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This paper presents a nature-based algorithm, titled multivariable teach-
ing-learning-based optimization (MTLBO) algorithm. MTLBO algorithm dur-
ing an iterative process can estimates the best values of the buried structure 
(model) parameters in a multi-objective problem. The algorithm works in two 
computa-tional phases: the teacher phase and the learner phase. The major 
purpose of the MTLBO algorithm is to modify the value of the learners and 
thus, improving the value of the model parameters which leads to the optimal 
solution. The variables of each learner (model) are the depth (z), amplitude 
coefficient (k), shape factor (q), angle of effective magnetization (θ) and axis 
location (x0) parameters. We employ MTLBO method for the magnetic anoma-
lies caused by the buried structures with a simple geometric shape such as 
sphere and horizontal cylinder. The efficiency of the MTLBO is also studied by 
noise corruption synthetic data, as the acceptable results were obtained. We 
have applied the MTLBO for the interpretation of the four magnetic anomaly 
profiles from Iran, Brazil and India. 
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1. Introduction

Magnetic field measurement is a main geophysical approach for investigat-
ing the buried geological structure whose magnetism is strong. There are differ-
ent objectives for magnetic data survey, such as hydrocarbon and mineral explo-
ration, engineering evaluations, geothermal studies, archaeological site 
considerations and hydrological investigations.

Several qualitative approaches for magnetic data processing and various 
quantitative interpretative methods have been developed for estimating the 
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geometric parameters values such as width, dip, amplitude coefficient and depth 
and position of the magnetic anomaly causative mass, such as Werner decon-
volution (Jain, 1976), Euler deconvolution (Thompson, 1982; Reid et al., 1990), 
least-squares minimization approach (Abdelrahman et al., 2003 and 2009; Abo-
Ezz and Essa, 2016), nonlinearly mathematical optimization (Asfahani and 
Tlas, 2004), nonlinear inversion using stochastic algorithms (Asfahani and Tlas, 
2007), parametric curves approach (Abdelrahman et al., 2012), a semi-automat-
ic technique based on ratios of the gradients of the magnetic anomaly (Cooper, 
2012), stable downward continuation (Abedi et al., 2013), ant colony optimiza-
tion (Srivastava et al., 2014), combination of deconvolution technique and sim-
plex algorithm (Tlas and Asfahani, 2015), second moving average residual 
anomalies (Abdelrahman and Essa, 2015; Abdelrahman et al., 2016), simulated 
annealing (Biswas, 2016), hybrid genetic-price algorithm (Di Maio et al., 2016), 
singular value decomposition (SVD) (Eshaghzadeh and Kalantari, 2016), dif-
ferential evolution algorithm (Ekinci et al., 2016; Balkaya et al.,  2017), global 
nonlinear optimization (Biswas et al., 2017),  gradient methods (Essa and Elhus-
sein, 2017a), genetic algorithm (Kaftan, 2017), particle swarm optimization 
(Essa and Elhussein 2017b; 2018; 2020), global optimization technique and 
analysis of uncertainty (Biswas, 2018), quadratic curve regression (Tlas ans 
Asfahani, 2018), Nelder-Mead simplex algorithm (Abdelrahman et al., 2019) 
and Marquardt optimization algorithm (Eshaghzadeh et al., 2020). Ekinci et al. 
(2020) have developed application of the particle swarm optimization (PSO), 
differential evolution algorithm (DEA) and differential search algorithm (DSA) 
for potential fields. 

Teaching-learning-based optimization (TLBO) algorithm is a novel profi-
cient optimization algorithm which has been inspired by the teaching and learn-
ing scheme of a teacher on learners in an entire classroom (Rao et al., 2011). 
This technique has developed as one of the simplest and most efficient ap-
proaches. Similar to other nature-extracted algorithms, TLBO is an optimiza-
tion method based on a dynamic population that chooses the best teacher and 
learner from the initial swarm of models and enhances the solutions to attain 
the global solutions.

Different types of TLBO algorithms have been proposed in recent years to 
solve various problems. Rao and Patel (2013a, 2013b, 2013c) modified the TLBO 
to improve its performance and applied it to the optimization of thermal systems. 
Rao and Patel (2014) proposed a multi-objective improved teaching-learning-
based optimization algorithm for unconstrained and constrained optimization 
problems. Satapathy and Naik (2014) applied the modified teaching-learning-
based optimization algorithm for global numerical optimization.

