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Abstract

Purpose: This study explores volatility transmission among the real returns of financial investment in-
struments, using the Diebold-Yilmaz approach and data from the Turkish Statistical Institute. The dataset 
includes monthly real return rates of instruments like Gross Interest Rate (GIR) for deposits, ingot Gold 
(GOLD), Istanbul Stock Exchange 100 Index (BIST-100), United States Dollar (USD), Euro (EUR), and 
Government Domestic Debt Instruments (GDDI) from January 2005 to April 2023.

Methodology: Real return rates were adjusted using the Consumer Price Index (CPI). Absolute values of 
real returns served as volatility proxies. To evaluate volatility spillover among these instruments, the Time-
Varying Parameter Vector Autoregressive (TVP-VAR) frequency connectedness approach was utilized.

Results: The average of the Total Connectedness Index (TCI) suggests 40.37% of error variance in invest-
ment instruments is due to network connectedness, with short-term and long-term values at 33.95% and 
6.41%, respectively. Dynamic TCI values spiked during events like the 2008 crisis, 2018 and 2021 exchange 
rate shocks, and COVID-19. USD and EUR consistently caused net volatility spillovers, GOLD in the long 
run, GDDI in the short run and aggregate. GIR was most impacted by network shocks. The study also ex-
amined the Net Pairwise Connectedness Index (NPCI) to identify dominant instruments in the network.

Conclusion: The findings show the interdependencies and significant roles of particular investment instru-
ments in the transmission of volatility, offering insights for portfolio diversification and risk management.
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1.	 Introduction

The concept of volatility is defined as the change in 
the price of a product in financial markets within 
a certain period of time. This concept can also be 

used in terms of volatility, mobility, fluctuation and 
similar meanings. Especially with the increasing in-
tegration among financial markets, the volatility in 
one market can also affect the other. This situation 
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is referred to as “volatility spillover”. Since these 
volatilities on financial investment instruments 
lead to uncertainty, they emerge as a risk factor for 
investors. As a matter of fact, when making invest-
ment decisions, investors look at whether a shock 
in one market affects the other market. Therefore, 
estimating volatility spreads among financial in-
vestment instruments is of great importance for 
risk management and effective portfolio diversifi-
cation for both investors and financial institutions 
(Poon & Granger, 2003; Verma & Jackson, 2012; 
Topaloğlu, 2020; Cao & Wen, 2019). 

With the developing technology, today’s investors 
are able to invest in global stock exchanges as well 
as in their own countries. Due to the increasing 
risks with these investments, investors prefer to in-
vest in a wide range in order to minimize risks while 
forming their investment portfolios, and therefore 
they apply to different investment instruments. At 
this point, traditional investment instruments such 
as foreign currency and gold have been among the 
most preferred investment instruments by inves-
tors. Due to the high volatility of foreign exchange 
markets, risk-seeking investors who aim to earn 
higher returns often invest their money in these 
markets. Gold, on the other hand, is an investment 
instrument that is seen as a safe harbor by inves-
tors, especially during periods of increased un-
certainty (Baur & Lucey, 2010). Moreover, invest-
ment instruments such as the Gross Interest Rate 
(GIR) for deposits, the Istanbul Stock Exchange 100 
(BIST-100) Index, and Government Domestic Debt 
Instruments (GDDI) are among the alternative 
investment areas where savings are evaluated in 
Turkey. Such investment instruments are affected 
by many factors such as economic developments, 
market conditions, political factors and even devel-
opments in international markets, and may show 
high volatility over time. Therefore, it is important 
to understand the interaction of investment instru-
ments with each other and the volatility spread 
mechanism among them for an effective portfolio 
diversification.

In the literature, there are many studies on the re-
lationship between various financial investment 
instruments. However, in addition to the financial 
assets used in these studies, methods used and 
the time period (daily, weekly, monthly, etc.) vary. 
While some of the empirical studies focused on 
the effect between investment instruments, others 
investigated the causal relationship between these 

instruments (Wang & Chueh, 2013; Bhunia, 2013; 
Başarır, 2019; Cingöz & Kendirli, 2019; Güney & 
Ilgın, 2019; Jain & Biswal, 2019). On the other hand, 
as financial markets become increasingly integrat-
ed, strong correlations emerge among financial as-
sets, leading to the transmission of volatility from 
one market to another. These volatility spillovers 
also lead to the transmission of market risks. In line 
with these developments, the number of studies on 
volatility spillovers among financial investment in-
struments is increasing day by day. 

For example, Sumner et al. (2010), used weekly data 
for the period from 1 October 1970 to 25 April 2009 
to reveal the interrelationship between gold, stock 
and bond returns and volatilities with the spillover 
index approach of Diebold and Yilmaz (2012). Ac-
cording to the results, there was no evidence of re-
turn spillovers for the whole sample, but evidence 
of volatility spillovers was recorded. Return spreads 
were high in the early 1980s, mid-1990s, and the 
2008 crisis, while volatility spreads were high in the 
late 1970s, early 1990s, and the 2008 crisis. 

Badshah et al. (2013) revealed the spillover between 
stock, gold, and exchange rate volatility indices 
and the causality relationship between them, us-
ing daily data for the period from 3 June 2008 to 30 
December 2011, defined by Rigobon’s (2003) het-
eroscedasticity approach. The findings of the study 
showed that increased stock market volatility was 
associated with increased gold and exchange rate 
volatility. They also found a significant unidirec-
tional spillover from the stock market to gold and 
exchange rates. 

Shahrazi et al. (2014) used daily data from 2007 to 
2013 to investigate the volatility and contagion be-
tween Iranian gold and foreign exchange markets 
using the Generalized Autoregressive Conditional 
Heteroskedastic (GARCH) model. The findings 
showed that when a shock is transmitted from 
the gold market to the foreign exchange market, 
there is a two-way volatility spillover between the 
gold and foreign exchange markets. Similarly, Hein 
(2015) examined the connection and volatilities be-
tween the S&P 500 stock index, gold, crude oil and 
exchange rate (CHF/USD) returns between Janu-
ary 1999 and December 2013 using the GARCH 
model. The analysis showed that there is a signifi-
cant contagion between the return volatilities of the 
variables. Moreover, a positive relationship was also 
found between gold and oil, while a negative rela-
tionship was found between gold and the exchange 
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rate. The study also revealed that gold was a safe 
investment instrument during the 2008 crisis. 

By using weekly data from 6 January 1987 to 22 July 
2014, Antonakakis and Kizys (2015) investigated 
the dynamic connectedness between the returns 
and volatility of commodities (gold, silver, plati-
num, palladium) price, crude oil price and exchange 
rate (EUR/USD, JPY/USD, GBP/USD, CHF) /USD) 
markets with the generalized VAR method of Die-
bold and Yilmaz (2012). They found that gold, sil-
ver, platinum, CHF/USD and GBP/USD exchange 
rates were net transmitters of return and volatility 
spillovers during the sampled period, while palla-
dium, crude oil, EUR/USD and JPY/USD exchange 
rates were net receivers. It was also revealed that 
gold is the largest volatility transmitter, exhibiting 
a strong bidirectional correlation between gold and 
silver, platinum and palladium in terms of bilateral 
return spreads. 

