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Finite difference method offers a versatile approach to numerical com-
putation of synthetic seismograms for a given subsurface complex geological
model. Numerical solution for the acoustic wave has been derived using the
Lax-Wendroff scheme for an inhomogeneous medium and implemented for
the modelling of localized areas in the offshore region. Numerical seismo-
grams have been obtained to identify the singing effect for different model
geometries. The effect of source-receivers position, water depth and the fre-
quency of source on the reverberation is studied. The generation of ghost
reflections and its effect on the amplitude of reflected waves as well as on
multiples for different source-depth positions is studied. The grid dispersion
effect on the reflected signal and the reverberation is discussed for high-fre-
quency signals. The analysis of numerical seismograms indicates that the
energy radiating from a point source and remaining completely within a
water layer may not cause singing, whereas the energy reflected from the
deeper horizons is responsible for the singing effect on the reflections.

Primjena rjesenja za akusti¢ke valove
na analizu odjeka

Postupak konaénih razlika omoguéuje raznovrstan pristup numeriékom
raunanju sinteti¢kih seizmograma za zadani geologki model. Koristeéi Lax-
Wendroffovu shemu za nehomogeno sredstvo izvedeno je numeridko rjedenje
za akustitke valove, koje je primijenjeno za modeliranje dijelova podmorja.
Studiran je utjecaj poloZaja stanice i izvora, dubine vode i frekvencije izvora
na odjeke. Takoder je razmotreno generiranje laznih refleksija i njihov utjecaj
na amplitudu jednostruko i videstruko reflektiranih valova. Utjecaj mrezne
disperzije na reflektirani signal diskutiran je za visokofrekventne signale.

Introduction

The growing interest in the numerical seismic modelling has led to a wide
proliferation of methods of varying degrees of intricacy, accuracy and imple-
mentation ease. Such efforts are spurred by the awareness that exact analyti-
cal solution to the elastic wave equation does not exist for most subsurface
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configurations of exploration interest. The solution for realistic models may
be obtained only by approximate means. Numerical solution of the scalar and
elastic wave equations have greatly aided geophysicists in the modelling of
seismic wave fields in complicated geologic media and hence enhanced the
degree of geologic interpretation. A method to solve the differential equations
that govern seismic wave propagation in a complex geological medium nu-
merically, has to be highly accurate and sensitive to subtle effects of the wave
propagation. The method should allow coarse sampling and fast spatial fluc-
tuations of medium properties for a large number of grids and propagation
distances. Also, the method has to be well behaved at discontinuities of elastic
parameters and should be fast. These methods include higher order schemes,
central and one sided implicit as well as explicit methods, velocity stress
schemes etc., as described by Alterman and Karal (1968), Boore (1972), Kelly
et al. (1976), Virieux et al. (1984, 1986). Liu (1959) described wave propaga-
tion in a liquid layer for offshore seismic work. A fourth order MacCormack
scheme has been given by Gottlieb and Turkel (1976). Alford et al. (1974)
studied the accuracy of finite difference modelling of the acoustic wave equa-
tion. Yoon and McMechan (1992) have simulated a 3-D borehole environment
to ensure the reliability of a numerical method for large impedance contrast.
Vafidis et al. (1992) gave the modified Lax-Wendroff and MacCormack
schemes which are more efficient than others. They have compared the nu-
merical results with field data from an area containing a steam layer. The
comparison showed the accuracy and stability of these schemes for a wide
range of compressional and shear wave velocities.

Numerical solution for the acoustic wave is derived in this paper using
the Lax-Wendroff scheme (Mitchell, 1969) for an inhomogeneous media. This
is second order finite difference scheme in space and time. Acoustic wave
solution is used for the modelling of localized offshore region. The effect of
source-receivers position, water depth and the frequency of source on the
reverberation are studied. The generation of ghost reflections and its effect on
the amplitude of reflected signal as well as on multiples for different source-
depth positions is discussed. The grid dispersion effect on the reflected signal
as well as on the reverberations is given.