An improved teaching-learning-based optimization with neighborhood 
search for applications of ANN has been developed by Wang et al. (2014). Chen 
et al. (2015) represented an improved teaching-learning-based optimization al-
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gorithm for solving global optimization problem. SAMCCTLBO is a multi-class 
cooperative teaching-learning-based optimization algorithm with simulated an-
nealing (Chen et al., 2015). Self-adaptive multi-objective teaching-learning-based 
optimization and its application in ethylene cracking furnace operation optimiza-
tion has been proposed by Yu et al. (2015). Rao (2016) published a review paper 
on the TLBO algorithm applications and a tutorial for beginners to solve the 
unconstrained and constrained optimization problems. Yu et al., (2016) pro-
pounded a constrained optimization based on improved teaching-learning-based 
optimization algorithm. Prakash et al. (2018) applied the quasi-oppositional self-
learning TLBO algorithm for Economic load dispatch problem. The teaching-
learning-based optimization algorithm was used for multi-skill resource con-
strained project scheduling problem by Zheng et al. (2017). Birashk et al. (2018) 
proposed a new optimization method, namely cellular teaching-learning-based 
optimization approach for dynamic multi-objective problems, while Kumar 
(2019) developed a new variant of teaching-learning-based optimization algo-
rithm for global optimization problems.

In this paper, the multivariable teaching-learning-based optimization (MTL-
BO) method inspired by the TLBO algorithm is introduced with an aim to im-
prove all the model variables simultaneously. MTLBO is a global floating popu-
lation-based algorithm which is performed in an iterative process as at each 
iteration the best teacher (best model) is specified from the society population 
(models or leaners). We applied the MTLBO to invert several theoretical mag-
netic anomalies, with and without added random noise, as the acceptable results 
with a high accuracy were obtained. The MTLBO was also employed to the 
several residual magnetic anomalies from the different parts of the world.

2. Magnetic effect due to simple geometric shapes

Total, vertical and horizontal two dimensional magnetic field due to simple 
geometric sources such as sphere, horizontal cylinder and thin sheet and the first 
and second horizontal derivatives of the all magnetic fields due to thin sheet and 
geological contact are computed by (Abdelrahman and Essa, 2015; Abdelrahman 
et al., 2019):

	 T x z k Az Bx Cx
x z q( , )

( )
=

+ +
+

2 2

2 2 ,	 (1)

where k is the amplitude coefficient, z is the depth to the center of the buried 
mass, x is defined as xi – x0 where xi is the measurement position coordinate and 
x0 is the location of the buried mass along the anomaly profile, q is the shape 
factor (for sphere q = 2.5, for horizontal cylinder q = 2, and for thin sheet q = 1) 
and A, B, and C are defined as follows:
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where θ is the angle of effective magnetization (inclination parameter).

3. MTLBO algorithm

Similar to most global stochastic crowd-based algorithms, such as particle 
swarm optimization method (PSO), genetic algorithm (GA), colony optimization 
and so on, MTLBO also appraises the optimal solutions with the process of crowd 
evolution during iterations. MTLBO algorithm scheme is based on two steps, 
teacher phase and learner phase. The group of learners (initial models) in a 
typical class space form the population. The best learner in the population is 
selected as the teacher. In each iteration, a new teacher is assigned. 

The learners attempt to improve their knowledge (values of the model pa-
rameters) in both phases. During the teacher phase, the learners interact with 
the teacher to enhance their knowledge. During the learner phase, the knowledge 
is improved by investigation of the displacement of the parameters between the 
fellow learners.

In this research, the criterion of the enhancements of the knowledge at each 
iteration for both phases, is an objective function that evaluates the error value 
between the observed magnetic anomalies and generated ones using the im-
proved parameters.

Prior to optimization process by MTLBO, the population of the learners 
(models) should be organized. In initialization step the primary population of 
size NA × NL is randomly produced, where NA indicates the dimension of the 
problem, i.e., the number of adjustable subjects and NL infers the length of 
population, i.e., number of learners.
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For example, element indicates kth parameter of the jth learner (model).
The primary teacher is selected from among all the learners where a best fit 

exists between the estimated and measured magnetic data. Thus, the best solu-
tion is assigned as the teacher for the iteration. This teacher is one of the models 
which organize the members or population of the class. The MTLBO is a multi-
variable problem solver. Each model includes five variable parameters (NA = 5), 
i.e., the depth (z), amplitude coefficient (k), shape factor (q), angle of effective 
magnetization (θ) and axis location (x0) parameters. Therefore, each main teach-
er includes five individual teachers as work in parallel at each iteration to im-
prove the results of his or her assigned class (parameter).

