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Abstract

Purpose: This paper explores the mean-variance inefficiency of cap-weighted indices based on the CECE 
index as a benchmark.

Methodology: For the period from March 2014 to September 2021, several proxies of efficient portfo-
lios were estimated: the Global Minimum Variance (GMV) portfolio, the Maximum Sharpe Ratio (MSR) 
portfolio and the portfolio with equal weights of constituents (EW). Diversification of strategies was also 
considered by analyzing the performance of a portfolio consisting of GMV and MSR that were weighted 
equally. Based on monthly data, 90 out-of-sample estimations were made for each strategy in order to com-
pare their risk-return characteristics. Furthermore, to confirm the differences in the riskiness and returns 
of the estimated portfolios, the F-test and the Welch test were performed, respectively.

Results: The results show that all analyzed portfolios achieved superior performance compared to the 
CECE index with the GMV portfolio leading the way.

Conclusion: Research findings highlight the importance of market development and liquidity when pursu-
ing popular scientific diversification methods.

Keywords: Efficient portfolio estimation, risk-reward ratio, diversification strategies, “smart” beta, the 
CECE Composite Index
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1.	 Introduction 

The market capitalization-weighted indices (cap-
weighted indices) are typically used for the purpose 
of pursuing passive investment strategies. For a 
long time, such approach has often been present-

ed in the context of the modern portfolio theory 
(MPT) and the CAPM (Capital Asset Pricing Mod-
el), without due consideration of the appropriate 
application of theoretical concepts in the practice 
of stock market investing. However, due to the fact 
that the optimal market portfolio (M) introduced 
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in the MPT is not observable in the real world, the 
cap-weighted indices are used as its approximation 
in the portfolio management process (Amenc et al., 
2011). Empirical research has shown that such indi-
ces are often inefficient in terms of the risk-reward 
trade-off, meaning that they are not necessarily the 
optimal investment strategy for investors as they do 
not provide adequate compensation for systematic 
risk (Haugen & Baker, 1991; Grinold, 1992; Amenc 
et al., 2006).

Too high concentration leading to exposure to 
unrewarded risk factors and poor exposure to re-
warded risk factors are often highlighted as the 
two main shortcomings of cap-weighted indices 
(Amenc et al., 2006; 2011; 2014). Therefore, alter-
native approaches to portfolio construction have 
been developed and presented in the literature to 
address these issues. Such approaches are called 
“smart” or scientific beta strategies and their aim 
is to construct a portfolio with better performance 
compared to its cap-weighted counterpart. In this 
paper, we focus only on efforts aimed at dealing 
with the first problem of cap-weighted indices, i.e., 
the efficient elimination of unrewarded risk in the 
portfolio. 

The goal of this research is therefore to provide 
insight into the applicability of “smart” beta strat-
egies in emerging markets. For this purpose, we 
focus on Eastern European markets represented 
by the CECE benchmark index available on the 
Vienna Stock Exchange. The index includes the 
most liquid stocks listed on the Budapest, Prague 
and Warsaw stock exchanges. All three countries 
are listed in the emerging markets category by the 
renowned index providers – the MSCI and the 
EDHEC-Risk Institute (Scientific Beta, 2022). We 
test the Maximum Sharpe Ratio (MSR), Global 
Minimum Variance (GMV) and Equal Weighting 
(EW) strategies. 

The contribution of this paper lies in the out-of-
sample testing, ensuring also the composition 
matching of the tested portfolios in relation to their 
cap-weighted benchmark. Thus, the appropriate 
framework for the performance analysis is set ena-
bling the comparison of the results to other papers 
conducting similar research for the more and less 
developed financial markets. Our findings reveal 
that the pursued strategies outperform the cap-
weighted benchmark in the case of analyzed emerg-
ing markets highlighting the importance of market 
liquidity.

The rest of the paper is structured as follows. A lit-
erature review is presented in the second section, 
while the data and methodology used in this re-
search are presented in the third section. The em-
pirical part is covered in the fourth section. Finally, 
the conclusion is given in the fifth section.