Solution of the acoustic wave equation

Let us assume a liquid medium which is two dimensional i.e. the density
p and Lame's parameter 1 depend only upon two coordinates, say x and z i.e.
the displacements and stress component is independent of the third coordi-
nate y. When a line source along the z axis acts on the medium, the equations
of motion are reduced to

po i =01 (1)
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po,w =38,T (2)

o Voss
and the Hooke's law takes the form,
Tpr = Tpp = AME 1 + w). (3)
Denoting the stress components as
TET S

xx 2z

the equations (1), (2) and (3) can be written as:

du=1/por (4)
w=1/p oz (5)

and
0,1 =A(Bu + d,w). (6)

The equations (4), (5) and (6) can be brought into a first order hyperbolic
partial differential equation,

3U=-A3U+BaU, (7

where A and B are n x n real symmetric matrices and U is n component
column vector:
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with p=1/p.
The equation (7) has been solved using the second order Lax-Wendroff
scheme as follows (Mitchell, 1969):

Ut ={I+p/2 A0, + V,,+p/2 B(A,+V,) + p*/4[(AA, + BA) +
+(AV, +bV,) + @V, +BY,) (AA, + BA) U}, 9)

where A, and V, are forward and backward difference operators respectively.
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p=At/Az=NA/A=k/h AA =A(x + k) — A(x)
VA =A(x)-Ax - k) (10)

where At is the time step and Ax and Az are the grid intervals in the x- and
z-directions respectively.

Using the definitions in (10), the expression at right hand side of the
scheme in (9) can be written as a linear combination of the unknown vector
U at the time stage n, at the grid points making the schemes stencil. Unfor-
tunately, this final expression can not be used because in order to get in a
compact form the order of the products have been changed between A at some
place and A or B at another place. The result is as follows:

Uf;l ={I-p*/4 (A Apgm A1) + By, By + By +
+2(4,, +B,,,) A, + Bz,m)]} ur. {p ,J’ZAI,m +
+-p2f4 [Al,m (AI+1,m + Bl+l,m) + (A!,m i Bl,m) A.{,m]}Ul}il,m -
~{pI24,, -D* /4[4, A, + By + A+ B) A UL, +
+{p/2 By, +P*14(By,, Ay + B + Ay + By, Bl UG -
~{p/2B,, -p*4(B,, @A, 1 +Byn )+ @A, +B,,) B, U, —
-p*/4 (4B + BrAym1) Ulima -
-p’l4 (A B+ By A it Ul s - (11)

The matrices A and B are sparse, so all the matrix operations have been
performed in equation (11) and used in the final expressions for the compo-

nents of U/

The solution for the I term of the equation (11) is given as,

0 0 f’i+l,m +f3£—1,m
ApinmtAgm= 0 0 0
’:{’£+1,m +/l1'l-l;ra 0 0
0 0 0
Bl,m.+1 + Bi,m-l =0 0 Plms1 t Pim-1
0 ApmatAima 0
0 0 Dinm

Al,m + Bl.m =| 0 0 p!,m 2
’&’I,m ;Li',m 0

Hence,
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[0 0 Py 0 0 Prim*Prim
Ai,m (AE+1,m +Ai—l,m) =0 0 0 0 0 0
Agm 0 0 | [Apamtriam O 0
FJ[)E,m (A'I+l,m R z‘ﬁ—l,m) 0 0
= 0 0 R 0 X
I 0 0 )"I,m (phl,m +pl—1,m)
0 0 0 |[o 0 0
Bl,m (Bi,m+1 +B£,m—1) =10 0 pl,m 0 0 pi,m+1 +pi,m—1
' 0 A 0|0 Apma+Aima 0
[0 0 0
=0 pl,m (ll,m+l + ‘q’I,md) . 0 .
0 0 A Ot + Prm-1)
[ 0 0 ral_m 0 0 :'al,m
(Al,m + Bi‘m) (Al,m + Bf,m) = 0 0 !(Sl,m 0 ’af,m =
A”E,m ‘q‘l,m 0 ‘a’i,m ’ll,m 0
_»?E,m ‘:Li,m éi,mll,m 0
SIS P P 0
0 0 Plm ‘:{’Lm