3.1. Teacher phase

The objective of the teacher phase in the MTLBO is that the teacher i.e. the 
best solution in the entire initial population attempts to enhance the knowledge 
and performance of the learners so that the mean result of the class is increased. 
In fact, the MTLBO algorithm with assimilating the knowledge of the learners 
decreases the standard deviation of the variables, thus the knowledge domain 
of the learners and certainly the mean value of class information moves towards 
the optimal solutions.  

The best teacher is determined from the initialization phase will try to mod-
ify the mean, M, of the class. For this purpose, the MTLBO computes the differ-
ence between the mean result in a particular subject of the class and the result 
of corresponding individual teacher (Diff Mi j

k_ , ) as:

	 Diff M rand X T Mi j
k

t i j
k

F i
k_ ( ), , ,= − ,	 (3) 

where rand is a uniformly distributed random number whose range is in between 
0 and 1. denotes the value of the individual teacher in subject k of the jth learner 
and  is the estimated mean value of the subject of all the learner of the class for 
the ith iteration. In TLBO algorithm, TF is the teaching factor where its value is 
taken as either 1 or 2 and specified randomly using following equation:

	 T round randF = + 1 0 1( , ) ,	 (4)

In the optimization algorithm a lower value of TF causes the more precise 
search in small steps and a larger value of TF accelerate the searching process. 
Based on the difference vector, the existing population  is updated, as:

	 X X Diff Mnew i j
k

old i j
k

i j
k

, , , , ,_= + , 	 (5)

where Xnew i j
k

, ,  is new position (modified value) of the kth particular subject of the 
jth learner for the ith iteration. Parameters of Xnew i j

k
, ,  are accepted if the estimated 

error value by the objective function be less than ones of the old learner, otherwise 
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the previous solution is retained as the input to the learner phase. The objective 
function is defined as:

	 Q
T T
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,	 (6)

where N is the number of the magnetic measurement point, Ti
o and Ti

c are the 
magnetic anomaly observed and calculated, respectively.

3.2. Learner phase

In the learner phase, the learners struggle to enhance their learning capabil-
ity based on the multilateral interchanging of the learners among themselves 
randomly during an iterative process. Thus, learners improve their skills (values) 
through interaction with other learners, as an individual learner obtain new 
knowledge if the other individuals have more knowledge than him/her. The 
learning strategy to learn new information between two specific learners in the 
populations of the class is explained below.

The algorithm randomly selects two learners u and v such that Q Xnew i u
k( ), ,  ≠ 

Q Xnew i v
k( ), , . The kth particular subject of the uth learner of the matrix Xnew i u

k
, ,

'  is 
modified according the following equations based on the comparison of their 
objective function value, that is:

	 X X rand X Xnew i u
k

new i u
k

new i u
k

new i v
k

, , , , , , , ,( )' = + − , if Q X Q Xnew i u
k

new i v
k( ) ( ), , , ,< ,	 (7)

	 X X rand X Xnew i u
k

new i u
k

new i v
k

new i u
k

, , , , , , , ,( )' = + − , if Q X Q Xnew i v
k

new i u
k( ) ( ), , , ,< ,	 (8)

where Xnew i u
k

, ,
'  is the adjusted value of Xnew i u

k
, , . The Xnew i u

k
, ,

'  is accepted if it 
eventuates to a lesser objective function value.

The inversion process repeats until the error, Q, in Eq. (6) descends below a 
predetermined allowable error or the repetition continues until the end of the 
considered number for iterations. Figure 1 shows the flowchart of MTLBO algo-
rithm.