2.	 Literature review

For a developed market, it is well documented that 
it is possible to outperform the cap-weighted coun-
terpart. Amenc et al. (2006) tested two weighting 
schemes – mean-variance optimization and equal 
weighting on an in-sample basis for the U.S. and 
European equity index markets. It was concluded 
that the existing stock market indices are highly 
inefficient compared to the mean-variance opti-
mal portfolios. Amenc et al. (2011) and Amenc 
et al. (2013) provided details of the out-of-sample 
testing for the selected so-called “smart” or scien-
tific beta strategies. Amenc et al. (2013) presented 
very thoroughly several “smart” beta strategies with 
weighting schemes, required parameters to be esti-
mated and optimality conditions. Strategies tested 
in this paper are frequently pursued since, as pre-
sented in e.g. Amenc et al. (2013), this choice allows 
the examination of trade-off between optimality 
and estimation risk. Namely, the estimation of the 
MSR portfolio, which is optimal by construction, 
includes high estimation risk, since it requires the 
estimation of most parameters (the expected re-
turns, volatilities and correlations of returns) than 
any other strategy. The opposite is the estimation 
of the EW portfolio which has no estimation risk 
(estimations of parameters are not needed) but the 
optimality risk is high. 

Since the estimation of the expected return mostly 
presents the biggest challenge (Amenc et al., 2013), 
instead of the estimation of the MSR portfolio, fo-
cus should be placed on the estimation of the sub-
optimal portfolio. Such portfolio is the GMV port-
folio as less estimation risk is involved (necessary 
inputs are only volatilities and correlations). How-
ever, GMV portfolios often suffer from a low-vola-
tility bias by primarily targeting a low-volatility ob-
jective over decorrelation conditions (Clarke et al., 
2011). None of the strategies mentioned above is 
dominant from an out-of-sample risk-adjusted per-
spective. Thus, DeMiguel et al. (2009) argue that the 
MSR strategy does not consistently outperform the 
EW strategy, while Amenc et al. (2013) argue that 
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the GMV strategy typically outperforms MSR, but 
often at the expense of portfolio concentration. For 
the Asian market, Padmanaban et al. (2013) tested 
equal-weighted, GMV and MSR portfolios. A con-
siderable increase in the Sharpe ratio is obtained for 
all alternative portfolios, except for the GMV port-
folio of FTSE China 25 stocks, which ends up with a 
lower Sharpe ratio than the cap-weighted counter-
part (Padmanaban et al., 2013, p. 8).

Whether the application of these advances in less 
developed markets can lead to similar results is 
not completely clear and the literature on the topic 
is scarce. Madsstuen (2015) found that the MSR 
and GMV strategies in emerging markets did not 
outperform the global cap-weighted benchmark 
(although an emerging market benchmark should 
have been used). Nowak (2016) tested EW, GMV, 
MSR and fundamental weighting strategies, which 
outperformed the cap-weighted benchmark on the 
Warsaw Stock Exchange in the emerging Polish 
stock market (but it remains unclear whether an 
out-of-sample estimation was conducted). 

In the research focusing on the undeveloped and 
illiquid Croatian market, scientific beta strate-
gies exhibited poor performance. For instance, the 
MSR estimation in the Croatian stock market did 
not outperform the cap-weighted benchmark in 
the out-of-sample analysis for the entire observed 
period regardless of market conditions (expansion 
or recession) (Dolinar et al., 2017). The same was 
found to be true regarding the GMV portfolio esti-
mation in (Zoričić et al., 2018), although the results 
were better than in the case of the MSR portfolio.

3.	 Data and methodology

3.1	 Data and data sources

In this paper, the CECE Composite Index (CECE) 
listed on the Vienna Stock Exchange is used as a 
benchmark index for the Eastern European emerg-
ing stock market. It is a “free-float” index based 
on market capitalization and only the most liquid 
stocks are used as index constituents. In other 
words, the CECE index incorporates only actively 
traded stocks in Eastern Europe’s capital markets, 
more precisely Budapest, Prague, and Warsaw stock 
exchanges. Thus, the composition of the CECE in-
dex is based on the stocks included in CTX (Czech 
Traded Index), HTX (Hungarian Traded Index), 
and PTX (Polish Traded Index), which are also 
weighed on the “free-float” market capitalization 

basis. All these indices were introduced to the mar-
ket for the first time in 1996. For CTX, HTX, and 
PTX, the maximum weight for individual stocks is 
set to 25%, and for the CECE index to 20%.

