
  

 

289 

 

ENTRENOVA - ENTerprise REsearch InNOVAtion Vol. 10 No. 1 

IMU-Based Exoskeleton Control: Torso 

Movements and AI 
 

Marius Leonard Olar  

University of Petrosani, Romania 

Monica Leba 

University of Petrosani, Romania 

Andreea Cristina Ionică  

University of Petrosani, Romania 

Victor Triohin 

University of Petrosani, Romania 

 

Abstract  
 

This study introduces a new control system for an upper limb exoskeleton, leveraging 

Inertial Measurement Unit (IMU) sensors placed on the user's trunk. The system employs 

two distinct control methodologies to enhance the exoskeleton's responsiveness and 

accuracy in assisting arm movements. The first method utilizes the torso's motion, 

integrating IMU data to calculate the arm's movement limits synchronously with the 

torso, ensuring the exoskeleton's movements are in harmony with the user's natural 

motion patterns. The second method adopts a more advanced approach, 

employing a neural network to predict the user's intended arm movement based on 

the torso's dynamics. This predictive model allows for a more intuitive interaction 

between the user and the exoskeleton, potentially improving the efficiency and 

satisfaction in its use. By comparing these methods, the paper aims to evaluate their 

effectiveness in providing a seamless and natural extension of the human body 

through the exoskeleton, offering insights into future developments for assistive 

technologies. 
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Introduction 
The accurate prediction and analysis of human movement using wearable sensor 

technology have gained significant attention in recent years, driven by 

advancements in sensor design, data processing algorithms, and machine learning 

techniques. This thriving field of research holds promise for a wide range of 

applications, from enhancing athletic performance and rehabilitation outcomes to 

developing sophisticated human-computer interaction systems. Among the various 

technologies employed, Inertial Measurement Units (IMUs) have emerged as 

particularly valuable tools due to their ability to capture comprehensive motion data 

in real-time. 

 IMUs, which typically combine accelerometers, gyroscopes, and magnetometers, 

offer a non-invasive means of quantifying body segment orientations and 

movements. When placed on different parts of the body, such as the trunk and limbs, 

these sensors can provide detailed insights into complex motor behaviours. This 

capability is of great interest not only to bio-mechanists and physical therapists but 

also to engineers and designers working on the next generation of wearable devices. 

 The human arm's movement, with its wide range of motion and intricate 

coordination, presents a particularly interesting subject for study. Understanding arm 

motion relative to the trunk is crucial for numerous activities, including reaching, lifting, 

and gesturing. Such movements are fundamental not only in daily activities and sports 

but also in clinical scenarios where recovery from injury or neurological conditions is 

the focus. However, the dynamic and three-dimensional nature of arm movements 

poses challenges for accurate measurement and analysis. 

 Recent developments in neural networks, a class of powerful machine learning 

models, offer a promising approach to interpreting the complex data derived from 

IMUs. Neural networks are well-suited to modelling non-linear relationships and 

handling high-dimensional data, making them ideal for analysing the nuanced 

patterns inherent in human movement.  

 By training these models on data captured from IMUs placed on the body, 

researchers can develop algorithms capable of predicting limb positions and 

movements with high accuracy. 

 This study aims to leverage the strengths of IMU sensors and neural network 

modelling to predict arm movement angles based on trunk orientation. Such 

predictions not only contribute to our understanding of body kinematics but also have 

practical implications in areas ranging from rehabilitation medicine, where they can 

inform therapy strategies, to interactive technologies, where they can improve user 

interfaces. By focusing on the relationship between trunk and arm movements, this 

research addresses a gap in the current literature and lays the groundwork for future 

innovations in wearable technology and motion analysis. 

 In this context, the following sections detail the methodology employed in 

capturing and processing IMU data, the design and training of the neural network 

model, and the evaluation of its performance in predicting arm movements. Through 

rigorous analysis and validation, this study seeks to demonstrate the potential of 

combining wearable sensors with machine learning to enhance our understanding 

and capability in the field of human motion analysis. 