Roy and Roy (2017) investigated the extent of fi-
nancial contagion in Indian asset markets using 
daily data from 3 April 2006 to 31 March 2016. 
They used the commodity future price index, bond 
price, exchange rate, gold price and stocks as vari-
ables and daily returns of assets was estimated by 
the DCC-MGARCH method, while volatility spillo-
ver estimation was performed by a generalized VAR 
approach. The stock market was found to have the 
highest financial contagion, while the gold market 
was observed to have the lowest financial conta-
gion. Furthermore, it was found that whilst gold, 
bonds, and foreign exchange were net volatility re-
ceivers, commodities and equities were net volatil-
ity transmitters. 

Şenol (2021) used the GARCH model to study the 
volatility correlations and spillovers among the 
BIST-100 index, currency rate, interest rate, and 
CDS premiums from 2 January 2010 to 10 April 
2020. The findings show that there is a unidirec-
tional volatility spillover from CDS premiums to 
the exchange rate and that there is a mutual vola-
tility spillover between the exchange rate and the 
BIST 100 index and interest rate, and between CDS 
premiums and the interest rate. Additionally, it has 
been determined that there is a positive volatility 
relationship between CDS premiums and exchange 
rates and interest rates, and a negative volatility re-
lationship between the BIST 100 index and these 
two factors. 

Cihangir et al. (2020) investigated the interaction 
between returns by examining the dynamic effect 
between four investment instruments (gold, foreign 
exchange, stock market and interest return) using 
the Vector Autoregressive (VAR) method from 
January 2002 to November 2019. They found that 
due to a shock in one financial instrument, other fi-
nancial instruments reacted in the same way in the 
first period and vice versa in subsequent periods. In 
the same way, Şeker (2021) analyzed the interaction 
between interest rates, USD, EUR, gold, the BIST 
100 index and government domestic debt instru-
ment returns for the period 2005 to 2021 using the 
VAR approach. The results of the impulse-response 
analysis revealed that all return variables responded 
positively to the shocks that occurred in them in the 
first period. In addition, it was also determined that 
there were both complementarity and substitution 
relationships between the return variables, and at 
the same time, government domestic debt instru-
ments, interest and USD returns were more in in-
teraction with each other. 

Using daily data from February 2017 to February 
2021, Önem (2021) revealed volatility interaction 
among gold and silver price returns and BIST Min-
ing Index returns with the diagonal VECH GARCH 
approach. According to the results, intense volatility 
clusters were determined in gold and silver price re-
turns and BIST Mining Index returns, and these vola-
tilities were found to have permanent effects. Wen et 
al. (2021) examined the dynamic volatility spillovers 
between the Chinese stock market and commod-
ity markets from May 2009 to June 2020, using the 
TVP-VAR approach. They revealed that there was a 
very high correlation between the stock market and 
commodity prices and that the stock market acts as 
a net shock receiver. On the other hand, it was found 
that the volatility between the stock market and the 
commodity market increases during crisis periods. 
Correspondingly, Ahmed and Huo (2021), investi-
gated a dynamic relationship between the Chinese 
stock market, commodity markets and global oil 
prices with daily data for the period between July 
2012 and June 2017, by using a three-variable VAR-
BEKK-GARCH model. They found that there were 
a unidirectional return and volatility spillover effect 
from the Chinese stock market and the global oil 
market to the commodity market, as well as a unidi-
rectional return spillover effect from the oil market 
to the Chinese stock market. 
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Yilmaz and Kılıç (2022) investigated the return and 
volatility interaction among interest rate, gold, USD 
and EUR investment instruments with weekly data 
from January 2010 to July 2021, using the VAR Ex-
ponential Generalized Autoregressive Conditional 
Heteroscedastic (EGARCH) method. They revealed 
that there was a bidirectional return interaction be-
tween interest rate-USD and USD-EUR, and a one-
way return interaction between interest rate to EUR 
and gold to USD. They also determined that volatil-
ity interaction is bidirectional between USD-EUR, 
gold-USD, EUR-gold, and unidirectional from USD 
to gold. 

Şak and Öcal Özkaya (2022) investigated the volatil-
ity spillovers between USD, EUR, gold and the BIST 
100 index with daily data from January 2000 to Au-
gust 2022, using the Diebold and Yilmaz (2012) ap-
proach. They found that EUR and USD were volatil-
ity transmitters, while gold and the BIST 100 index 
were volatility receivers. According to the bilateral 
connectedness, gold and the BIST 100 index were 
dominated by the USD, and in recent years, there 
has been a spillover from gold to the BIST 100 index.

In the post-COVID-19 period, a trend of rising 
inflation has emerged in the world economy. De-
veloping markets, including Turkey, have been 
significantly affected by this situation. In Turkey, 
alongside dramatic increases in inflation, currency-
related risks have escalated, leading to uncertainties 
in investors’ portfolio formation efforts. The coun-
try’s unique political risks, along with fluctuations 
in the currency, have increased these uncertainties. 
This situation in Turkey did not start only in the 
post-COVID-19 period; its roots go back further. 
For instance, the currency fluctuation experienced 
in August 2018 negatively impacted all markets and 
caused structural ruptures. Naturally, in such situa-
tions, the risk transmission and spread in portfolios 
formed among traditional investment instruments 
have become significant issues. When we examined 
the literature, we noticed a gap in the comprehen-
sive examination of risk transmission among tradi-
tional investment instruments based in Turkey and, 
more importantly, in studies on inflation-based real 
returns. Additionally, the lack of application of the 
Diebold-Yılmaz connectedness approach emerged 
as a notable shortcoming.

Therefore, we examine the volatility pass-through 
between inflation-adjusted real returns announced 
monthly by the Turkish Statistical Institute (TSI). 
Our research applies the TVP-VAR frequency 

method based on the Diebold-Yılmaz connected-
ness approach. In this way, short- and long-term 
volatility transmissions between traditional invest-
ment instruments in Turkish financial markets 
are revealed. For this purpose, real return rates on 
gross deposit interest, gold bullion, the Borsa Istan-
bul 100 Index, the US dollar, EURO and Govern-
ment Domestic Debt Securities, which are the most 
popular instruments by investors in Turkish finan-
cial markets, are defined as variables in connectiv-
ity analysis. Volatilities of real return rates were 
obtained from the absolute values of returns based 
on Poon’s (2005) study. In other words, the abso-
lute values of CPI-based monthly real returns were 
used as proxy values for volatility values. Summary 
statistics show that the volatilities of the financial 
instruments mentioned are flat and skewed to the 
right, and also stationary and have an ARCH ef-
fect. In addition, the Elliott, Rothenberg, and Stock 
(ERS) unit root test result shows that the volatility 
series are stationary at level. Thus, we demonstrate 
that the volatility connectedness in the network 
formed by these financial investment instruments 
can be analyzed with a Time-Varying Parameter 
Vector Autoregressive (TVP-VAR) based approach. 
In our study, we use the novel TVP-VAR frequency 
connectedness approach proposed by Chatzianto-
niou et al. (2021), which effectively benefits from 
the essence of the works of Baruník and Krehlík 
(2018) and Antonakakis et al. (2020). The paper is 
organized as follows: an overview of the TVP-VAR 
Connectedness Approach in the time and frequen-
cy domains comes first, then a discussion of the 
dataset. The findings are explained in the parts that 
follow. The study concludes with a summary of the 
findings and their consequences.