The CECE Composite Index is a price index, so the 
derived monthly returns do not include any poten-
tial dividend yields. The index is expressed in eu-
ros (EUR) and dollars (USD), respectively. For the 
purpose of this paper, only the CECE EUR index is 
observed. The index has no restrictions related to 
the sector or national exposure. The values of the 
CECE index are displayed in real time on the Vien-
na Stock Exchange website. Regular revisions of the 
CECE index are carried out twice a year, in March 
and September.

The observation period in this paper covers the pe-
riod beginning in March 2014 and ending in Sep-
tember 2021. For this analysis, 15 revisions of the 
CECE index are taken into account, in which the 
number of constituents varied from 24 to 33 stocks 
(Vienna Stock Exchange, 2022). Altogether, 52 
stocks that were included in the CECE index at any 
point in time were analyzed. 

3.2	 Methodology 

To test whether alternative approaches to portfo-
lio optimization can outperform the CECE index 
(based on market capitalization), several portfolios 
were estimated: the GMV portfolio, the MSR port-
folio, the EW portfolio, and a portfolio consisting 
of the GMV and MSR portfolios (50:50%). Amenc 
et al. (2013) suggested that it makes sense to use 
the GMV portfolio as a proxy for the most desired 
portfolio, i.e., the optimal benchmark MSR portfo-
lio might suffer from efficiency costs since the out-
of-sample estimation of such benchmark involves 
a high level of estimation risk. In the case of GMV 
portfolio estimation, only correlations and volatili-
ties are required as inputs for the optimization pro-
cess, while the estimation of the expected returns, 
the dominant source of the estimation error, is not 
required (Amenc et al., 2013, p. 31).

GMV and MSR portfolio estimation is always per-
formed for the actual CECE index composition. 
This means that for each revision of the CECE in-
dex, it is necessary to create a new set of inputs (es-
timation of covariances from the period before the 
revision) and a new set of outputs (estimation of an 
out-of-sample performance) of the GMV and MSR 
portfolios. For the estimation of the ex-post covari-
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ance matrix, we observe a 3-year period of monthly 
returns for each constituent stock before each 
CECE index revision. Such estimated covariance 
matrix is then used in the optimization process to 
estimate the optimal weights of the constituents for 
each portfolio separately. The estimation of optimal 
weights of constituents for GMV portfolios is per-
formed using the following formula:

each portfolio separately. The estimation of optimal weights of constituents for GMV portfolios 

is performed using the following formula:

𝒘𝒘𝒘𝒘∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝒘𝒘𝒘𝒘

𝜮𝜮𝜮𝜮−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏𝟏𝟏′𝜮𝜮𝜮𝜮−𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

, (1)

where w* is the vector of weights (i.e. optimal weights), 1 is the vector of ones, and Σ is the 

covariance matrix for expected returns of the constituents. Matrix elements (covariances and 

variances) are estimated using the following formula:

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 = 1
𝑇𝑇𝑇𝑇−1

∑ (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑎𝑎𝚤𝚤𝚤𝚤�)𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡=1 �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑎𝑎𝚥𝚥𝚥𝚥��, (2)

where T represents the number of in-sample observations, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 are monthly returns of stocks, and 

𝑎𝑎𝑎𝑎𝚤𝚤𝚤𝚤� represents the arithmetic mean of stock returns.

An MSR portfolio is then estimated that should best mimic the optimal market portfolio (M) 

from the MPT. Such a portfolio is optimal by its construction; however, it requires the highest 

number of estimated parameters (expected returns, volatilities, and correlation of stocks) than 

any other strategy with the estimation of the expected return presenting the biggest challenge 

(Amenc et al., 2013). Risk parameters are estimated in the same way as for the GMV portfolios, 

while the expected returns are estimated using the following formula:

𝐸𝐸𝐸𝐸(𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖) = 1
𝑇𝑇𝑇𝑇
∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡=1 , (3)

where T represents the number of in-sample observations and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 are monthly returns of stocks.