 This introduction sets the stage for a comprehensive examination of using IMU data 

and neural network models to predict arm movements relative to the trunk, 

highlighting the scientific and practical significance of the research. 

 

 

 



  

 

291 

 

ENTRENOVA - ENTerprise REsearch InNOVAtion Vol. 10 No. 1 

Literature review 
In the field of biomechanics research and the development of assistive technologies, 

non-invasive methods for capturing human arm movements have increasingly 

become critical for monitoring and controlling human body movements. Among 

these methods, Electroencephalography (EEG), Surface Electromyography (sEMG), 

and Inertial Measurement Units (IMU) are the most commonly employed techniques 

(Ihab, 2023; Laksono et al., 2020; Ghattas, 2021). These technologies offer a varied 

perspective on human arm movements, allowing researchers and engineers to 

understand and manipulate movements in a non-invasive and efficient manner. 

 Electroencephalography (EEG) can record the electrical activities of the brain, 

which can be used to monitor human arm movements. Recent studies have 

demonstrated that EEG signals can be employed to detect the motor intentions of 

subjects and to control assistive devices via brain-computer interfaces (BCIs) (Meng 

et al., 2016). Furthermore, EEG can be integrated with electrical stimulation 

technologies to facilitate functional recovery in cases of brain injuries or neurological 

conditions (Ramirez-Nava et al., 2023). 

 Surface Electromyography, through the use of sEMG electrodes, is another non-

invasive method practiced in measuring the electrical activity of muscles during 

movements (Li et al., 2020). sEMG sensors placed on the skin's surface can detect the 

electrical signals generated by muscle activity and provide detailed information 

about muscle contractions and how they contribute to human arm movements 

(Sattar et al., 2021). This method is frequently used in biomechanics, rehabilitation, and 

in developing prototypes of motion-controlled assistive devices. 

 Inertial Measurement Units are compact devices that combine accelerometers, 

gyroscopes, and magnetometers to measure the movements and orientation of an 

object in space (Bhattacharjee, 2022). When capturing human arm movements, IMUs 

can be attached to different segments of the arm to record and monitor three-

dimensional movements, angular velocity, and acceleration (Gu et al., 2023; Digo et 

al., 2022). These devices are useful in developing motion monitoring systems, 

exoskeleton prototypes, and virtual reality devices involving human arm movements. 

 Each of these technologies—EEG, sEMG, and IMUs—brings unique benefits and 

challenges to the study of human motion. EEG offers insights into the preparatory 

phases of movement and can potentially predict motion intention before muscular 

activity begins. sEMG provides direct measures of muscle activation, valuable for 

understanding the mechanics of movement and the coordination of muscles during 

physical tasks. IMUs give a direct and practical means to quantify and analyze the 

kinematics of movement without the constraints of a laboratory setting. 

 Together, these modalities form a complementary suite of tools that, especially 

when combined with advanced computational models such as neural networks, hold 

great promise for advancing our understanding of human movement and developing 

new technologies to assist those with motor impairments. The convergence of these 

technologies has opened up novel possibilities in rehabilitative strategies, athletic 

training, and human-computer interaction, leading to an increased quality of life and 

enhanced capabilities for individuals across various applications. 
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Methodology  
Participants 
A total of 4 participants were recruited for this study. Inclusion criteria required 

participants to be free from any musculoskeletal, neurological, or cognitive conditions 

that could affect their ability to perform arm movements. All participants provided 

informed consent prior to participation. 

 

Instrumentation 
Participants' movements were captured using a system composed of two Inertial 

Measurement Unit (IMU) sensors. One sensor was securely placed on the trunk, and 

the other was positioned on the right arm. Each IMU sensor was capable of capturing 

tri-axial accelerometer, gyroscope, and magnetometer data, providing 

comprehensive information about the orientation, acceleration, and angular velocity 

of the trunk and arm. The study used only the orientation information. 