2.	 Data set

In this study, the volatility pass-through among the 
real returns of the investment instruments most 
preferred by the investors in the Turkish financial 
markets will be examined by means of the Diebold-
Yilmaz (2012; 2014) approach. For this purpose, 
data from the Turkish Statistical Institute (TSI) da-
tabase on monthly real return rates of investment 
instruments like the Gross Interest Rate (GIR) for 
deposits, ingot Gold (GOLD), the Istanbul Stock 
Exchange 100 Index (BIST-100), United States Dol-
lar (USD), Euro (EUR) and Government Domestic 
Debt Instruments (GDDI) between January 2005 
and April 2023 were calculated by reducing the 



Akbulut,N. et al.: TVP-VAR frequency connectedness analysis on CPI-based monthly real return volatility of financial investment 
instruments

323Vol. 37, No. 2 (2024), pp. 319-337

Consumer Price Index (CPI). Figure 1 illustrates 
the real return series of financial investment instru-
ments. The data set can be downloaded from TSI’s 
website1. TSI calculates the returns of assets includ-
ed in the real return rates of financial investment 
instruments as follows.

•• Deposit interest return rate calculations are 
made using the weighted average deposit in-
terest rates applied to savings deposits actually 
opened in banks.

•• The monthly average of the combined index of 
the 1st and 2nd session closing prices obtained 
from Borsa Istanbul (BIST 100) is used in the 
stock market index. The BIST 100 index is cal-
culated from the stocks of the 100 companies 
with the largest market value and daily aver-
age trading volume among stocks that have 

1	 https://data.tuik.gov.tr/Kategori/GetKategori?p=Enflation-ve-Fiyat-106

been traded on the stock exchange for at least 
60 days.

•• US Dollar and Euro are the 1-month average of 
the foreign exchange buying rate of the Central 
Bank of the Republic of Turkey for 1 US Dol-
lar and 1 Euro.

•• Istanbul Stock Exchange monthly average gold 
bullion prices (TL/gr) are used in gold prices.

•• Real return rates of government domestic debt 
securities are calculated using the “BIST-KYD 
GDS All Index” within the scope of BIST-
KYD GDS Indices published by Borsa Istan-
bul. This index reflects the yields of discounted 
and fixed-interest coupon government domes-
tic debt securities traded in the debt securities 
market covering all maturities (TSI, 2024).

Figure 1 Real return series of financial investment instruments

Source: Authors’ own calculations

3.	 Volatility series

When working with a monthly frequency data set, 
choosing the appropriate volatility model becomes 
a bit complicated. Simply selecting the most appro-
priate model among historical or conditional mod-
els based on predictive power using error metrics 
is an insufficient approach because this approach 
neglects whether the model is reliable and valid. 
The assumptions of the applied model should be 
checked with diagnostic tests. Generally, meeting 
these assumptions is related to the number of ob-
servations. Generalized Autoregressive Condition-
al Heteroskedastic (GARCH) family models, which 
are widely used, have difficulties in their application 

to low-frequency data sets due to both the number 
of observations and diagnostic tests.

Hwang and Pereira (2006) recommend using a 
minimum of 250 observations for ARCH(1) mod-
els and at least 500 observations for GARCH(1,1) 
models to reduce biases and convergence problems. 
GARCH estimates derived from low-frequency 
data also face the problem of temporal aggrega-
tion, as highlighted by Drost and Nijman (1993). 
In small samples, maximum likelihood estimates 
for the GARCH(1,1) model exhibit significant 
negative bias, and frequently the estimates do not 
comply with Bollerslev’s non-negativity condi-
tions, causing the estimated model to fail diagnos-

https://data.tuik.gov.tr/Kategori/GetKategori?p=Enflation-ve-Fiyat-106
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tic tests. Heteroskedastic Autoregressive (HAR) 
models, also from the GARCH family, are not a 
suitable approach for our study since they obtain 
monthly volatilities using daily data. Additionally, 
a commonly used approach to forecasting future 
volatility based on the average change in historical 
volatility is the exponentially weighted moving av-
erage (EWMA). According to Arı (2022), EWMA 
models showed better prediction results than both 
the GARCH family and Conditional Autoregressive 
Range (CARR) type models. Since CARR models 
are range-based and our data set does not contain 
the lowest and the highest values, they are not suit-
able for use in this study. In addition, the change of 
the lambda coefficient used in the EWMA model 
does not produce good results because it is sensi-
tive to capturing volatility clouds.

For this reason, Open-High-Low-Close (OHLC) 
based volatility approaches, which do not have 
complex assumptions, are preferred, especially in 
volatility connectivity studies. Since the data we 
have does not include OHLC data, the most appro-
priate approach seems to be to accept the absolute 
values of the return data as volatility data. 

It has been revealed in the literature that using 
monthly frequency data in volatility calculations 

has various advantages. For example, Figlewski 
(1997) found that the size of the forecast error dou-
bled when daily data over a 24-month period was 
used to forecast volatility rather than monthly data. 
Because volatility mean reversion can be difficult 
to manipulate using high-frequency data, weekly 
or monthly volatility forecasts are sometimes pref-
erable when applications extend beyond a 10-year 
time horizon. Current practice is to use the month-
ly absolute value as an indicator of macro volatility 
because many macroeconomic variables are only 
accessible in the monthly range (Poon, 2005).

The volatilities of real return rates of the series were 
obtained based on the study of Poon (2005) over 
the absolute values of returns. In other words, the 
absolute values of CPI-based monthly real returns 
were used as proxy values for volatility values. Fig-
ure 2 showcases the real return volatility series of 
these financial investment instruments. It is evident 
from the figure, the 2008 Global Financial Crisis, 
the currency shock in August 2018, the announce-
ment of the COVID-19 pandemic in March 2020, 
the currency shock in December 2021, and the Rus-
sia-Ukraine war that started in late February 2022 
caused an increase in volatility in almost all series.