In addition to the arithmetic mean, the median is also used to estimate the expected return,

which yielded better results compared to the arithmetic mean (Table 1). The following formula 

is used to estimate the optimal weights of the constituents for the MSR portfolios:

𝒘𝒘𝒘𝒘∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
𝒘𝒘𝒘𝒘

𝒘𝒘𝒘𝒘′𝝁𝝁𝝁𝝁
√𝒘𝒘𝒘𝒘′𝜮𝜮𝜮𝜮𝒘𝒘𝒘𝒘

, (4)

where w* is the vector of weights (i.e. optimal weights), 𝝁𝝁𝝁𝝁 is the vector of the expected returns,

and Σ is the covariance matrix for the expected returns of the constituents.

Furthermore, to achieve greater portfolio deconcentration in the GMV and MSR portfolios, the 

constraint on the minimum weight for a constituent is imposed in the optimization process by 

defining the lower limit as follows:

𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖∗ ≥  1
𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆

, (5)

where wi* represents the optimal weight of stock i in the GMV and MSR portfolios, N is the 

number of constituents in each revision, and lambda (λ) represents a flexibility parameter 

(Amenc et al., 2011). A higher lambda implies a weaker constraint leading to a higher 

(1)
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(5)

where wi* represents the optimal weight of stock i 
in the GMV and MSR portfolios, N is the number of 
constituents in each revision, and lambda (λ) rep-
resents a flexibility parameter (Amenc et al., 2011). 
A higher lambda implies a weaker constraint lead-
ing to a higher concentration of the GMV and MSR 
portfolios. In this paper, lambda is set arbitrarily 
to 4 and 1.5. Setting lambda to 1 reduces a GMV 
portfolio to an EW portfolio. The use of weaker 
constraints pronounces a serious concern regard-
ing minimum variance portfolios as they are typi-
cally heavily concentrated in assets with the lowest 
volatility (Amenc et al., 2013, p. 31).
The rolling window of 36 months referring to 36 
in-sample observations is used to estimate both 
the GMV and MSR portfolio out-of-sample. The 
out-of-sample performance of the GMV and MSR 
portfolios is assessed on a monthly basis. Namely, 
15 revisions of the CECE index are covered (March 
2014 - September 2021), so the rolling window of 
out-of-sample periods is carried over 7.5 years. In 
this way, the GMV and MSR portfolios are estimat-
ed 90 times, i.e., for each GMV and MSR portfolio, 
time series of 90 monthly returns are obtained. 

4.	 Research findings 

The out-of-sample performance of the estimated 
GMV and MSR portfolios for the whole observa-
tion period is compared to the CECE index, i.e., the 
benchmark index that is the market-cap counter-
part. The results are shown in Table 1. In addition, 
the EW portfolio is observed as an additional port-
folio for the purpose of performance comparison 
since it presents a naïve diversification strategy. 
The risk-reward ratio is used as a key performance 
measure. Returns are calculated based on monthly 
returns and refer to the geometric mean, while risk 
refers to their standard deviation. The estimation 
of the MSR portfolio based on the arithmetic mean 
and median is reported separately.
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Table 1 Performance of the estimated portfolios and the CECE index

CECE GMV
(λ = 4)

GMV
(λ = 1.5)

MSR*
(λ = 4)

MSR*
(λ = 1.5)

MSR**
(λ = 4)

MSR**
(λ = 1.5) EW

Return 0.00%1 0.67% 0.68% 0.64% 0.70% 0.86% 0.93% 0.56%

Risk 5.88% 3.21% 3.61% 4.46% 4.34% 4.63% 4.48% 4.48%

Risk-reward ratio 0.001 0.209 0.187 0.144 0.161 0.186 0.207 0.125

* Arithmetic mean used as a measure of expected returns. 
** Median used as a measure of expected returns.
Source: Authors’ calculation

As depicted in Table 1, all estimated portfolios man-
aged to outperform the cap-weighted benchmark, 
including the EW portfolio. As expected, the EW 
portfolio achieved a higher return compared to the 
cap-weighted counterpart, surprisingly with lower 
risk. Research has shown that EW portfolios have 
significantly higher risk compared to cap-weighted 
and price indices, and that a higher risk-reward ra-
tio is a result of the increase in the return due to 
the exposure to rewarded risk factors in spite of the 
accompanying increase in risk (Plyakha et al., 2012).