 

Data Collection 
Participants were asked to perform a series of predefined arm movements, ranging 

from simple (e.g., arm lifting) to complex (e.g., reaching for an object), under various 

conditions. The experiment was conducted in a controlled laboratory environment to 

minimize external interferences. Each movement was performed more than 15 times 

to ensure data reliability. The IMU sensors recorded data at a sampling rate of 10 Hz. 

 

Data Processing 
The raw data from the IMU sensors were pre-processed to extract relevant features for 

predicting arm movement. This included filtering for noise reduction, normalization, 

and segmentation of movement episodes. Rotation angles around the world x, y, and 

z axes were computed from the IMU data to represent the orientation of the trunk and 

arm in three-dimensional space. 

 

Neural Network Model 
A feedforward neural network was designed to predict the arm movement angles 

based on the trunk's orientation and movement data. The network comprised an input 

layer, one hidden layer with 30 neurons, and an output layer with three neurons 

corresponding to the predicted rotation angles of the arm around the x, y, and z axes. 

The network was trained using the backpropagation algorithm with the following 

parameters: a learning rate of 0.1, a maximum of 2000 epochs, and a performance 

goal of 10-6. 

 

Training Procedure 
The dataset was divided into training (70%) and validation (30%) sets. The neural 

network was trained on the training set, with the validation set used to tune the model 

parameters and prevent overfitting. The performance of the trained model was then 

evaluated on a new test data set using metrics such as Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R²) to 

assess prediction accuracy. 
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Results and Discussion 

Neural Network Training Performance 
The training of the neural network, structured with one hidden layer consisting of 30 

neurons, was aimed at predicting arm movement angles using data derived from IMU 

sensors placed on the trunk and right arm. The network topology included three input 

neurons corresponding to the trunk IMU data and three output neurons for the arm's 

rotation angles. 

Training Procedure and Outcomes 
The training employed the Levenberg-Marquardt optimization algorithm, renowned 

for its efficacy in non-linear regression tasks and rapid convergence in medium-sized 

networks. The data division strategy was randomized, a common practice to ensure 

that the model is exposed to a diverse range of data scenarios during training 

iterations. 

 The network underwent 183 iterations, a subset of the maximum 2000 epochs 

prescribed, signalling early cessation of training as per the validation performance. 

This early stopping is indicative of the model's swift convergence towards a solution 

that meets the validation criteria. 

 The performance metric used was Mean Squared Error (MSE), and the final 

recorded MSE was approximately 3.71e+04. Despite the relatively large error 

magnitude suggested by MSE, it is essential to contextualize this value within the 

specific range and scale of the target angles, which span from -30 to 120 degrees. 

However, the MSE alone is insufficient for a comprehensive evaluation and must be 

considered alongside other performance metrics and the model's predictive 

capabilities. 

 The learning rate (Mu) was dynamically adjusted during training, balancing 

between 0.00100 and 0.01000. The number of validation checks, which halts training 

if the validation error increases consecutively, was six - reaching the limit to trigger an 

early stop to prevent overfitting. 
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Figure 1 

Training of the neural network 

 
Source: Author’s illustration 

Interpretation and Analysis 
The training process demonstrates a mixed outcome. On one hand, the network's swift 

convergence is a positive indicator, suggesting a potentially effective model structure 

and learning algorithm choice. On the other hand, the final MSE and gradient values 

indicate that the model's predictions are not as close to the actual values as desired, 

but taking into account the use case of the model it is good to be used as it is.  

 The model's current performance provides a foundation upon which improvements 

can be made. Further research will focus on enhancing the neural network's 

predictive accuracy through architectural adjustments, advanced feature 

engineering, enriched training datasets, and rigorous hyperparameter optimization. 

The goal is to develop a robust model that can reliably predict arm movement angles 

relative to the trunk in real-time, paving the way for advancements in rehabilitative 

therapies and interactive technologies. 