Figure 2 Real return volatility series of financial investment instruments 

Source: Authors’ own calculations

Summary statistics for the volatility series, as de-
tailed in Table 1, reveal that the volatilities of the 
financial investment instruments exhibit skewness 
and excess kurtosis, and lack an ARCH effect. The 
Jarque-Bera (JB) test statistic further corroborates 
the non-normal distribution of these series at a 1% 
significance level. To assess stationarity, the Elliott-
Rothenberg-Stock (ERS) unit root test, particularly 

suited for distributions with skewness and kurto-
sis, was employed. The results from the ERS test 
indicate that all series are stationary at their level. 
This confirms the appropriateness of the dataset for 
analysis using the TVP-VAR model.
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Table 1 Summary statistics of volatility series

Statistics GIR BIST-100 USD EUR GOLD GDDI

Mean 0.89 5.159 2,742 2,609 3,598 1,853
Variance 1.445 18,128 6,989 6,277 10,703 4,343
Skewness 4.742*** 1.540*** 2.823*** 2.184*** 1.653*** 2.925***
Ex.Kurtosis 30.382*** 3.362*** 11.996*** 7.120*** 3.050*** 11.245***
JB 9285.995*** 190.556*** 1611.339*** 639.696*** 185.509*** 1472.901***
ERS -4.594*** -2.839*** -5.928*** -3.211*** -2.788*** -3.259***
Q(20) 126.134*** 17.411** 26.421*** 19.954** 13.353 117.170***
Q2(20) 74.775*** 22.470*** 10.534 21.484*** 11.410 55.156***
Spearman GIR BIST-100 USD EUR GOLD GDDI

 GIR 1.000
 BIST-100 0,097 1.000
 USD 0.162 0.258 1.000
 EUR 0.079 0.195 0.546 1.000
 GOLD 0.073 0.049 0.249 0.300 1.000
 GDDI 0.417 0.265 0.295 0.277 0.187 1.000

Note: ***, **, * denote significance levels at 1%, 5% and 10%. 
Source: Authors’ own calculations

Additionally, Table 1 elaborates the unconditional 
correlation matrix among the real return volatilities 
of financial investment instruments. The most sub-
stantial correlation is observed between USD and 
EUR with 0.546, followed by GDDI and GIR having 
a value of 0.417. With a value of 0.049, the correla-
tion between the BIST-100 index and GOLD is the 
weakest.

3.1	Volatility connectedness via the TVP-VAR 
approach in the time domain

In their groundbreaking work, Diebold and Yilmaz 
(2012; 2014) introduced the connectedness ap-
proach, which uses both static and dynamic time-
series network analysis to identify linkage and spill-
over within a given network. The dynamic method 
uses the rolling window VAR approach, while the 
static method uses a Vector Autoregression (VAR) 
model for the entire dataset. Thus, it reveals the re-
turn or volatility spreads within the network. This 
method has grown in popularity because it allows 
researchers to draw meaningful conclusions about 
networks. By using the TVP-VAR technique, Anto-
nakakis et al. (2020) improved the connectedness 
approach that Diebold and Yilmaz (2014) had ini-
tially constructed. The TVP-VAR-based connect-
edness approach has several advantages, including 
insensitivity to outliers, no data loss, no require-

ment to specify arbitrary window size, and applica-
tion to low-frequency datasets. This enhancement 
increases the variance-covariance matrix’s adapt-
ability by incorporating forgetting components and 
applying a Kalman filter. These developments make 
this method especially appropriate for researching 
the dynamic relationships between the volatilities 
of financial assets. The basic work of Koop and Ko-
robilis (2013; 2014) on VAR models and the use of 
EWMA forgetting factors is incorporated into this 
methodology. The structure and features of the 
TVP-VAR(2) model, selected based on Bayesian 
Information Criteria (BIC), can be expressed as fol-
lows:

3.1 Volatility connectedness via the TVP-VAR approach in the time domain

In their groundbreaking work, Diebold and Yilmaz (2012; 2014) introduced the connectedness 
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and spillover within a given network. The dynamic method uses the rolling window VAR 

approach, while the static method uses a Vector Autoregression (VAR) model for the entire 

dataset. Thus, it reveals the return or volatility spreads within the network. This method has 

grown in popularity because it allows researchers to draw meaningful conclusions about 

networks. By using the TVP-VAR technique, Antonakakis et al. (2020) improved the 

connectedness approach that Diebold and Yilmaz (2014) had initially constructed. The TVP-

VAR-based connectedness approach has several advantages, including insensitivity to outliers, 

no data loss, no requirement to specify arbitrary window size, and application to low-frequency 

datasets. This enhancement increases the variance-covariance matrix’s adaptability by 

incorporating forgetting components and applying a Kalman filter. These developments make 

this method especially appropriate for researching the dynamic relationships between the 

volatilities of financial assets. The basic work of Koop and Korobilis (2013; 2014) on VAR 

models and the use of EWMA forgetting factors is incorporated into this methodology. The 

structure and features of the TVP-VAR(2) model, selected based on Bayesian Information 

Criteria (BIC), can be expressed as follows:

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 =  A𝑡𝑡𝑡𝑡𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡−1 + 𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡                𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡~𝑁𝑁𝑁𝑁(0, Σ𝑡𝑡𝑡𝑡)  (2)

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡−1) + 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡                𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡~𝑁𝑁𝑁𝑁(0, S𝑡𝑡𝑡𝑡)  (3)

In the above model, expressed in matrix form, the properties of vectors and related matrices are 

listed as follows. The vector 𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡−1 is a 2𝑘𝑘𝑘𝑘 × 1 vector, and the vector 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 has a dimension of 𝑘𝑘𝑘𝑘 × 1.

 A𝑡𝑡𝑡𝑡 is a 𝑘𝑘𝑘𝑘 × 2𝑘𝑘𝑘𝑘 matrix. Vectors 𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡 and 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 are 𝑘𝑘𝑘𝑘 × 1 and 2𝑘𝑘𝑘𝑘2 × 1 dimensional vectors, 

respectively. Additionally, matrices Σ𝑡𝑡𝑡𝑡 and S𝑡𝑡𝑡𝑡 are time-varying variance-covariance matrices, 

with dimensions 𝑘𝑘𝑘𝑘 × 𝑘𝑘𝑘𝑘 and 2𝑘𝑘𝑘𝑘2 × 2𝑘𝑘𝑘𝑘2, respectively. The last vector is 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) with a 2𝑘𝑘𝑘𝑘2 × 1

dimension. This structure of matrices and dimensions provides a thorough framework for 

dissecting the time-varying relations in the model.

Generalized Forecast Error Variance Decomposition (GFEVD) values obtained from the vector 

model are the most basic element of the Diebold and Yılmaz methodology. This approach is 

very important to investigate the effects of shocks to the variables in a network on the dynamic 

relationships of the variables in a time series framework. Using the equation yt =

∑  Ahtϵt−h∞
h=0 , the Time-Varying Parameter Vector Moving Average (TVP-VMA) model is 
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framework for dissecting the time-varying relations 
in the model.
Generalized Forecast Error Variance Decompo-
sition (GFEVD) values obtained from the vector 
model are the most basic element of the Diebold 
and Yılmaz methodology. This approach is very 
important to investigate the effects of shocks to 
the variables in a network on the dynamic rela-
tionships of the variables in a time series frame-
work. Using the equation , the 
Time-Varying Parameter Vector Moving Average 
(TVP-VMA) model is obtained from the TVP-VAR 
model, where  and  is an identity ma-
trix. As a result of this transformation, it becomes 
easier to evaluate the effect of the shock in variable j 
on the other variable i. The TVP-VMA transforma-
tion allows the impact of shocks on variable i to be 
measured by variable j in terms of both magnitude 
and direction at various time intervals. This assess-
ment is made possible by a comprehensive calcula-
tion process described in the equation below, which 
gives a clear picture of the impact over time.
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ϕ�ij,t
g (H) =

∑ �ϵiTAhtΣtϵj�
2H−1

h=0

�ϵiTΣtϵj� ∑ �ϵiTAhΣtAht
T ϵi�H−1

h=0

(4)

One can obtain ∑ ϕ�ij,t
g (H) = 1m

j=1 and ∑ ϕ�ij,t
g (H) = km

i,j=1 using the above equation. As 

mentioned before, Diebold and Yılmaz (2012; 2014) proposed connectedness indices based on 

the GFEVD technique. These indices are determined by computing the proportion of the 

forecast error change of a particular variable that can be attributed to shocks to other variables 

in the system. These calculations are made as follows.