The F-test is performed to confirm the differences 
in the riskiness of the estimated portfolios, the EW 
portfolio, and the benchmark index. These differ-
ences in variances (riskiness) of all tested strate-
gies and the benchmark index are statistically sig-
nificant at the 1% level of significance. In addition, 

differences in variances (riskiness) between the 
GMV and MSR portfolios and the GMV and EW 
portfolios are statistically significant at the 1% level 
of significance, while the differences in variances 
(riskiness) between the MSR and EW portfolios are 
not statistically significant even at the 10% level of 
significance. 

The Welch test was performed to test the differ-
ences in the returns of the estimated portfolios, the 
EW portfolio, and the benchmark index. These dif-
ferences in returns of all tested strategies and the 
benchmark index are not statistically significant at 
the 10% level of significance. Furthermore, with the 
same level of significance, the differences in returns 
between the GMV and MSR portfolios, the GMV 
and EW portfolios, and the MSR and EW portfolios 
are not statistically significant.

Table 2 Performance of the estimated portfolios and their combinations with the arithmetic mean used 
for the estimation of the expected returns

GMV
(λ = 4)

MSR
(λ = 4)

50% GMV
+

50% MSR
(λ = 4)

GMV
(λ = 1.5)

MSR
(λ = 1.5)

50% GMV
+

50% MSR
(λ = 1.5)

Return 0.67% 0.64% 0.67% 0.68% 0.70% 0.69%

Risk 3.21% 4.46% 3.58% 3.61% 4.34% 3.89%

Risk-reward ratio 0.209 0.144 0.186 0.187 0.161 0.177

Source: Authors’ calculation

In1 addition to the performance of the estimated 
GMV and MSR portfolios that has already been 
presented (Table 1), Table 2 presents portfolios es-
timated as a combination of the optimization tech-
niques for GMV and MSR portfolio estimation with 
the arithmetic mean used as an estimator for the 

1	 More specifically, the average return of the CECE index was 
0.00332%. All results in the tables are rounded to two deci-
mal places for the sake of readability.

expected return. The results suggest that the equal-
ly weighted portfolio of the GMV and MSR portfo-
lios dominates over the MSR portfolio due to risk 
reduction yielding a higher risk-reward ratio (for 
both constraints set for the minimum weight for 
the constituents). However, due to higher risk and 
an (almost) equal return to the GMV portfolio, its 
performance is not superior to the GMV portfolio. 
Regardless of the constraint set for the minimum 
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weight for the constituents, the performance of the 
portfolio with equal weights of the GMV and MSR 

portfolios is between the performance of the GMV 
and MSR portfolios. 

Table 3 Performance of the estimated portfolios and their combinations with the median used for the 
estimation of the expected returns

GMV
(λ = 4)

MSR
(λ = 4)

50% GMV
+

50% MSR
(λ = 4)

GMV
(λ = 1.5)

MSR
(λ = 1.5)

50% GMV
+

50% MSR
(λ = 1.5)

Return 0.67% 0.86% 0.77% 0.68% 0.93% 0.81%

Risk 3.21% 4.63% 3.71% 3.61% 4.48% 3.95%

Risk-reward ratio 0.209 0.186 0.208 0.187 0.207 0.204

Source: Authors’ calculation

Similarly to Table 2, Table 3 presents portfolios 
estimated as a combination of the optimization 
techniques for GMV and MSR portfolio estimation 
but with the median used as an estimator for the 
expected return. As depicted in Table 3, an equally 
weighted portfolio of the GMV and MSR portfolios 
with λ = 4 dominates over the MSR portfolio due to 
risk reduction yielding a higher risk-reward ratio. 
In comparison to the GMV portfolio, the portfolio 
with equal weights of the GMV and MSR portfolios 
achieved a higher return with slightly higher risk. 
When a tighter constraint is set to the minimum 
weights for the constituents, the portfolio with 
equal weights of the GMV and MSR portfolios does 
not dominate over the MSR portfolio.

