database system. Here U is the set of objects, i.e.
U = {x1, x2, . . . , xn}.

Every element xi(i ≤ n) in U is called an object, and Z is the attribute set, i.e. Z =
{a1, a2, . . . , am}. every element aj(j ≤ m) in Z is an attribute, F is the relation set of U and
Z, i.e. F = {fj : j ≤ m}, (fj : U → vj , (j ≤ m)) and vj is the domain of the attribute aj .

Definition 12. Assume that (U,Z, F ) be a classical information system, for any subset B(B ⊆
Z). B is called the I-V fuzzy reduction of the classical information system (U,Z, F ), if B is the
minimum set in the inclusion set which satisfies the following relations:

R̃Z(X)(x) = R̃B(X)(x),

R̃Z(X)(x) = R̃B(X)(x),

for any X ∈ F (i)(U) and ∀x ∈ U where R̃Z(X)(x), R̃B(X)(x), R̃Z(X)(x), R̃B(X)(x) are
defined as the I-V rough fuzzy set.

B is called the I-V fuzzy lower and upper approximation reduction of the classical informa-
tion system (U,Z, F ) if B be the minimum set that satisfies the following relations, respectively:

R̃Z(X)(x) = R̃B(X)(x) for any X ∈ F (i)(U), x ∈ U,

and

R̃Z(X)(x) = R̃B(X)(x) for any X ∈ F (i)(U), x ∈ U.

We call (U,Z, F,D,G) an information system or decision table, where (U,Z, F ) information
system the classical information system, Z is the condition attribute set and D the decision
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attribute set, i.e., D = {d1, d2, . . . , dp}. G is the relation set of the U and D, G = {gj : j ≤ p}
(where gj : U → v′j , (j ≤ p)), v′j is the domain of the decision attribute dj .

The information system (U,Z, F,D,G) is called a consistent information system or called
an inconsistent information system if R̃Z ⊆ R̃D i.e., U/R̃Z ≤ U/R̃D, (or ∀x ∈ U , for any [x]Z ,
there exists [x]D such that the [x]Z ⊆ [x]D.)

(U,Z, F,D,G) is called an I-V fuzzy information system, where (U,Z, F ) is the classical
information system D̃ = {D̃k : k = 1, 2, . . . , n}, D̃k is the I-V fuzzy sets of U , and G the
relation set of U and D̃.

Definition 13. Assume that (U,Z, F, D̃) be the I-V fuzzy information system, for any B ⊆ Z,
if we have:

R̃B(D̃i)(x) > R̃B(D̃j)(x)⇔ R̃Z(D̃i)(x) > R̃Z(D̃j)(x) (i 6= j)

B is called the reduction of the I-V fuzzy information system (U,Z, F, D̃) If B be the
minimum consistent set of Z in the inclusion set.

In the next section, by introducing the discernibility matrix we present the knowledge re-
duction of the I-V fuzzy information system.

Assume that (U,Z, F, D̃) be the I-V fuzzy information system, R̃Z be the equivalence classes
which induced by the condition attribute set Z, and universe is divided by R̃Z as following:

U/R̃Z = {X1, X2, . . . , Xk}, denoted as:

R̃Z(D̃)(Xi) = (R̃Z(D̃1)(Xi), R̃Z(D̃2)(Xi), . . . , R̃Z(D̃r)(Xi)).

Definition 14. Assume that (U,Z, F, D̃) be I-V fuzzy information system.

Dij =

{
{ak ∈ Z : fl(Xi) 6= fl(Xj)} gXi(D̃k) 6= gXj (D̃k)

Z gXi(D̃k) = gXj (D̃k)

is called the discernibility matrix of (U,Z, F, D̃) (where gXi
(D̃k) denotes the maximum value of

R̃Z(D̃)(Xi) at the line of k, i.e., the rows i and j of Eq. (*)).