Directional connectedness to others - TO

TOjt(𝐻𝐻𝐻𝐻) = � ϕ�ij,t
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Net pairwise directional connectedness – NPDC

NPDCij,t(𝐻𝐻𝐻𝐻) = ϕ�ij,t
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g (H) (9)
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Then all the frequency connectedness metrics may be computed, which gives information on 

spillovers in the particular frequency range denoted by d. This is stated in the following way:

ϕ(𝐻𝐻𝐻𝐻) =  �ϕ(𝑑𝑑𝑑𝑑)
𝑑𝑑𝑑𝑑
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Within this context, a group of connectedness metrics [NPDC, TO, FROM, NET, TCI], each of 

which has been previously discussed, is represented by the symbol ϕ(⋅). This suggests that the 

totality of frequencies associated with the frequency connectedness measure is in agreement 

with the corresponding connectedness seen in the time domain.

4. Empirical findings

Total Connectedness Index (TCI): The average TCI results among financial investment 

instruments are presented in Table 2. The TCI shows that 40.37% of the variance in these 

financial investment instruments - specifically, the generalized estimated error variance - is due 

to the connectedness relationship in these networks. TCI values are 33.95% in the short term 

(1-12 months) and 6.41% in the long term (12-inf). 

The diagonal entries of the 6x6 matrix depicted in Table 2 represent the variance in prediction 

errors attributed to the variables themselves. In contrast, the off-diagonal elements detail how 

the error variances are broken down among the variables. In accordance with the data, the BIST-

100 index is the investment instrument with the highest self-induced volatility in total data with 

72.91%. In the short run, the BIST-100 index accounts for 64.77%, whereas in the long run, it

is realized as GDDI with 12.3%. As a result, it is possible to say that the BIST-100 index and 

GDDI are investment instruments least affected by the network. In contrast, investment 

instruments with the lowest self-induced volatility spillovers and thus most affected by network 

spillovers are USD (47.32% and 40.24%, respectively) in the total and short run, and EUR 

(6.43%) in the long run. USD is the investment instrument that is most affected by the network,

with 52.68% (FROM), and with 63.13% (TO), it also has the most volatility spreads in the 

network. In the short and long run, USD is the investment instrument most affected by the 
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Within this context, a group of connectedness met-
rics [NPDC, TO, FROM, NET, TCI], each of which 
has been previously discussed, is represented by the 
symbol ϕ(⋅). This suggests that the totality of fre-
quencies associated with the frequency connected-
ness measure is in agreement with the correspond-
ing connectedness seen in the time domain.

4.	 Empirical findings

Total Connectedness Index (TCI): The average 
TCI results among financial investment instru-
ments are presented in Table 2. The TCI shows that 

40.37% of the variance in these financial investment 
instruments - specifically, the generalized estimat-
ed error variance - is due to the connectedness re-
lationship in these networks. TCI values are 33.95% 
in the short term (1-12 months) and 6.41% in the 
long term (12-inf ). 

The diagonal entries of the 6x6 matrix depicted in 
Table 2 represent the variance in prediction errors 
attributed to the variables themselves. In contrast, 
the off-diagonal elements detail how the error 
variances are broken down among the variables. 
In accordance with the data, the BIST-100 index 
is the investment instrument with the highest self-
induced volatility in total data with 72.91%. In the 
short run, the BIST-100 index accounts for 64.77%, 
whereas in the long run, it is realized as GDDI with 
12.3%. As a result, it is possible to say that the BIST-
100 index and GDDI are investment instruments 
least affected by the network. In contrast, invest-
ment instruments with the lowest self-induced vol-
atility spillovers and thus most affected by network 
spillovers are USD (47.32% and 40.24%, respec-
tively) in the total and short run, and EUR (6.43%) 
in the long run. USD is the investment instrument 
that is most affected by the network, with 52.68% 
(FROM), and with 63.13% (TO), it also has the most 
volatility spreads in the network. In the short and 
long run, USD is the investment instrument most 
affected by the network with 43.77% (FROM) and 
8.9% (FROM), respectively, while USD (in the short 
run) and EUR (in the long run) exhibited the high-
est volatility spreads in the network with 53.96% 
(TO) and 9.52% (TO), respectively. 

Net total directional connectedness: NET values 
are obtained from the difference between the vola-
tility emitted by a variable in the network and the 
volatility affecting it. A positive NET value indicates 
that the variable is a net volatility transmitter in the 
network, while a negative NET value indicates that 
the variable is a net volatility receiver. According to 
the data given in Table 2, USD is the highest volatili-
ty transmitter in the network with 10.45%, followed 
by EUR (8.46%) and GDDI (1.12%), respectively. 

The highest net volatility transmitter in the short 
term is USD with 10.19%, while in the long run, it is 
EUR with 2.85%. GIR acts as the highest net volatil-
ity receiver for all periods. 
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Table 2 Total, short-run, and long-run average TCI

Total GIR.Total BIST-100.Total USD.Total EUR.
Total

GOLD.
Total

GDDI.
Total

FROM.
Total

GIR 65.16 1.13 6.27 5.02 3.13 19.27 34.84
BIST-100 0.80 72.91 12.16 5.48 3.88 4.77 27.09

USD 2.23 8.54 47.32 22.57 11.61 7.72 52.68
EUR 1.72 4.21 22.04 50.57 13.66 7.8 49.43

GOLD 1.46 2.85 12.89 15.55 63.77 3.48 36.23
GDDI 15.09 4.11 9.76 9.27 3.7 58.08 41.92

 TO 21.3 20.84 63.13 57.89 35.98 43.04 242,19
Inc.Own 86.47 93.75 110.45 108.46 99.76 101.12 TCI

Net -13.53 -6.25 10.45 8.46 -0.24 1.12 40.37

Short-run    GIR.1-12 BIST-100.1-12 USD.1-12 EUR.1-12 GOLD.1-12 GDDI.1-
12

 FROM.1-
12

GIR 55.34 1.04 4.92 3.83 2.52 15.17 27.48
BIST-100 0.69 64.77 11.2 4.95 3.29 4.25 24.38

USD 1.8 7.83 40.24 18.5 9.41 6.23 43.77
EUR 1.46 4.0 19.01 44.14 11.4 6.88 42.76

GOLD 1.23 2.71 11.37 13.91 57.27 3.05 32.26
GDDI 11.76 3.71 7.45 7.18 2.97 45.78 33.07

TO 16.94 19.29 53.96 48.37 29.59 35.57 203.72
Inc.Own 72.28 84.06 94.19 92.51 86.86 81.35 TCI