4. Theoretical examples

For all of the synthetic models that will be investigated, according to the 
defined ranges for the parameters, twenty primary models are randomly manu-
factured, as these ranges include the assumed values for the initial model. More-
over, the synthetic magnetic field variations were calculated in the stations with 
5 m interval along a 200 m profile. The number of iteration and allowable error 
are assigned as 50 and 0.001, respectively. The shape of the anomaly causative 
bodies is distinguished based on the evaluated shape factors using MTLBO, as 
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for 0.5 ≤ q < 1.5, 1.5 ≤ q < 2.25 and 2.25 ≤ q < 3 the buried mass shape is simu-
lated as a vertical cylinder, horizontal cylinder and sphere, respectively. 

Processing time taken by the MTLBO algorithm to detect the optimal solu-
tion for given number of iterations is accounted by a laptop with an Intel Core 
i5-3230M, 2.60 GHz processor, and Windows 8.1 operating system. 

4.1. Sphere model (vertical field)

The black circles in the upper graph of Fig. 2 display the calculated theoretical 
magnetic field variations due to a sphere model with the parameters z = 50 m, 
θ = 75°, k = 20,000 nT, q = 2.5, where the center of model is the midpoint of the 
profile. This magnetic anomaly was calculated using the following expression:

	 T x z x x
xi

i i

i
( , ) , , sin( ) cos( ) sin( )

(
=

° − ° − °
+

20 000 5 000 75 150 75 752

2 22 500 2 5, ) , 	 (9)

The search range for the parameters of the sphere model is brought in Tab. 
1. The objective function value, Q, reduces almost intensely from its initial value 

Figure 1. Flowchart of MTLBO algorithm.
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of 0.21 before the first iteration to 0.047 at the end of the 6th iteration and then 
gradually reaches to 0.00085 after the 20th iteration which is smaller than the 
considered allowable error value (Fig. 1, blue line in the lower graph). Thus, the 
optimization process terminated at 20th iteration where the estimated values of 
the parameters are z = 50.014 m, θ = 75.018°, k = 19,985 nT, q = 2.5 and x0 = 0 m. 
The inverted magnetic field from the MTLBO algorithm is shown by the red 
curve in the upper graph of the Fig. 2.

The ability of the MTLBO algorithm is studied with adding a set of random 
noise to the magnetic anomaly of the sphere model using the following equation:

	 T x T x RAN inoise i obs i( ) ( ) . ( ( ) . )= + × −0 05 0 5 , 	 (10)

where Tnoise(xi) is the noise corrupted synthetic data at xi, and RAN(i) is a pseu-
dorandom number whose range is between 0 to 1. 

Figure 3 (black circles in the upper graph) displays the contaminated 
magnetic anomaly. The error variations versus the iteration number indicate  
a strong reduction from 0.284 before the first iteration to 0.123 at the end of the 
9th iteration and then slowly attains to 0.109 at the end of the 11th iteration and 
this value remains constant to latest iteration as is shown by the blue line in the 

Figure 2. Synthetic magnetic anomaly over the sphere model (black circles in the upper graph) and 
generated magnetic from the MTLBO inversion (red curve in the upper graph). The lower graph 
illustrates the error improvement versus iteration number for the sphere model.

Table 1. Initial assumptions and estimated numerical results for the noise-free and noise corrupted 
synthetic magnetic anomaly of the sphere model.

x0 (m)qk (nT)θ (deg.)z (m)QParameter
02.5200007550–Assumed

–10 to 100.5 to 315000 to 2500060 to 9030 to 70–Ranges
02.51998575.01850.0140.00085Noise free

–0.162.5372024177.849.0120.109Noisy data
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lower graph of Fig. 3. The resulted values for the noisy magnetic data of the 
sphere model using MTLBO are z = 49.012 m, θ = 77.8°, k = 20241 nT, q = 2.537 
and x0 = –0.16 m. The inverted magnetic field from the MTLBO algorithm has 
been shown in Fig. 3 (red curve in the upper graph). The assumed values for the 
sphere model parameters and estimated ones for the noise-free and noise cor-
rupted synthetic magnetic data are tabulated in Tab. 1. The computation total 
time taken for the noise-free and noise corrupted theoretical magnetic data of 
the sphere model are 3.18371 and 3.59323 seconds, respectively.