Theorem 1. Assume that (U,Z, F, D̃) be the I-V fuzzy information system. If there exists a
subset B ⊆ Z such that B ∩Dij 6= ∅ (i, j ≤ k) then B is the consistent set of Z.

Proof. See [2]

6. A Fuzzy R̃S model for the data reduction of (s-v) data

In this section using the theory of Fuzzy sets and Rough sets we proposed a method to data
reduction and information.

Definition 15. For a (s-v) information system (U,Z, V, f) ∀b ∈ Z, a tolerance relation is
defined as:

Tb = {(x, y)|b(x) ∩ b(y) 6= ∅}

For B ⊆ Z, a tolerance relation is defined as:

TB = {(x, y)|∀b ∈ B, b(x) ∩ b(y) 6= ∅} = ∩b∈BTb

when (x, y) ∈ TB, x and y are called indiscernible with respect to B, or we say that x is tolerant
with y with respect to B.
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Example 1. Assume that (U,Z, V, f) be a (s-v) information system. Assume that b ∈ Z be
an attribute and Assume that x, y, z ∈ U be three objects. Assume that b(x) = {e1, e2, . . . , e8},
b(y) = {e8, e9, e15} and b(z) = {e1, e2, . . . , e7}. Then by Definition, we know that both (x, y)
and (x, z) belong to Tb.

Definition 16. For the (s-v) information system (U,Z, V, f), ∀b ∈ Z, a fuzzy relation R̃b can
be defined as

µR̃b
(x, y) =

|b(x) ∩ b(y)|
|b(x) ∪ b(y)|

For a set of attribute B ⊆ Z, a fuzzy relation R̃B is defined as

µR̃B
(x, y) = inf

b∈B
µR̃b

(x, y)

Two important features of the fuzzy relation are as follows:

1. since µR̃b
(x, y) = |b(x) ∩ b(y)|/|b(x) ∪ b(y)| = 1.

2. From µR̃b
(x, y) = µR̃b

(y, x) = |b(x) ∩ b(y)|/|b(x) ∪ b(y)|.

As we know R̃b is reflective and symmetric.

Hence, R̃b is a fuzzy tolerance relation.

Example 2. Assume that (U,Z, V, f) be a (s-v) information system Assume that b ∈ Z be an
attribute and Assume that x, y, z ∈ U be three objects

Assume that b(x) = {e1, e2, . . . , e8}, b(y) = {e8, e9, . . . , e15}, b(z) = {e1, e2, . . . , e7} thus, we
have

µR̃b
(x, y) =

|b(x) ∩ b(y)|
|b(x) ∪ b(y)|

=
1

15

µR̃b
(x, z) =

|b(x) ∩ b(z)|
|b(x) ∪ b(z)|

=
7

8
.

This example shows that the fuzzy tolerance relation retains more information than the crisp
tolerance relation.

6.1. Reduct, core and discernibility matrix of (s-v) information system

Definition 17. For a (s-v) information system S = (U,C, V, f), P ⊆ C is a rduct of c iff

1. ∀x, y ∈ U , R̃c(x, y) = R̃p(x, y)

2. For any P ′ ⊂ P , ∃x, y ∈ U , R̃c(x, y) 6= R̃P ′(x, y)

where R̃C , R̃P , and R̃P ′ are defined by the method in Definition 22.

By definition, a reduct is an attribute set that induces the same fuzzy relation R̃ as the
whole attribute set c. The set of all reducts of c is denoted by Red(C).

Definition 18. For a (s-v) information system S = (U,C, V, f), P ⊆ C is a reduct of C in the
framework of rough set model iff

1. ∀x ∈ U , Tc(x, y) = Tp(x, y)
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2. For any P ′ ⊂ P , ∃x, y ∈ U , Tc(x, y) 6= TP (x, y)

Definition 19. Assume that informationsystem = (U,Z, V, f) be a (s-v) information system
for a set of relations {R̃a|a ∈ C} for attribute set C and universe set U , the discernibility matrix
M is defined as

Mn×n = (Mij)n×n =


M11 M12 . . . M1n

M21 M22 . . . M2n

...
. . .