Thefirstterm U of the right hand side of equation (11) is given by

1 0 0 p2 ;aef,m {A‘I-v-l,m +3‘£—1,m) 0 0
vP=10 1 0-7 0 0 0 +
_0 0 1 0 0 ‘l’l,m (pi+1,m + PI—I,m)
0 0 0
+|0 Prm Ay + A1) 0 +
0 0 j’t.m (pf,m+1 w Pl,m—l)
!(;f,m ;{’I,m ’ai,m Z’I,m 0 Efi.:tm
+2 !O.E,m j‘l,m pi,m }'E,m n 0 wf?m .
0 0 pi,m /’{f,m Tlnm

The first values of &, w and 7 from the above relation are:
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& ={1 _p2;!4 [ial,m (‘A"E+1,m + ?“l—l,m) + 2ﬁl,m A’i,m) I‘l“‘!:in _p?‘;zf“l,m‘ll,m w;:m}

I’b(l} = _p2"{2 ral‘m A’I,m l;‘;.Eﬁr.t + { 1 _p2!4 Laf,m a"i’,m+1 + ?Li,m-l) # 25!',?71 ’ll,m]}wi?m

D {1 *})2/4 [lz,m (F"Hl,m + ﬁf—-l,m) +A£,m (la!,mﬂ Jr:E"t,m—l) +:4 ﬁi,m ‘q"l,m:[} rit:n .

After adding all the corresponding terms of equations (11) the components

are finally given below:
”?:rf_{l PZM[P:m@mm AL 1m +2pl,m)“lm) ”zm P J'2:‘3’£m'°°.fm wx,m +

wl,m

+p2"4 (p!m'q’ﬂlm +p£m ':{’E,m) ul+1,m +p ‘/4:0£m’1€+1 . w!+lm +p;2pt m Tl+lm
-{-p’/4 f!-”z,m Apam* Py L Am) Wi, — P /4 (Dl,m‘a'l—lm) Wy +

+p /2 Jai,m T.‘.'F:l,m} + p2 /4 Jal,m ‘Z‘E,m Lbi?mi—l + p2f4 Jal,m ’q’l,m Lbi?m—l =

—p2f4 Jai,m ;“i+1,m L;)ii:l,m—l _p2{:4 fal,m ﬁ'l—l,m wlfl,mi—l (12)

U= p2/2,5£m/l£m+{1 p2f4[ﬁlm(‘a'£m+1+l£m—1)+2ﬁ£m2’£m]}L}";m

+p "Iré-olm’q'.!m u£+1m +p "}4p£m’ll mu’l 1m +p "{4)0th’£ m+lu£ A

T2 54(szlt morl +r0£m’1£)m) w!m+1 +pi’2,o£ m B il

-{p?/4 (Ps,m Lm-1 7t p!,m ) wz,m—1 +p/2 P:,m Tt} =

= PZ /4 :E'i,m Ap et &Ir—ll,m-l —p2/4 F?‘s,m Ayt !;!ﬁl,m+l (13)

Tjnm = { 1 _P2~/4 [‘;Ll,m 03£+]_,m + f;l_l‘m) + ’:I"{,m (51,m+1 +r6£,m-1) +4 lai,m j’!,nzl}riﬁn +

+pi2 ’q'i,m L-"'I,J:l,m +p2/4f’£+1,m X‘I,m + JE’I,m ‘:Ll,m) Tf'rl,m - )

