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The paper is systematically presents how, by applying the implicit
function theorem, the problem of determining partial derivatives of the phase
and group velocities of the Love surface wave is reduced to the derivation of
the dispersion function with respect to independent variables. In addition to
that, two relations are derived which are valid among the partial derivatives
of the dispersion function of the Love wave phase velocity in a n+ 1 layered
solid medium according to independent variables. It is shown that these relat-
ions serve to check the numerical values of the partial derivatives, and they
can be used for checking computer programmes of the linear inversion structure
calculation.

Neka svojstva parcijalnih derivacija funkcije disperzije Loveova vala

Sustavno je izneseno kako se, primjenom teorema implicitne funkcijc,
problem odredivanja parcijalnih derivacija fazne i grupne brzine Loveova povr-
§inskog vala svodi na deriviranje funkcije disperzije po nezavisnim varijablama.
Osim toga, u radu su izvedene dvije relacije koje vrijede izmedu parcijalnih
derivacija funkcije disperzije fazne brzine Loveova vala u n+1 slojnom &vrstom
sredstvu po nezavisnim varijablama. Pokazano je da te relacije sluZe za kontrolu
numeriCkih vrijednosti parcijalnih derivacija, te se mogu upotrijebiti za pro-
vjeru programa linearne inverzije strukture na elektroni¢kom radunatu.
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1. Introduction

In order to solve the inverse problem of the structure, i. e. to determine the impro-
ved parameters of the initial Earth model from the empiric dispersion of phase or group
velocities of surface seismic wave propagation, one should first establish the rectangular
of coefficients matrix in the correction equations system (Dorman and Ewing, 1962.,
Milosevi¢, 1982). It means that the partial derivatives of the corresponding velocity in
relation to the given model parameters for each observation period need to be determi-
ned. Besides, to make the model evaluation as reliable as possible, in sense of the linear
theory of inversion, partial derivatives have to be determined as precisely as possible.
In the present investigation the implicit function method is applied for the determination
of partial derivatives.

2. Love wave dispersion functionin a n + 1 layered medium

This paper deals with a case of Love waves propagating in a solid medium where,
above a homogeneous and isotropic half space (marked with the index n+1) there are
n welded flat surface homogeneous and isotropic layers. Mark j is the layer index, where
j can take values from 1,2,...,n+ 1, counting from the free surface towards the inside
of the solid medium. The thickness of the ;™ layer is H;*, and the physical parameters
of the layer are u; (rigidity), p; (density) and vy; (transverse wave velocity), ¢ is the
phase velocity, « is the circular frequency, and k — the wave number.

Taking the above symbols, the wave number is
) )

and the rigidity becomes

B = pivet j=12,...,n%1 (2)
Further, with the notations
Q; = kH;s; j=12,....n (3)
and
0, < kiyry j= 23 @
where o2
sp= v = = Lawhen e > vy L j=1,2,.n (a)
t
$; =
c2
irj=+1i 1 — ") , when ¢ <y ,j=2,3,...,n+1, (5b)
tj

29-3>

and "7” is the imaginary unit.

* Thickness of the last n+ 1 layer — half space Hp4+ = oo
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In case of increase of the transverse waves velocity vy, j = 1,2, ..., n + | with
the depth, in order to determine the phase velocity ¢ of Love wave as a function of the
wave number k for a complete range of values of ¢ (i.e. Vip+1 € > Vyy, €0 F Vyj,j =
=1,2,...,n+t1, what is derived from the condition of Love wave existence (MiloSevi¢,
1982), n corresponding equations have to be used which can be presented in the matrix
form (Schwab and Knopoff, 1972; Milosevi¢, 1982)

Myey Yn Yo 1 Ya|? ' | =0, for vipey >e>ve, . (6)
Y
1
Here
my,.; = [ W7 -1l j=ntl (7)

is the row vector containing only the parameters of the lower rigid half space (n+1
layer); it is therefore marked with the subscript n+1;

- A
sinQQ;
cosQ; — !
HjSj
Y, = for c>vy,j=1,2,...,n (8)
1 S sinQi cosQ]-

is the Thomson -Haskell matrix of the j*® layer, changing to

— —

shQ’
chQ; ——‘——‘QJ
Hity
Y’.' = for ¢ <vy;,j=2,3,...,n, (9)
“Hir;shQ;  chQj
and - B
Y11 cosQ,
= (10)
Yar| Y| pisysing,

is the vector column relating to the first column of the matrix Y; for j=1.