The F-test is performed to confirm the differences 
in the riskiness of the GMV and MSR portfolios and 
portfolios estimated as a combination of the opti-
mization techniques for GMV and MSR portfolio 
estimation. These differences in variances (riski-
ness) of the MSR portfolio and a portfolio estimat-
ed as a combination of the GMV and MSR port-
folios with λ = 4 are statistically significant at the 
5% level of significance. However, this difference 
in riskiness is not statistically significant at the 1% 
level of significance. Regarding the GMV portfolio, 
the differences in variances (riskiness) of the GMV 
portfolio and a portfolio estimated as a combina-
tion of the GMV and MSR portfolios with λ = 4 and 
the median used as an estimator for the expected 
return are statistically significant at the 10% level 
of significance. However, this difference in riskiness 
is not statistically significant at the 5% level of sig-
nificance. In other cases, the differences in the riski-
ness are not statistically significant at the 10% level 
of significance.

The Welch test was performed to test the differenc-
es in the returns of the estimated GMV and MSR 
portfolios and portfolios estimated as a combina-
tion of the optimization techniques for the GMV 
and MSR portfolios. The differences in returns of 
these strategies are not statistically significant at the 
10% level of significance. 

5.	 Discussion 

In contrast to the results for the Croatian stock 
market (Dolinar et al., 2017), the results given in 
Table 1 suggest that it is possible to estimate the 
MSR portfolio with a higher return compared to 
the EW portfolio and the benchmark index. In ad-
dition, when the arithmetic mean is used as an es-
timator for the expected return, it can be noticed 
that the risk of the MSR portfolio is lower than the 
risk of the benchmark index and approximately 
equal to the risk of the EW portfolio, which could 
be interpreted as a result of a better diversification 
of unrewarded risk factors. Namely, Amenc et al. 
(2014) define scientific methods as a tool to achieve 
superior results compared to cap-weighted coun-
terparts since they solve the problem of excessive 
exposure to unrewarded risk factors. These superi-
or results (a higher return and lower risk compared 
to the EW portfolio and the benchmark index) are 
achieved when the limit for the minimum weight 
for the constituents of the MSR portfolio is set to 
1.5 (λ = 1.5), which presents a stronger constraint 
on the minimum weight leading to higher decon-
centration compared to the MSR portfolio with λ 
= 4. When the median is used for the estimation 
of the expected return instead of the arithmetic 
mean, the average return is higher compared to re-
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sults when the arithmetic mean is used; however, 
the risk is also higher and closely resembles the risk 
of the EW portfolio if lambda is 1.5. Based on the 
presented results, the median proved to be a better 
estimator of the expected return than the arithme-
tic mean. It is more robust and can be more easily 
adapted to the data used for estimation. 

As expected, the GMV portfolios achieved the low-
est risk but also a higher return compared to the 
benchmark index, the EW portfolio, and the MSR 
portfolio, with weaker constraints on the minimum 
weight for the constituents (λ = 4) and the arith-
metic mean used for the estimation of the expected 
return. As opposed to the MSR portfolio, the GMV 
portfolio achieved better performance with higher 
lambda (λ = 4), which is in line with the research 
of Zoričić et al. (2018), where the GMV portfolio 
performance is improved when a higher concentra-
tion in the portfolio is allowed. Generally, in this 
research, the GMV portfolio dominates the MSR 
portfolio, especially in the case when weaker con-
straints on the minimum weights for the constitu-
ents are used.

A combination of the optimization techniques for 
GMV and MSR portfolio estimation did not yield a 
portfolio with superior performance compared to 
the GMV or MSR portfolios. Moreover, the median 
proved to be a better estimator for the expected re-
turn for the MSR portfolio allowing for a higher re-
turn and a higher risk-reward ratio of the portfolio 
estimated as a combination of the GMV and MSR 
portfolios compared to the same portfolio when the 
arithmetic mean is used. Since only MSR estimation 
requires expected return estimation, this is due to 
better MSR estimation, which leads to the conclu-
sion that the performance of a combined portfolio 
would be even better if enhanced techniques for the 
covariance matrix and expected return estimation 
were used. Since this was not tested in this paper, it 
could be considered as a limitation of the research. 