~AP12 2y Uy =~ PP A Py m At + Prn A ) f?—l,m} tPI22 Wiy +
+p*/4 (51,n;+1 Aim +'al,m At Timsr —\P12 4, Wiy —

— p2f4 (faf,m—l ;Lef‘m + fa!,m j’l,m)}rﬂn—l £ (14)

Source implementation and computational procedure

One of the important factors in forward modelling is the implementation

of the source. Since, in two dimensional problem, an axial symmetry is im-
plied, it is natural to utilize a line source. The solution of the two dimensional
acoustic wave in a homogeneous infinitely extended medium with a line
source is well known (Aki and Richards, 1980). Convolving the impulse re-
sponse with the source excitation results in an integral which can be evalu-
ated numerically. A Gaussian function whose frequency response is band

limi

ted with a known dominant frequency is assumed to define the source

excitation. The line source with time delay of 0.015 s and its frequency
spectrum are shown in Figures la and 1b. The investigated area has been
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discretised into square grids of size 3 m and compressional velocities, densi-
ties and values of elastic constants of layers (Figures 2a and 2b) have been
assigned to each grid point. The time step of 0.001 s has been used in the
numerical computations. Then the source is inserted into the computational
grid. This involves amplitude or pressure response specification, as well as
the stress response specification. From these initial grids, the stress response
has been computed for the next finite difference time step. For a second order
algorithm, ten grids are involved at each time, for pressure response and
stress component at the previous time step and at the current time step. For
stability of the Lax-Wendroff formulation,

gl

2

*
ENES

where % is the finite-difference time step, & is the grid increment in both x
and z directions, « is the local compressional wave velocity.

Numerical results

The synthesized model is like an off-shore region with water depth rang-
ing from 30 m to 105 m in a terrace form as shown in Figures 2a and 2b. The
synthetic seismograms have been computed keeping the source and receivers
at the surface (Figure 2a) as well as at depth (Figure 2b). The desired model
has been discretised into square grids of size 3m and time step of 0.001 s has



8 J. P. NARAYAN AND AVADH RAM: APPLICATION OF ACOUSTIC WAVE SOLUTION

p=0.02 gicc Vp = 333.3mls
-~ =22:101 m‘m1
W7 7 T s T T s vy s s s s s ey v

?=1029/cc  Vp = 1558 65mMis
Ax212210% HImd
30

¢ =2.5q91cc  Vp = W62 2omis 08
Az 2.5 % 10N I m?

120

le}

p = D029/ ¥p = 313.3mis
A =2.2 % 107 NI m?

30

F=102qice Vp = 145B8.65m e
A = z2xi0’him Figure 2. Model geometries
05 of the off-shore region for nu-

F=25qrec Vy = 316227 miw l . .
Az25x10"NIME merical computations, (a)
120 ) Source-receiver at the surfa-
ce, (b) source-receiver at 18 m

depth.

30

(b

been taken in the computation. In order to avoid the large displacement in
the source region, Alterman and Karal's method (1968) has been utilized. Two
interfaces have been considered in the model, one between air and water and
the other between water and oceanic bottom. The first medium, air, has
density of 0.02 g/cm® and acoustic wave velocity 382.6 m/s. The second me-
dium, water, has density of 1.02 g/em® and the velocity of the acoustic wave
is 1458.65 m/s. The bottom layer has a density of 2.5 g/em® and the acoustic
wave velocity is 3162.278 m/s.