Net -10.54 -5.08 10.19 5.62 -2.67 2.5 33.95

Long-run  GIR.12-Inf BIST-100.12-
Inf

USD.12-
Inf

EUR.12-
Inf

GOLD.12-
Inf

GDDI.12-
Inf

FROM.12-
Inf

GIR 9.82 0.1 1.35 1.19 0.62 4.1 7.36
BIST-100 0.11 8.14 0.96 0.53 0.6 0.52 2.72

USD 0.43 0.71 7.09 4.08 2.2 1.49 8.9
EUR 0.26 0.21 3.02 6.43 2.26 0.93 6.67

GOLD 0.23 0.14 1.52 1.64 6.5 0.43 3.97
GDDI 3.32 0.4 2.31 2.09 0.73 12.3 8.85

TO 4.37 1.55 9.17 9.52 6.4 7.47 38.47
Inc.Own 14.19 9.69 16.26 15.95 12.9 19.77 TCI

Net -2.99 -1.17 0.26 2.85 2.43 -1.38 6.41
Note: The findings of the study are derived from employing a TVP-VAR model with a two-lag order, selected on the basis of 
the Bayesian Information Criterion (BIC), and involve a forecast error variance decomposition looking 10 steps ahead. This 
analysis utilized the R programming language and the “ConnectednessApproach” package developed by Gabauer (2022). 
Important terminology used in the study includes “Inc.Own” to denote one’s own contributions, “TCI” for the Total Con-
nectedness Index, “NET” indicating Net Total Connectedness, and “NPT” representing Net Pairwise Total Connectedness. 
The analysis categorizes the short run as a period of 1-12 months and the long run as any period extending beyond 12 months. 
Source: Authors’ own calculations

Dynamic Total Connectedness Index: Dynamic 
TCI illustrates how the interconnections among 
the variables fluctuate over time. Figure 3 not only 
showcases the dynamic progression of the average 
total connectedness index but also its decomposi-
tion into short-term (1-12 months) and long-term 

(beyond 12 months) components. As depicted in 
Figure 3, dynamic TCIs undergo notable varia-
tions as time progresses. Accordingly, the high-
est connectedness between the series occurred in 
September 2018, with a value of 55.95%, which this 
points to the exchange rate shock experienced at 
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that time. Connectedness, which started to decline 
after 2018, rose again (47.08%) in March 2020, the 
date when the COVID-19 pandemic was declared. 
Similarly, with the impact of the Russia-Ukraine 
war that started at the end of February 2022, the 

interconnectedness between the series increased to 
a serious level of 54.42%. In addition, the dynamic 
connectedness between the series increased signifi-
cantly during the 2008 global financial crisis and 
the exchange rate shock in December 2021. 

Figure 3 Dynamic TCI plots

Source: Authors’ own calculations

Robustness analysis: We followed two ways to 
examine the sensitivity of our results: First, we ex-
amined return connectivity of the variables because 
in spillover analysis, return transmission and con-
nectedness are used as an indicator of robustness. 
The second is to test the approach using different 
forecasting horizons. We make an alternative h-
step forward estimation for the forecasting error 
variance decomposition obtained from the TVP-
VAR model. We apply a 20-steps ahead forecasting 
horizon instead of 10. According to the average TCI 
tables given in Appendix A, the spillover index ap-
pears to have a comparable structure and pattern. 
This shows that connectivity analysis is not always 
sensitive to returns and forecast horizons. Similar 
approaches have also been commonly used as ro-
bustness checks in numerous previous studies (Die-
bold & Yilmaz, 2012; 2014; Billah et al., 2022).

Net Pairwise Directional Connectedness 
(NPDC): NPDC indicates bilateral volatility trans-
fer between two variables, with positive NPDC val-
ues signifying dominance of one investment instru-
ment over another, and negative values indicating 
the opposite. The Pairwise Connectedness Index 
(PCI) quantifies the intensity of the relationship 
between variables, with values spanning from zero 
(indicating a weak connection) to one (signifying a 
strong connection). Examining the pairwise vola-
tility connectedness is essential for grasping how 
volatility shocks propagate across different invest-

ment instruments, particularly in times of crises or 
epidemics, and observing how these interactions 
change over time.

Table 3 displays NPDCI and PCI values, illustrat-
ing the connectedness between various investment 
instruments. The highest level of the pairwise con-
nectedness is found between USD and EUR across 
all timeframes, with PCI values reaching 62.99% 
overall, 52.95% for the short run, and 10.06% for 
the long run. With an NPDCI of 0.53% overall and 
1.05% in the long term, USD acts as a net transmit-
ter, showing its influence over EUR. Conversely, in 
the short term, EUR becomes the net transmitter 
with an NPDCI of -0.51%, indicating its dominance 
over USD. In other words, in the total and long run, 
USD is the net volatility transmitter, EUR is the net 
volatility receiver, while in the short term, EUR is 
the net volatility transmitter and USD is the net vol-
atility receiver. According to PCI values, the lowest 
pairwise connectedness for all periods (2.73% (to-
tal), 2.44% (short term), 0.29% (long term)) is found 
between GIR and the BIST-100 index. Based on an 
NPDCI value, as GIR is a net volatility transmitter 
in total (0.33%) and short term (0.34%), it acts as 
a net volatility receiver in the long term (-0.01%). 
The minimal NPDCI and PCI values ​​between the 
two investment instruments indicate that these two 
investment instruments can be used effectively for 
portfolio diversification. As a matter of fact, ac-
cording to the data in Table 3, it is observed that 
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the lowest bilateral relationship emerged between 
GOLD and GDDI with an NPDCI value of 0.08%. 
Therefore, we have demonstrated that these two 

investment instruments are preferable for portfolio 
diversification. 

Table 3 NPDCI and PCI 

Time Domain  BIST-100   USD  EUR  GOLD  GDDI

GIR 0.33 (2.73) 4.04 (14.98) 3.30 (12.18) 1.67 (7.73) 4.18 (42.75)

BIST-100 3.62 (28.82) 1.26 (14.54) 1.03 (9.60) 0.66 (12.77)

USD 0.53 (62.99) -1.28 (37.10) -2.04 (28.57)

EUR -1.88 (41.81) -1.46 (27.52)

GOLD -0.21 (11.61)

Frequency Domain Short-run (1 - 12 months)

GIR 0.34 (2.44) 3.11 (11.81)  2.37 (9.49)  1.29 (6.20)  3.40 (33.42)

BIST-100 3.36 (26.48)  0.94 (13.44)  0.58 (8.53)  0.53 (11.47)

USD -0.51 (52.93)  -1.95 (31.47) -1.22 (22.36)

EUR  -2.50 (36.20) -0.30 (22.58)

GOLD  0.08 (9.68)

Frequency Domain Long-run (12 – inf months)

GIR -0.01 (0.29) 0.92 (3.16) 0.92 (2.69)  0.38 (1.52)  0.77 (9.33)

BIST-100 0.25 (2.33) 0.32 (1.10)  0.45 (1.06)  0.12 (1.30)

USD 1.05 (10.06)  0.67 (5.63) -0.81 (6.21)

EUR -0.61 (5.61) -1.16 (4.94)

GOLD -0.92 (1.92)

Note: PCIs are presented in parentheses. 
Source: Authors’ own calculations

The net pairwise directional dynamic connected-
ness between the two variables is presented visu-
ally in Figure 4. GIR was a net receiver of volatility 
against other investment instruments throughout 
the whole period, and the impact of shocks received 
from USD, EUR, GOLD and GDDI has increased 
significantly after 2018. Similarly, the BIST-100 in-
dex acted a net receiver of volatility against other 
investment instruments. On the other hand, USD 
and EUR were net receivers of volatility against 
GOLD until 2008, while GOLD acted as a net re-
ceiver of volatility against these two investment in-
struments after 2008. Being a net volatility receiver 
against USD and EUR, the shocks received by the 
GDDI investment instrument increased after 2018. 
In addition, while EUR was a net volatility receiver 
against GDDI in the short term between 2008 and 

2015, it became a net volatility transmitter invest-
ment instrument after 2015. Finally, while GOLD 
was a net volatility receiver against GDDI in the 
2008-2018 period, it became a net volatility trans-
mitter in other periods. 