4.2. Horizontal cylinder model
The black circles in the upper graph of Fig. 4 show the computed theoretical 

magnetic field variations for horizontal cylinder model with the parameters 
z = 40 m, θ = 45°, k = 10,000 nT and q = 2, where the center of the horizontal 
cylinder model is coincident with the center of the profile (x0 = 0). This magnetic 
anomaly was calculated by the following expression:

	 T x z x x
xi

i i( , ) , , cos( ) sin( ) cos( )
(

=
⋅ ° − ⋅ ⋅ ° − ⋅ °10 0001 600 45 80 45 452

ii
2 21 600+ , )

, 	 (11)

The defined search range for the parameters of the horizontal cylinder mod-
el is shown in Tab. 2. Considering to the blue line in the lower graph of Fig. 4, 
the objective function value, Q, decreases with a mostly gentle slope from its 
initial value of 0.0283 before the first iteration to 0.0067 at the end of the 18th 
iteration and then slowly reaches to 0.00066 after the 41th iteration which is 
smaller than the acceptable error value. Thus, the optimization process stopped 
at 41th iteration where the estimated values of the parameters are z = 40.03 m, 

Figure 3. Noisy corrupted synthetic magnetic anomaly over the sphere model (black circles in the 
upper graph) and generated magnetic from the MTLBO inversion (red curve in the upper graph). 
The lower graph illustrates the error improvement versus iteration number for 10% noise corrupted 
data of the sphere model.
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θ = 44.985°, k = 10,017 nT, q = 2.01 and x0 = 0 m. The generated magnetic from 
the MTLBO algorithm inversion is shown in Fig. 4 (red curve in the upper graph).

We have also tested the efficiency of the MTLBO algorithm in the case of 
noise existence. For this purpose, a set of random noise is distributed among the 
magnetic data of the horizontal cylinder model using the following expression:

	 T x T x RAN inoise i obs i( ) ( ) ( ( ) . )= + − 0 5 ,	 (12)

The black circles in the upper graph of Fig. 5 display the noise corrupted 
synthetic magnetic data. The error modifications versus the iteration number 
show an almost uniform reduction from its initial value of 0.1393 before the first 
iteration to 0.128 at the end of the 41th iteration and this value remains un-
changed to latest iteration (Fig. 5, blue line in the lower graph). The resulted 
values for the contaminated magnetic data of the horizontal cylinder model using 
MTLBO are z = 40.52 m, θ = 46.076°, k = 10134 nT, q = 1.954 and x0 = 0.35 m. 
The computed magnetic field from the MTLBO algorithm is shown in Fig. 6 (red 

Table 2. Initial assumptions and estimated numerical results for the noise-free and noise corrupted 
synthetic magnetic anomaly of the horizontal cylinder model.

x0 (m)qk (nT)θ (deg.)z (m)QParameter
02100004540–Assumed

–10 to 100.5 to 37000 to 1300025 to 6520 to 60–Ranges
02.011001744.98540.030.00066Noise free

0.351.9541013446.07640.520.116Noisy data

Figure 4. Synthetic magnetic anomaly over the horizontal cylinder model (black circles in the upper 
graph) and generated magnetic from the MTLBO inversion (red curve in the upper graph). The lower 
graph illustrates the error improvement versus iteration number for the horizontal cylinder model.
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curve in the upper graph). The assumed values for the horizontal cylinder mod-
el parameters and estimated ones for the noise-free and noise corrupted syn-
thetic magnetic data are shown in Tab. 2. The processing total time taken for 
the noise-free and noise corrupted theoretical magnetic data of the horizontal 
cylinder model are 3.26462 and 3.52766 seconds, respectively.

4.3. Composite model of a thin sheet and two spheres
In Fig. 6, anomaly 1 is the magnetic field of a thin sheet model with the 

parameters z = 85 m, θ = 45°, k = 800 nT and q = 1, where the midpoint of the 

Figure 5. Noisy corrupted synthetic magnetic anomaly over the horizontal cylinder model (black 
circles in the upper graph) and generated magnetic field from the MTLBO inversion (red curve in 
the upper graph). The lower graph illustrates the error improvement versus iteration number for 
noise corrupted data of the horizontal cylinder model.