Mn1 Mn2 . . . Mnn


where n = |U | and Mij is a set of attributes ∀a ∈ Z, a ∈Mij iff R̃a(ui, uj) = R̃c(ui, uj)(ui, uj ∈
U)

From the definition 19, Mij consist of all the attributes that lead to a minimal degree of

indiscernibility between elements ui ∈ U and uj ∈ U . In other words, b ∈ Mij iff R̃b(ui, uj) =

mina∈C R̃a(ui, uj) using the definition of discernibility matrix we can calculate a discernibility
function.

Definition 20. Assume that informationsystem = (U,Z, V, f) be a (s-v) information system.
A discernibility function f for informationsystem is a Boolean function of m Boolean variables
c∗1, c∗2, . . . , c∗m corresponding to the attributes c1, c2, . . ., cm, respectively, and defined as

f(c∗1, c
∗
2, . . . , c

∗
m) = min{maxMij : Mij ∈Mn×n}

where maxMij is the disjunction of all variables c∗ such that a ∈ Mij and min denotes con-
junction.

6.2. Relative reduct, relative core and discernibility matrix of (s-v)
decision tables

In the following, we consider (s-v) information system with decisions, that is, (s-v) DS or (s-v)
decision tabled.

Definition 21. For a (s-v) information system S = (U,C, V, f) P ⊆ C is a reduct of C in the
framework of rough set model iff.

1. ∀x, y ∈ U if d(x) 6= d(y) then TC(x, y) = TP (x, y)

2. For any P ′ ⊂ P , ∃x, y ∈ U , d(x) 6= d(y) and TC(x, y) 6= TP ′(x, y)

where TC , TP and TP ′ are defined by the method in Definition 1 The set of all reducts of C is
denoted by Red′d(C).

Definition 22. The intersection of all relative reducts is called the care of C and denoted by
cored(C):

cored(C) = ∩Redd(C)

Definition 23. Assume that S = (U,C ∪ {d}, V, f) be a (s-v) DS. For a set of relations
{R̃a|a ∈ C} for attributes set C and univerough sete set U , the discernibility matrix MD is
defined as

MDn×n = (MDij)n×n =


MD11 MD12 . . . MD1n

MD21 MD22 . . . MD2n

...
...

. . .
...

MDn1 MDn2 . . . MDnn


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where n = |U |. For ui, uj ∈ U , if d(ui) = d(uj), then Mij = ∅ otherwise, if d(ui) 6= d(uj),

then Mij is a set of attributes and c ∈MDij iff R̃c(ui, uj) = R̃C(ui, uj), MDij can be formally
defined as

MDij =

{
{c|c ∈ C, R̃c(ui, uj) = R̃C(ui, uj) d(ui) 6= d(uj)

∅ d(ui) = d(uj)

7. Application

For the (s-v) DS shown in Table 1. We can obtain three fuzzy relations generated according to
the three conditional attributes products, importes, and exports.

Company Products (j1) Imports (j2) Exportes (j3) Prospects (D)

Company 1 (c1) { mp4 , phone} { IMer1 , IMer2 } { EM1 } Good
Company 2 (c2) {video,mp4} { IMer2 , IMer3 } { EM2 , EM3 } Bad
Company 3 (c3) { mp4} { IMer1 , IMer2} { EM2 } Bad
Company 4 (c4) { mp4 , phone } { IMer1 , IMer 2 } { EM1 , EM2 } Good
Company 5 (c5) { video } { IMer3 } { EM3 } Bad

Table 1: A (s-v) DS comprising five compaines.

For example,

R̃j1(c1, c2) = |{mp4, phone} ∩ {video,mp4}|/|{mp4, phone} ∪ {video,mp4}| = 1

3
= 0.33.