Considering the studies using the connectivity ap-
proach, the findings overlap with the study of Şak 
and Öcal Özkaya (2022). Similar to that study, USD 
and EURO financial instruments were found to be 
transmitters, and GOLD and BIST were found to 
be receivers. Although Şak and Öcal Özkaya (2022) 
used the rolling window VAR approach in their 
study and the period of the data set was longer, ob-
taining similar results shows that the approach is 
robust and that the relationship between financial 
assets in Turkey has a characteristic structure.
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Figure 4 Net pairwise directional connectedness

Source: Authors’ own calculations

Network plots: Figure 5 visually presents the bilat-
eral relationships between investment instruments. 
This visual representation allows us to see the dy-
namic interaction between variables in a TVP-VAR 
based frequency connectedness analysis. Blue and 
yellow nodes indicate that the variable is a net 
volatility transmitter and a net volatility receiver, 
respectively. The direction and thickness of the ar-
rows determine the direction and strength of the 
volatility spread between the variables. In both the 
overall and short-run network plots, the investment 
instruments represented by USD, EUR, and GDDI 
emerge as having dominant volatility within the 
network. They are the primary drivers of network 
dynamics, influencing the flow and transmission 

of volatility among the various investment instru-
ments included in the analysis. Moreover, for both 
periods, the strongest volatility spillover is from 
GDDI to GIR. In the long term, USD, EUR and 
GOLD are the most dominant investment instru-
ments in the network. Although Yılmaz and Kılıç 
(2022) examined the interaction between variables 
with a different methodology, they obtained re-
sults parallel to our findings. For example, the fact 
that USD and EURO are more dominant, in other 
words, a transmitter, as opposed to the GIR vari-
able, can be seen as similar results. Another similar-
ity in their studies is that the interaction between 
USD and EURO is an indication of a strong bilateral 
connectedness. 

Figure 5 Network plots

Note: A time-domain network (left), a short-run network (middle), a long-run network (right). 
Source: Authors’ own calculations

5.	 Conclusion 

In this study, the volatility pass-through between 
the real returns of selected financial investment 

instruments is analyzed using the innovative TVP-
VAR connectedness approach in the frequency 
domain. For this purpose, firstly, the real return 



Akbulut,N. et al.: TVP-VAR frequency connectedness analysis on CPI-based monthly real return volatility of financial investment 
instruments

332 Vol. 37, No. 2 (2024), pp. 319-337

volatilities of financial investment instruments are 
obtained based on the study of Poon (2005), and 
then the time and frequency (short and long terms) 
connectedness between these investment instru-
ments is revealed by using the method based on the 
approach of Diebold and Yilmaz (2012; 2014). Ac-
cording to the findings, while the total connected-
ness index (TCI) was 40.37%, it was 33.95% in the 
short run and 6.41% in the long run. The BIST-100 
index is the investment instrument with the highest 
self-induced volatility in total and in the short term, 
which means that the BIST-100 index is the invest-
ment instrument that is least affected by the net-
work. In the long run, the investment instrument 
with the highest self-driven volatility is GDDI. The 
investment instrument with the lowest self-induced 
volatility and thus most affected by the network is 
USD both in total and in the short term, while EUR 
is observed in the long term. This is an expected sit-
uation. As a matter of fact, since USD and EUR have 
become global investment instruments, shocks in 
other investment instruments can spread to these 
investment instruments in a short time. On the oth-
er hand, USD is an investment instrument that both 
transmits the highest volatility in the network and 
receives the highest volatility from the network. 
When we look at the dynamic total connectedness, 
we observe that the connectedness between these 
investment instruments increased significantly 
during periods of turbulence at both global and lo-
cal levels, such as the 2008 global financial crisis, 
the currency shock experienced in our country in 
2018 and 2021, the COVID-19 outbreak announced 
in March 2020, and the Russia-Ukraine war that 
started in February 2022. According to the NET val-
ues of the variables, USD (in total and in the short 
term) and EUR (in the long term) is the highest net 
volatility transmitter, while GIR is the highest net 
volatility receiver for all periods. When it comes to 
results of the net bilateral connectedness between 
variables, the highest net bilateral connectedness 
for all periods is between USD and EUR, while the 
lowest net bilateral connectedness is between GIR 
and BIST-100 index. A low degree of connected-
ness among investment instruments indicates that 
they can be used effectively in portfolio diversifica-
tion. Therefore, this study reveals important results 
for investors, portfolio managers, risk managers 
and foreign exchange trading companies.

Another interesting result is that the spread through 
the network is higher in the short term, i.e. 84% of 

the total risk spread occurs in the short term. This 
is because USD and EUR are the most effective in-
vestment instruments in the network and have high 
volatility. This is an expected result. In an emerging 
market like Turkey, inflation is mostly caused by the 
effect of USD and EUR, the reserve currencies in 
the world, on raw material prices. Furthermore, this 
situation is affecting all financial markets, especially 
the low deposit interest rate and high inflation that 
emerged with the economic policies implemented 
in the last five years led to a high depreciation of 
the Turkish Lira. As a result, negative real deposit 
interest drove investors away from the local cur-
rency and increased demand in foreign exchange 
markets. Moreover, it led investors to stay away 
from local financial instruments such as BIST-100, 
GDDI, and GIR, and it impacted the connectedness 
index.

In addition, interest in the cryptocurrency market 
in Turkey is increasing dramatically. Consider-
ing the number of wallets in the country, it ranks 
among the top five countries in the world with the 
highest number of investors in the cryptocurrency 
market. This situation makes it necessary to reveal 
the relationship between cryptocurrency markets 
and traditional investment instruments. For exam-
ple, the inflation-discounted real Bitcoin return, 
or the risk spread between a crypto stock market 
index and Turkish investment instruments can be 
revealed with the connectivity approach. 

Another effective factor is the impact of emerg-
ing geopolitical risks on Turkish financial mar-
kets. Türkiye is affected by the conflicts occurring 
around it due to its geographical location. To reveal 
this situation, the interaction between geopolitical 
risk indices and markets can be examined with the 
same methods. It is expected that asymmetric con-
nectivity analyses, especially those applied to reveal 
asymmetric effects, will provide more detailed re-
sults. After asymmetric return and volatility mod-
eling, the difference between positive and negative 
volatility spreads can be analyzed using dynamic 
quantile connectedness and extended joint con-
nectedness approaches.