Equation (6) is the characteristic equation for the phase velocity ¢ of the Love
wave propagation in the n+1 layered medium. Taking the meaning of values shown
by relation (1), (2), (3), (4), (5a) and (5b) in the expressions (7), (8), (9) and (10), it
can be concluded from (6) that the velocity c is a function of the transverse wave velo-
city v;; and density p; in all n+1 media (j=1,2,...,n+1), the thickness H; in n
layers (j=1,2,...,n) and the circular frequency w. Obviously, due to the nature
of the functions appearing in that equation (products, sums, trigonometric functions
of different arguments etc.), the phase velocity ¢ cannot be explicitly expressed by an
analitical expression.
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Therefore, formally, the phase velocity function of the surface wave, generally
for a solid medium with n+1 layers

c=c(w,p) . j=12,...,ntl (1
is defined implicitly by the dispersion equation
L(w.pj, c(w.p;))=0, j=1,2,....n+1, (12)

where L(w,pi,c(w,p]-)) is the dispersion function, w is the circular frequency, and
p; are the medium parameters. For Love wave p; = pi(vejpiHy), j=1,2, ..., n and

3. Partial derivatives of phase velocity

The differentiation of equation (12) with respect to the independent variables
w and p; according to formulae for the implicit function differentation (Bronstejn and

Semendjajev, 1964) yields:

aL ol oc
+ =0 ,
de dc dw |p; (122)
and
oL + oL dc _ 0 19
where (12a) yields
oL
ac ow ;
P Y =ci(w.p;) . (13a)
ac
Analogously, (12b) yields
oL
o0, |0 oL cler) (13b)
ac

Accordingly, for a definite wave type and the given Earth model (in this case Love
wave in n+1 layered medium) the dispersion function is defined (given explicitly by
the left side of the characteristic equation (6) ) and its partial derivatives are determined.
Then for given values of the model parameters and the circular frequency w, the phase
velocity is computed from the dispersion equation and its partial derivatives are compu-
ted on the basis of the formulae (13a) and (13b).
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Thus, for the dispersion function on the left side of equation (6) according to

(7). (8), (9) it can be written

my + =ga(pjvc(w,p;’)’), p,~=p,-(vt,-,pj), j=ntl |

Y] = gb(wsp]"c(vaj))& p]:p](vt],p],H’), j= 1,2, “

while

con, for e >y,

Y  =gc(w.pj.c(w.p)). pj=p; (vejp Hp), j=2.3,. .. n, for e < vy .

When the dispersion function is expressed in the matrix form (left side of equation
(6)), the rule analogous to the one for derivation of a function product applies to the
matrices product, while the matrix derivation is understood as matrix derived from all
elements of the matrix (Andeli¢, 1962).

Thus, for the discussed case it can be written:

oL am, 4,

dc  dc nin-l
0Y -1

+ my ey Yn““"é":—' Y,

(a}’n]

| ac
+ m Y. Y21 " Y
n+tl In tun-1 2 5 ay21 1
| dc )
analogously for , while
5L 3 yu ]
m
—— = — n+1_-Y]1Yn—l .. .Y2
9P 08 Y2
L 3Y; F
T My 1
apj Bpl Y21
J
[_ay“ ]
oL op;
-—-—_mn+lYnYn—1 Y, Pi
apj 0y21

1

1

Y P}lﬂ‘
Y
Yz ey Y Yy +
Va1 1 ¢ L}’zlj 1
y
i’ “1 Y, [V11
+mn+1YnYn_l LS 1 - - +
LY21J ! dc ya

- Pi=p; (Vej.pj)  j= .

. p,:Pj(Vr,‘»Pij)- =2,3.....n,

- PPV ppdly) =1
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Therefore, generally

oL

Yl fa(w,pj, c(w,pj))

aL

Be fo(w,pj,c(w,p;))
and

oL

ap] - fc(wapfac(wsp]')) )
for

p]:'p](Vt}.,p],H]) ’ j=l,2, ...,n , and p,=p](vt],pl) s

j=n+ I tespectively.

4. Calculation of theoretical group velocity and its partial derivatives

The expression for the group velocity U is:

U= c
_w de ’
¢ dw p;
i.e. generally
ac |
U - U(w,c(w,p,-),ﬁ Ip_(w,pj))=U(w,Pj) )
j
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(*)

(**)

()

(14)

(15)

If the phase velocity c is derived from the dispersion equation for a definite fre-
quency w (or period T), for a definite wave type and for a given Earth model, then,
according to the above description, the partial derivative of the phase velocity with
respect to frequency (relation (13a)) can be computed by the implicit function method.
Subsequently, the corresponding group velocity (relation (14)) can be computed.