Figure 2a shows the oceanic model with source-receiver position on the
surface and Figure 2b depicts the model with the source-receiver position at
a depth of 18 m. In these models, the air-water interface is at 30 m depth and
the water-ocean bottom interface is sloping from 90 m to 105 m towards the
west. The numerical seismograms have been computed keeping the receivers
at 12 m interval. The pressure field has been recorded at 24 locations with
source at an offset of 42 m from the first receiver. Figures 3 and 4 illustrate
the numerically computed seismograms for the models shown in Figures 2a
and 2b with a line source of frequency of 60 Hz. These seismograms reveal
direct waves, reflected waves from the oceanic bottom as well as the multiples
generated within the water layer. Since the reflector is dipping, the reverbera-
tion involves a slightly different position of the reflector than the primary and
has a travel time slightly less than double the travel time of the primary. The
latter fact permits to identify the reverberations by doubling the arrival time
of primary reflections. The amplitude of the direct wave is decreasing very
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Figure 3. The pressure response of the off- Figure 4. The pressure response of the off-
shore model as shown in Figure 2a for the shore model shown in Figure 2b for the acou-
acoustic wave of frequency of 60 Hz as a stic wave of frequency of 60 Hz as a function
function of time. of time.

rapidly with the offset. From these figures, it may also be inferred that the
amplitude of the direct wave is greater when the source and receivers are at
18 m depth, than when the source and receivers are at the surface. The rapid
decrease of amplitude of the direct waves with offset in both cases indicates
that the energy remaining in the water can not cause reverberation. The
decrease of amplitude of the reflected waves with offset, in the case when the
source and receiver points are at depth, is less than the decrease when the
source and receivers are at the surface. When source and receivers are at
depth, the amplitude of the singing is smaller compared to when the source
and receivers are at the surface. The singings are not so clear in the second
case due to the effect of interference of the ghost reflections and the reflected
signals,

To examine the effect of water depth, the depth of each interface has been
increased two times in both of the models. In these enlarged models, the depth
of air-water interface is 60 m and the depth of the dipping oceanic bottom
ranges from 180 m to 210 m. The grid size has been taken the same as in
Figures 2a and 2b. Figures 5 and 6 show the numerical responses of the
models for a line source having frequency of 45 Hz. The above figures also
depict the similar waves i. e. direct waves, reflected waves and the multiples.
However, the amplitude of the reflected wave as well as multiples are smaller
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wave of frequency of 45 Hz. wave of frequency of 45 Hz.

as compared to the amplitude of the wave in Figures 3 and 4 due to the usual
spreading effect. When the depth of the water layer is increased, the rever-
berations are more clear in both the cases i. e. when the source and receivers
are at the surface and at depth. The interpretation of these seismograms
shows that in this case also the amplitude of the reflected waves is increasing
with offset, when source receivers are at depth. This may be due to the effect
of wide angle phenomenon. The increase of amplitude of the multiples with
offset in both the cases is similar.

When the source and receivers are at depth of 18 m, the effect of ghost
reflections on the reflected signal and on the reverberation has been shown in
Figures 4 and 6. A phase shift of 180° equivalent to half a wavelength, occurs
at additional reflection of ghost reflection and hence the effective path differ-
ence between the direct and the ghost reflection is (A/2 + 2d) where d is the
depth of the source. Interference of the ghost reflection and the primary
depends on the fraction of the wavelength represented by the difference in
effective path length. Since seismic wavelet is made up of a range of frequen-
cies, the interference effect will vary for the different components. In these
figures, the amplitude of the reflected wave is small for shorter offset, which
may be due to the destructive interference of the ghost reflection and the
primary. The increase in the amplitude with offset may be due to the con-
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structive interference effect. Similarly, the amplitude of the multiples in these
cases are small compared to the case where the source and receivers are at
the surface, due to the interference effects (Figure 3 and Figure 5).

The numerical seismograms have also been computed to study the grid
dispersion using the Lax-Wendroff scheme for different frequencies. In fact,
the number of grid points per wavelength has been changed by taking differ-
ent frequencies. Figures 5 and 6 illustrate the response of the model for a line
source of frequency 45 Hz. In these cases, there are about 11 grids per
wavelength. From these figures, it has been inferred that there is no grid
dispersion. Similarly, the Figures 3 and 4 show the response of the model for
a line source having dominant frequency of 60 Hz. In this case, there are
about 8 grids per wavelength which is less than the required grids to elimi-
nate the grid dispersion. There is very small grid dispersion as shown by these
figures. The effect of grid dispersion has also been shown in the Figures 7 and
8 for both source-receiver positions. The frequency used in this case is 120 Hz
and the grid size is the same as 3 m. In effect, there are only 4 grids per
wavelength. Strong grid dispersion is present in both of the computed seismo-
grams. After the primary reflection, the dispersion is so pronounced that it is
very difficult to-recognize the reverberations. It has also been inferred that
the grid dispersion increases with the travel time.