We can summarize our recommendations for fu-
ture studies.

1.	 Investigate the relationship between cryp-
tocurrency markets and traditional invest-
ment instruments in Turkey. Provide in-
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sights into risk management and portfolio 
diversification by determining how tradi-
tional markets impact or affect cryptocur-
rencies. Use connectedness approaches and 
cointegration approaches as a method when 
revealing this relationship.

2.	 Additionally, unlike the above suggestion, 
examining the asymmetric effects of cryp-
tocurrency volatility on the dynamic total 
connectedness index of traditional invest-
ment instruments obtained in this study 
with Johansen cointegration or ARDL/
NARDL bounds test methods can be the 
subject of a future study.

3.	 Examine the impact of geopolitical risks 
specific to Türkiye on Turkish financial mar-
kets. Another study suggestion is to reveal 

the dynamic interconnectedness between 
geopolitical risk indices and traditional in-
vestment instruments. This relationship can 
also be investigated with methods that re-
veal symmetric and asymmetric effects.

4.	 The difference in connectivity that occurs 
before and after exchange rate shocks is 
a separate research topic that needs to be 
addressed. Thus, it will be revealed what 
investment instrument groups will provide 
optimum portfolio diversity in the pre- and 
post-crisis periods.

5.	 Finally, examining the risk transfer with 
these conventional investment instruments, 
especially with banking and technology sec-
tors, will help develop sector-oriented in-
vestment and risk strategies.
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Appendix A: Findings of robustness analysis

Table A1 Total, short-run, and long-run average TCI (return connectedness)

Total GIR.Total BIST100.Total USD.Total EUR.Total GOLD.Total GDDI.Total FROM.Total
GIR 55.22 1.29 6.23 6.75 4.09 26.41 44.78

BIST-
100 1.08 53.79 16.17 10.87 5.38 12.72 46.21

USD 1.1 13.56 39.77 23.71 12.75 9.11 60.23
EUR 0.96 8.99 23.87 41.07 16.47 8.63 58.93

GOLD 1.29 6.67 16.19 17.24 54.57 4.04 45.43
GDDI 18.77 8.91 11.44 11.32 4.04 45.52 54.48

TO 23.2 39.43 73.9 69.89 42.73 60.91 310.05
Inc.
Own 78.42 93.22 113.67 110.96 97.3 106.43 cTCI/TCI

Net -21.58 -6.78 13.67 10.96 -2.7 6.43 62.01/51.68
Short-run GIR.1-12 BIST100.1-12 USD.1-12 EUR.1-12 GOLD.1-12 GDDI.1-12 FROM.1-12

GIR 44.09 1.08 4.72 5.18 3.07 20.03 34.08
BIST-

100 0.82 45.1 13.34 8.95 4.55 10.12 37.78

USD 0.91 10.79 32.78 19.67 10.56 7.74 49.66
EUR 0.79 7.45 20.27 34.98 13.58 7.41 49.49

GOLD 1.13 5.42 13.96 15.08 46.89 3.65 39.25
GDDI 14.44 7.51 8.89 8.51 3.09 35.84 42.43

TO 18.08 32.25 61.17 57.38 34.85 48.95 252.69
Inc.
Own 62.17 77.35 93.95 92.36 81.74 84.8 cTCI/TCI

Net -16 -5.52 11.51 7.89 -4.4 6.52 50.54/42.11

Long-run GIR.12-
Inf

BIST100.12-
Inf

USD.12-
Inf

EUR.12-
Inf

GOLD.12-
Inf

GDDI.12-
Inf FROM.12-Inf

GIR 11.14 0.22 1.51 1.57 1.02 6.38 10.69
BIST-

100 0.26 8.7 2.84 1.92 0.83 2.59 8.43

USD 0.18 2.77 6.99 4.05 2.2 1.37 10.57
EUR 0.17 1.54 3.6 6.09 2.89 1.23 9.43

GOLD 0.16 1.25 2.23 2.15 7.68 0.39 6.18
GDDI 4.33 1.4 2.55 2.82 0.95 9.68 12.05

TO 5.11 7.18 12.73 12.5 7.89 11.95 57.36
Inc.
Own 16.25 15.87 19.72 18.6 15.57 21.63 cTCI/TCI

Net -5.58 -1.26 2.16 3.07 1.7 -0.09 11.47/9.56
Source: Authors’ own calculations
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Table A2 Total, short-run, and long-run average TCI (volatility connectedness with forecast horizon 20)

Total GIR.Total BIST100.Total USD.Total EUR.
Total

GOLD.
Total

GDDI.
Total FROM.Total

GIR 63.58 0.51 6.9 5.96 2.42 20.61 36.42

BIST-100 0.45 76.07 11.9 4.79 3.6 3.18 23.93

USD 2.75 7.12 46.55 24.57 11.04 7.97 53.45

EUR 2.6 2.95 23.89 49.15 13.25 8.17 50.85

GOLD 1.36 2.3 13.02 15.49 64.24 3.59 35.76

GDDI 16.72 2.19 10.49 10.09 3.34 57.18 42.82

TO 23.87 15.07 66.21 60.91 33.65 43.53 243.23

Inc.Own 87.45 91.14 112.76 110.06 97.89 100.7 cTCI/TCI

Net -12.55 -8.86 12.76 10.06 -2.11 0.7 48.65/40.54

Short-run GIR.1-12 BIST100.1-12 USD.1-12 EUR.1-12 GOLD.1-12 GDDI.1-12 FROM.1-12

GIR 58.03 0.5 5.97 5.12 2.1 18.25 31.94

BIST-100 0.42 71.13 11.37 4.58 3.29 3.02 22.69

USD 2.44 6.75 42.55 22.15 9.89 7.15 48.39

EUR 2.42 2.86 22.09 45.62 12.09 7.66 47.11

GOLD 1.23 2.24 12.14 14.61 60.64 3.34 33.56

GDDI 14.66 2.08 9.08 8.79 2.95 50.63 37.56

TO 21.17 14.42 60.65 55.25 30.34 39.42 221.25

Inc.Own 79.2 85.55 103.2 100.87 90.97 90.05 cTCI/TCI

Net -10.77 -8.27 12.26 8.14 -3.23 1.87 44.25/36.87

Long-run GIR.12-
Inf

BIST100.12-
Inf

USD.12-
Inf

EUR.12-
Inf

GOLD.12-
Inf

GDDI.12-
Inf

FROM.12-
Inf

GIR 5.55 0.02 0.94 0.84 0.32 2.36 4.48

BIST-100 0.03 4.94 0.54 0.21 0.31 0.16 1.24

USD 0.3 0.37 4 2.42 1.14 0.82 5.06

EUR 0.18 0.09 1.8 3.53 1.16 0.52 3.74

GOLD 0.13 0.06 0.88 0.88 3.6 0.25 2.2

GDDI 2.06 0.11 1.41 1.3 0.38 6.55 5.27

TO 2.7 0.65 5.56 5.66 3.31 4.1 21.98

Inc.Own 8.26 5.59 9.56 9.18 6.91 10.65 cTCI/TCI

Net -1.78 -0.59 0.5 1.91 1.11 -1.16 4.40/3.66

Source: Authors’ own calculations