Starting from function (15), by applying the implicit function theorem and the
chain rule, it is easily proved that the group velocity derivatives with respect to the

independent variables w and p; are:

aU u v U U, dc U? 9%c
| =D Q)| e
w |pp cw ¢ c ¢ 9w |p; c dw
and
aU U U, dc U? 3, dc
Ip; lw ¢ ( c )apj w c? @ op; (Bw p; )l

(16)

a7
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As-can be seen in relation (16) and (17), second partial derivatives of the phase
velocity appear and can be determined by solving the relations (12a) and (12b) with
regard to the independent variables w and p;, keeping in mind the functions (*), (**),
(***), (13a) and (13b). The result is:

0L o 02L dc N ’L 3¢

2
d%¢ _ dw? dwdc dw  de? (aw) (18)
dw? oL ’
oc
and
8L 3L  9’L dc _ dc 3°L  dc
3¢ dwap; +(awac+ ac? aw) op; * dcdp; Odw
dwop; 5L , (19)
dc
where
p;=pj (vej, 05, 14;).j=1,2, ... ,n, and p;=p;(vsj, pj), j=n+1 respectively.

In other words, to compute partial derivatives of the group velocity, the second
derivatives of the phase velocity (formulae (18) and (19))must be known. In order to
achieve this, when applying the implicit function theorem, the second derivatives of the
dispersion function L = L (co,p,—, c(w,pj)) with respect to the independent variables
w and p; must be determined first.

This results in the conclusion that in case of applying the implicit function theo-
rem, the problem of determining partial derivatives of the phase velocity ¢ and group
velocity U is reduced to the derivation of the dispersion function. Some properties of
partial derivatives of Love wave dispersion function (in n+1 solid medium according
to independent variables) will be presented in the following.

5. The property of mixed partial second derivatives of the dispersion function

It is well known (Novotny, 1970), and can easily be proved that for instance
%L 3L

which means that the second partial derivatives of the dispersion function are indepen-
dent of the order of differentiation. This is analogous for other combinations of mixed
second partial derivatives of the dispersion function.

This property was therefore used to control the analytical expressions obtained.
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Due to these properties of the Love wave dispersion function it is found:
8¢ 8%c

for p;=p;(vej, 05, Hy) . j=1,2,...,n . and p;=p;(v;;,p;) ., j=n+1 respectively.

(The same is valid for the group velocity function.)

6. Another property of partial derivatives of the Love wave dispersion
function according to independent variables

The derivation of expressions for partial derivatives of Love wave phase and group
velocity leads to some other conclusions: it will be shown that among partial derivatives
of the Love wave dispersion function L =L (w, pj, ¢(w, p;)) according to independent
variables for a n-layered solid medium above a solid half space (n+1), the following
relations are true:

aL _n*1 L oL_._n . 3L

(20

and

oL  n oL
The above relationships are arrived at by applying the implicit function theorem
and the chain rule:
Starting from the Love wave dispersion function L=L(pj,sj,rj-,Q,-) inan+l
layered medium (left side of equation (6)), we have according to (2), (3), (5a) and (5b)

pi = 1 (pj,vej) s j=1,2,...,n+l X
s; = si(vejc), >y, j=1,2,...,n ,
. *
ri = rj(vy,e), e<vy, j=ntl ,
and
ook

Qj = Q] (k(CO,C),[/i,S" (vtjvc)) ’ f=1’2, ..., H
where again according to (1)

k = k(w,c)

* Generally for the variable r; (relation (5b)),7=2,3,...,n+1 .

* * Analogously, from (4), the same is valid for the variable Q]-', ie. Qf ' = Q]-' (kkd, €), Hj, rj(vej,0)),
j=2,3,...,n
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First we define partial derivatives of the above variables according to their inde-
pendent variables

2
du; Vij Pj Ok;
= ie. p; = u;, j=1,2,...,n+l (22)
ap; pj " 3 !
and

U, 2p Vi’ ou;

Hj = Pivej i.e. Vyj ! =2,u], j=1,2,...,n+l. (23)
AVej Vij vy

Also from (22) and (23)

Py = \ i=1,2,...,ntl
Then,
s c? as c?
sl = — 2 le Vt] L=~ 2 5] 1,2: iy
thj SiVej Vi av,] §iVij
and
0s; c? ) as; c?
= ie. ¢ = ,i=0L2,...,n
de CSivy;? ac $jvet
50
o, =1,2,....n 24
C - ] ] i, 3 sty .
Analogously
ar: ar; .
c—a—i.—-r = — th .S;:IL , ]=n+1 . (25)
Further,
9Q; k . 0Q;
3k = HISI"_'k"_ ie. k Yy :QJ ) ]=1,2,...,n ’ (26)
0Q; 4; . 3Q; .
aH,- = ksj Hl l1.¢e. HiS‘IYj‘—Q]‘, ]—1,2,...,71 s (27)
and
= kH; i.e. §; =0. j= ..
35 kH; 5 ie. s 35 g;, j=1,2,...,n (28)
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yielding
0Q; aQ; 90,
= H. =5, , .=1,2,...,n
o T em TV e /
There is still
ok w ok
_— i.e. — =k s 29
dw cw e « dw (29)
while
dk w ok ,
LN i =—k , 30
oc c? be. ¢ dc (30)
Also
ok ok
c =—(w— .
oc 0w

After this, we determine partial derivatives of the dispersion function L =

L (y;,5;,7;,Q;) according to the independent variables:

L 9L oy, =12t

3

which due to (22) is

oL oL
P = M i=1,2,...,ntl ,
] apj ] au]_

(3D

Similarly
oL oL 0Q;
= 9 , j=1,2,....,n ,
0H; 03Q; 0H;
which due to (27) is

oL oL
H' = ; ‘=132y-"3
1o, ~ Yag, ! !