The findings demonstrate that for emerging markets 
(in contrast to the undeveloped and illiquid Croa-
tian market), the out-of-sample estimation results 
corroborate the findings for the developed markets, 
such as in Amenc et al. (2011; 2013). The results 
suggest that the selection of the most liquid shares 
traded on the stock exchanges leads to the possibil-
ity of outperforming the cap-weighted benchmark. 
Furthermore, to find a trade-off between optimality 
risk and estimation risk, strategies are often com-
bined (i.e. diversification of strategies). This also ex-

ploits a low correlation of parameter estimation er-
rors among strategies. Additionally, the performed 
tests showed that the differences in the riskiness of 
all estimated portfolios and the benchmark index 
are statistically significant at 1%, while the differ-
ences in the returns of the tested strategies and the 
benchmark index are not statistically significant at 
10%.

6.	Conclusion

This paper presents the out-of-sample testing of 
modern strategies available to research-driven in-
vestors for the developed markets, demonstrating 
the possibility to estimate mean-variance efficient 
portfolios that outperform market cap-weighted 
counterparts. In this paper, the CECE Composite 
Index (CECE) listed on the Vienna Stock Exchange 
is used as a benchmark index. The CECE index 
includes the most liquid stocks traded on stock 
exchanges in Eastern Europe, more precisely in 
Budapest, Prague, and Warsaw. As an alternative 
to weighting by market capitalization, scientific 
methods of diversification – GMV and MSR port-
folio estimations – are used. Motivation for GMV 
and MSR portfolio estimation originates from the 
research conducted for the Croatian stock market 
for which the failure of the estimation of the MSR 
portfolio relative to the cap-weighted benchmark 
(Dolinar et al., 2017) can be attributed to poor es-
timation of stocks’ expected returns since GMV 
portfolio estimation outperformed the MSR port-
folio (Zoričić et al., 2018). 

In addition to GMV and MSR portfolio estima-
tion, the EW portfolio and a portfolio composed of 
a combination of the GMV (50%) and MSR (50%) 
portfolios were estimated. For the estimation of the 
expected return needed for the MSR portfolio, two 
different measures were used – arithmetic mean 
and median. The median was found to achieve 
superior results. In addition, to achieve greater 
portfolio deconcentration in the GMV and MSR 
portfolios, the constraint on the minimum weight 
for a constituent was imposed in the optimization 
process. 

All the analyzed portfolios achieved better perfor-
mance than the benchmark CECE index, includ-
ing the EW portfolio, which is the result of a naïve 
diversification method. Therefore, investors in the 
Central Eastern Europe (CEE region) stocks have 
alternative strategies at their disposal that can be 
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used to estimate more efficient portfolios using 
constituents of the benchmark CECE index. As ex-
pected, the EW portfolio achieved a higher return 
compared to the cap-weighted counterpart. How-
ever, surprisingly, this was accompanied by lower 
risk in contrast to research that found EW portfo-
lios to have significantly higher risk compared to 
their cap-weighted counterparts. In this research, 
the GMV portfolio dominates the MSR portfolio, 
especially in cases when weaker constraints on the 
minimum weights for the constituents are used. 
The GMV portfolio achieved better performance 
with higher lambda (λ = 4), which is in line with 
the research of Zoričić et al. (2018), where GMV 
portfolio performance is improved when a higher 
concentration in the portfolio is allowed. This could 
be explained by the fact that it is better to estimate 
a sub-optimal portfolio, i.e., a portfolio with cer-
tain optimality risk but decreased estimation risk 

(GMV), than the MSR portfolio. However, in this 
case, even the MSR portfolio achieved superior re-
sults compared to its cap-weighted counterpart. In 
contrast to the GMV portfolio, the MSR portfolio 
achieved better results with lower lambda (λ = 1.5, 
i.e., a tighter constraint on the minimum weight for 
the constituents) and when the median is used for 
the estimation of the expected returns. 

In this paper, a combination of the GMV and MSR 
portfolios did not result in a portfolio with superior 
performance compared to the GMV or MSR port-
folio. Since MSR portfolio estimation was improved 
with the median used as an estimator for the ex-
pected return, an open question remains whether 
the performance of the combined portfolio would 
be even better if advanced techniques for the covar-
iance matrix (such as Martellini & Milhau (2017)) 
and expected return estimation were used, which 
could be tested in future research.
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