Time (sec) Time (sec)

00 008 016 026 2 1] L8 0,0 008 0% 0.24 03z 0.40 0.48
T T T T T 1

u e
—
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: 192
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Figure 7. The pressure response of the off-
shore model shown in Figure 2a for the acou-
stic wave of frequency of 120 Hz.

Figure 8. The pressure response of the off-
shore model shown in Figure 2b for the acou-
stic wave of frequency of 120 Hz.
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Discussion and conclusions

Recently, a number of techniques have been pursued in an effort to im-
prove the computational performance of the finite-difference solutions to the
wave equations. These include higher-order schemes, central and one-sided
implicit as well as explicit methods, velocity stress schemes etc., as described
by Alterman and Karal (1968), Boore (1974), Kelly et al. (1976), Stephen
(1983), George et al. (1987) and Tsingas et al. (1990). The modified Lax-Wen-
droff and MacCormack schemes given by Vafidis et al. (1992) are more efficient
than other schemes for most of the modelling problems. Comparison of numerical
results given by Vafidis et al. (1992) with the actual field record from a prospect-
ing area containing steam layers, show that the Lax-Wendroff and MacCormack
schemes are stable and accurate for a wide range of compressional to shear-wave
velocity ratios. Yoon and McMechan (1992) have simulated a 3-D borehole
environment to ensure the reliability of numerical method for large imped-
ance contrast. The differential equation for the acoustic wave using the Lax-
Wendroff scheme has been solved. This scheme is second order and accurate
in both space and time. Liu (1959) has given the solution of the pressure wave
equation for a point source in the water layer as well as transient amplitude
response with depth and time. This solution indicated a too rapid decay of the
energy i.e. about 80 db in 1.2 s, Backus (1959) has studied the nature of water
reverberations and their elimination. The reverberations have similar wave-
form as the desired signal reflected from the deeper strata. Middleton and
Whittlesey (1968) have given the seismic models and deterministic operator
for marine reverberations. The numerically computed seismograms shown in
Figures 3-8, illustrate that the amplitude of the direct wave from source to
receivers decreases very rapidly with offset. It has been concluded from the
numerical seismograms that the energy remaining completely in water can
not cause reverberation. This result corroborates with the previous work (Liu,
1959:; Backus, 1968). Stephen (1983) compared the finite-difference and reflec-
tivity synthetic seismograms for laterally homogeneous sea floor models with
step and ramp discontinuities in the elastic properties. He found that for step
discontinuity, i.e. for large impedance contrast, the simple central difference
scheme is not stable. For ramp discontinuity the scheme was stable. With this
scheme such type of a problem does not arise. The generation of the rever-
beration has been explained by the elementary acoustic theory. For conven-
ience, it has been referred as extended source solution. The deeper reflections
from the oceanic bottom can be represented sufficiently accurately as a plane
wave parallel to the ocean floor. Transient solution shows that the upward
traveling wave proceeds to the surface, reflected with a polarity reversal,
travels downward to the bottom and again partially reflected according to the
conventional reflection coefficient formula. This process is repeated several
times until the energy decreases to zero. It has been obtained that for greater
source-receivers depth position, the amplitude of the reverberation is less as
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compared to shallow source-receivers positions due to the destructive inter-
ference (Figures 5 and 6). It should not come as a surprise to learn that in
spite of its limitations (in terms of grid dispersion and stability) the scheme
has given good response for the models.
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