(32)

Then,

oL 2 oL aQg; ok
dw j=1 9Q; 9k dw

and due to (26) and (30)

>

oL 1 oL

w—— p—1 »
ow j=1 ! aQ]
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and due to (32)

n oL
w— = X H
dw j=1 aH]

The formula (21) has thus been derived.

Further

oL _ oL o, + oL os; N oL 9Q; as; 1 1

avy; Opj 0y 98;  OVyy aQ; 0s; vy =L 4,...,n
and

oL _ L dw , 8L .

Ivyj Opt;  Ovy; arj 0wy ’ j=ntl ’

or due to (23) and (28)
oL oL 2y oL  ds; + oLl Q; 05

0vyj B o Vyj + 3s; 3wy 80, 5; vy , J=L2,...,n
and

. B - + - ,  Jj=ntl ,

vy ou; Vi ar; vy
whence due to (31)

Vij . = 20 - = - Vij % + oL &v al j=1,2,....n (33a)

T 9vy; 7 dp;j os; T avy o 8Q; s; Y vy 22ye oM,
and

aL aL oL or; |
jEatlo (33b)

Vs “2,0 = Vys ,
T 3y Pop;  ar, T owy

Analogously as earlier
£= g (aL 0s; N oL aQ; 0s; 4 oL aQ; 35 + oL or; |
oc j=1 35, oc aQ] as, ac an ok dc arl dc =n+1
When applying (24), (25), (26), (28) and (30)
oL n oL Vei as, + oL Q] Vij aS] oL Q] k
L +

—=— 3 o

ac j=1 085; ¢ 0vy 00; s; ¢ dvy; 08Q; k ¢

oL Vr]' Br]

2

or; ¢ Vyj j=n+1
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and finally respecting (33a), (33b) and (32), we obtain

aL n+1 L L n
e——=— 3% Qo —— V=)~ Z Hi——
ac P VT )

Formula (20) has been proved valid.

Further derivation of the expressions yields relations valid for second and higher
partial derivatives.

Formulae (20) and (21) serve to check the expressions for partial derivatives of
Love wave phase velocity dispersion function, as well as for checking the derived nu-
merical values of these derivatives, and they can be used for checking computer program-
mes of the inversion calculation.

These relations were used to test a part of linear inversion structure calculation
programme written in FORTRAN 1V language, adapted to the computer KOPA 1500.
The accuracy of the numerical values of the first and second derivatives of the dispersion
function was tested according to formulae (20) and (21), as well as of their second
derivatives. Differences between the numerical values on the left and the right side of
the equations ranged between 107® and 107, The programme was tested for a two-
-layered and three-layered solid medium.

Table 1.  Structure parameters of Earth crust and the upper mantle approximated with
a three-layered solid medium

Layer j Thickness H; Transverse wave Density p;
No (km) velocity v; (km/s) (107% kg/m*)
1 17 33 2.65
2 17 3.7191 29018
3 4.3692 3.19006

Table 1 approximates the Earth as a three-layered solid medium.

For the period T = 20s, with the Earth model parameters as shown in Table 1,
for the Love wave the phase velocity was determined with the accuracy of 107® km/s
and is:

¢ = 3.736788 km/s
while

oL

ac

oL

9p1

90.73858830  kg/m?s

8.405785109 m?/s?
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L
O 3938327652 m?/s?
ap-
0L o 3399702760 m?/s?
ap;
oL = —63.79911529  kg/m?s
0Vyy
oL = —33.21920944  kg/m?s
V4
oL _ 117276459 kg/m?s
AV 3
oL

= 1992536915 kg/m?s?
3l
L 0728188515 kg/mis? |
3H,

and, according to the relation (20) the difference between the left and the right side
of the equation is 1.1077 Pa.

The accuracy of the partial derivatives of the phase and the group velocity is thus
107¢ .

7. Conclusion

For the first time this paper offers a way of checking the accuracy of partial deriva-
tives of the Love wave dispersion function from relationships among partial derivatives
of that function.

This provides a very useful tool for testing the part of the programme calculating
partial derivatives of Love wave phase or group velocity in the inversion of the structure.

Besides it presumably provides a possibility for some further physical research of
Love wave dispersion peculiarities.
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