Thus, the relation matrix as follows:

R̃{e1} =


R̃j1 c1 c2 c3 c4 c5
c1 1 0.33 0.5 1 0
c2 0.33 1 0.5 0.33 0.5
c3 0.5 0.5 1 0.5 0
c4 1 0.33 0.5 1 0
c5 0 0.5 0 0 1

 ,

˜R{j2} =


R̃j2 c1 c2 c3 c4 c5
c1 1 0.33 1 1 0
c2 0.33 1 0.33 0.33 0.5
c3 1 0.3 1 1 0
c4 1 0.3 1 1 0
c5 0 0.5 0 0 1

 ,

R̃{j3} =


R̃j3 c1 c2 c3 c4 c5
c1 1 0.5 0 0.5 0
c2 0.5 1 0 0.33 0.5
u3 0 0 1 0.5 0
c4 0.5 0.33 0.5 1 0
c5 0 0.65 0 0 1

 .
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As one can see in Table 1 for the (s-v) information system we can calculate the discernibility
matrix:

M =



c1 c2 c3 c4 c5

c1 {j1, j2, j3} {j1, j2} {j3} {j3} {j1, j2, j3}
c2 {j1, j2} {j1, j2, j3} {j3} {j1, j2, j3} {j1, j2, j3}
c3 {j3} {j3} {j1, j2, j3} {j1, j3} {j1, j2, j3}
c4 {j3} {j1, j2, j3} {j1, j3} {j1, j2, j3} {j1, j2, j3}
c5 {j1, j2, j3} {j1, j2, j3} {j1, j2, j3} {j1, j2, j3} {j1, j2, j3}


from wich we obtain the discernibility function:

f(j∗1 , j
∗
2 , j
∗
3 ) = (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ) ∧ (j∗3 ) ∧ (j∗3 ) ∧ (j∗1 ∨ j∗2 , j∗3 )

∧ (j∗1 ∨ j∗2 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 )

∧ (j∗3 ) ∧ (j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 )

∧ (j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 )

∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ).

Where ∨ and ∧ indicates max and min,respectively. Thus,

f(j∗1 , j
∗
2 , j
∗
3 ) = (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ) ∧ (j∗1 ∨ j∗3 )

= (j∗1 ∧ j∗3 ) ∨ (j∗2 ∧ j∗3 ).

Then the reduct of C are {j1, j3} and {j2, j3}. As we know that core(j) = {j3} by visual
inspection. Therefore,

MD =



c1 c2 c3 c4 c5

c1 ∅ {j1, j2} {j3} ∅ {j1, j2, j3}
c2 {j1, j2} ∅ ∅ {j1, j2, j3} ∅
c3 {j3} ∅ ∅ {j1, j3} ∅
c4 ∅ {j1, j2, j3} {j1, j3} ∅ {j1, j2, j3}
c5 {j1, j2, j3} ∅ ∅ {j1, j2, j3} ∅


where the discernibility function is as follows:

fd(j
∗
1 , j
∗
2 , j
∗
3 ) = (j∗1 ∨ j∗2 ) ∧ (j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗3 )

∧ (j∗1 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 )

∧ (j∗1 ∨ j∗2 ∨ j∗3 ).

Thus,

fd(j
∗
1 , j
∗
2 , j
∗
3 ) = (j∗1 ∨ j∗2 ) ∧ (j∗3 ) ∧ (j∗1 ∨ j∗2 ∨ j∗3 ) ∧ (j∗1 ∨ j∗3 )

= (j∗1 ∧ j∗3 ) ∨ (j∗2 ∧ j∗3 ).

Then have the relative reducts of C, {j1, j3} and {j2, j3}. We can also identify cored(j) = {j3}
by visual inspection.
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8. Conclusion

In this paper we explores the ways for data reduction by using of rough and fuzzy sets theory.
we reviewed the most important methods and then investigate the problems of these methods.
Also, in current study we present a method to data reduction based on rough and fuzzy sets
theory. A numerical example is examined using the proposed method.
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