 

Presentation of Neural Network Validation Performance 
In the validation phase of our neural network model, the predicted values for arm 

movement angles were compared against the actual values obtained from IMU 

sensors. This comparison was visualized across three distinct outputs, each 

corresponding to rotation angles around different axes. 
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Figure 2 

Validation set predictions 

 
Source: Author’s illustration 

 

 Figure 2 illustrates the results of this comparison. Each subplot represents one of the 

three outputs, showing the predicted versus actual values across the same validation 

dataset. 

 The first plot showcases the prediction of the rotation angle around the first axis 

(Figure 2, top plot). The predicted values closely track the actual values, with only 

minor discrepancies between the two. This tight alignment is indicative of the model's 

strong performance for this particular movement component. 

 The second plot (Figure 2, middle plot) reveals the network's predictions for the 

rotation angle around the second axis. Here, we observe greater variance between 

the predicted and actual values compared to Output 1. While the general trend is 

captured by the model, some deviations suggest room for improvement, particularly 

in capturing the nuances of movement around this axis. 

 In the third plot (Figure 2, bottom plot), which represents the rotation angle around 

the third axis, the model's predictions again closely follow the actual values. However, 

occasional peaks and troughs indicate instances of over- or under-estimation by the 

neural network model. 

 Across all three outputs, the model demonstrates an overall satisfactory predictive 

capability, as denoted by the recurring coherence between the predicted and 

actual data points. However, the periodic deviations that are more pronounced in 

certain segments of the plots underscore the challenges inherent in capturing the 

dynamic and complex nature of human arm movements. 

 The presence of outliers and sporadic prediction errors could be attributed to 

various factors, such as sensor noise, non-linear dynamics of human movement not 

captured by the model, or potential overfitting to the training data despite satisfactory 

validation results. These outliers are critical in informing future improvements to the 

model, highlighting the need for further refinement of the network architecture or 

training process. 

 In summary, the illustrated performance in Figure 2 demonstrates the neural 

network's capability to predict arm movement angles with a high degree of 
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accuracy. The minor discrepancies observed between the predicted and actual 

values open avenues for further research. Modifying the network structure, exploring 

advanced regularization techniques, or enriching the dataset with a broader range 

of movement patterns may help to enhance the precision of predictions and the 

model's robustness to new, unseen data. 

 

Conclusion  
The present study explored the feasibility of utilizing a feedforward neural network 

model to predict arm movement angles from IMU data collected from sensors 

positioned on the human trunk and arm. Our findings demonstrate the potential of 

such computational approaches to accurately interpret complex kinematic data and 

provide meaningful predictions of limb orientation in three-dimensional space. 

 The neural network, comprising an input layer, a hidden layer with 30 neurons, and 

an output layer with three neurons, was trained using the Levenberg-Marquardt 

optimization algorithm. The validation results, including a mean squared error (MSE) of 

287.6327, root mean squared error (RMSE) of 16.9597, mean absolute error (MAE) of 

13.0389, and an R-squared (R²) of 0.77716, suggest a moderate degree of accuracy 

in the neural network's predictive capability. Visual inspection of the plotted validation 

set further substantiates these metrics, showing a strong correspondence between the 

predicted and actual values, with some room for improvement in certain areas. 

 These results underscore the complex challenge posed by modelling human 

motion—a task compounded by the inherent variability and complexity of 

biomechanical movements. While the network has shown proficiency in capturing the 

overall movement trends, occasional deviations and outlier predictions point to the 

necessity for further model optimization. 

 Moving forward, enhancements to the network architecture could include the 

addition of more layers or neurons, experimenting with different activation functions, 

and implementing advanced regularization techniques to improve generalizability. 

Moreover, expanding the dataset with a wider array of movement patterns and 

potentially integrating additional sensor modalities could refine the network's training 

and support its applicability in real-world scenarios. 

 In conclusion, the integration of IMU sensor data with neural network modelling 

holds significant promise for applications in rehabilitation, sports science, and human-

computer interaction. By advancing our computational models and deepening our 

understanding of the data they process, we can aspire to realize systems that not only 

predict but also enhance human movement with greater precision and utility. The 

outcomes of this research lay a foundation for future investigations and technological 

innovations in the realm of motion analysis and beyond. 
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