Figure 6. Total magnetic anomaly generated by a deep-seated thin sheet structure (anomaly 1) as 
main causative source and two neighboring sphere models (anomalies 2 and 3) as interference caus-
ative masses.   
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profile (x0 = 0) is the center of model, anomaly 2 is the horizontal magnetic field 
of a sphere model with the parameters z = 28 m, θ = 70°, k = 18,000 nT and q = 2.5 
and anomaly 3 is also the horizontal magnetic field of a sphere model with the 
parameters z = 30 m, θ = 70°, k = 18,000 nT and q = 2.5, where the centers of the 
sphere models are located in the 50 m and –80 m from the center of the profile 
(x0 = 0), respectively. The anomalies 2 and 3 are the shallow interference struc-
tures which are placed around the deep intermediate structure of interest. The 
total magnetic anomaly is calculated by the following expression:

	 T x z x
xi

i

i
( , ) cos( ) sin( )

,
=

⋅ ° − ⋅ °
+

+800 85 45 45
7 2252

	 18 000 784 70 84 70 2 70
7842 2, cos( ) sin( ) cos( )

( )
− ⋅ ° − ⋅ ⋅ ° + ⋅ ⋅ °

+
x x

x
i i

i
..5 +

	 +
− ⋅ ° − ⋅ ⋅ ° + ⋅ ⋅ °

+
18 000 900 70 90 70 2 70

9002, cos( ) sin( ) cos( )
( )
x x

x
i i

i
22 5. .  	 (13)

The defined search range for the parameters of the thin sheet model is shown 
in Tab. 3. The black circles in the upper graph of Fig. 7 display the composite 
synthetic magnetic anomaly. Considering the lower graph of Fig. 7, the objective 
function value, Q, reduces intensely from its initial value of 0.053 before the first 
iteration to 0.0474 at the end of the 9th iteration as this value remains stable to 
latest iteration. The parameter values of the inferred model using MTLBO inver-
sion of the composite magnetic data are z = 85.46 m, θ = 45.26°, k = 805.7 nT, 
q = 1.03 and x0 = –0.5 m. The inverted magnetic from the MTLBO algorithm is 
shown in Fig. 7 (red curve in the upper graph).

The effect of the error was examined by adding a set of random noise to the 
total synthetic magnetic data using the following expression:

	 T x T x RAN inois i obs i( ) ( ) . ( ( ) . )= + × −0 8 0 5 ,	 (14)

Table 3. Initial assumptions and estimated numerical results for the noise-free and noise corrupted 
total synthetic magnetic anomaly of the combined model. The thin sheet model is desired structure.

x0 (m)qk (nT)θ (deg.)z (m)QParameter
018004585–Assumed

–10 to 100.5 to 3400 to 120025 to 6560 to 110–Ranges
–0.51.03805.745.2685.460.0474Noise free
–20.94786.545.8486.210.05432Noisy data
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The black circles in the upper graph of Fig. 8 display the noise corrupted 
total theoretical magnetic anomaly. The error variations versus the iteration 
number show an unchanged error value of 0.05476 between the first to 3rd it-
erations. This value falls suddenly to 0.05445 at the end of the 4th iteration and 
it reduces to 0.05432 at the end of the 17th iteration while afterwards it remains 

Figure 7. Total synthetic magnetic anomaly over a deep-seated thin sheet structure (anomaly 1) as 
main causative source and two neighboring sphere models (anomalies 2 and 3) as interference caus-
ative masses (black circles in the upper graph). The red curve in the upper graph shows the gener-
ated magnetic from the MTLBO inversion. The lower graph illustrates the error improvement versus 
iteration number for the composite model.

Figure 8. Noisy total synthetic magnetic anomaly over a deep-seated thin sheet structure (anoma-
ly 1) as main causative source and two neighboring sphere models (anomalies 2 and 3) as interference 
causative masses (black circles in the upper graph). The red curve in the upper graph shows the 
generated magnetic from the MTLBO inversion. The lower graph illustrates the error improvement 
versus iteration number for noise corrupted data of the composite model.
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unchanged to latest iteration (Fig. 5, blue line in the lower graph). The resulted 
values for the noisy total magnetic anomaly using MTLBO are z = 86.21 m, 
θ = 45.84°, k = 786.5 nT, q = 0.94 and x0 = –2 m. The computed magnetic anom-
aly due to the inferred structure from the MTLBO algorithm is shown in Fig. 8 
(red curve in the upper graph). The assumed values for the thin sheet model 
parameters and estimated ones for the noise-free and noise corrupted total syn-
thetic magnetic data have been brought in Tab. 3. MTLBO has been estimated 
the parameters values of the thin sheet model well. The processing total time 
taken for the noise-free and noise corrupted theoretical magnetic data of the 
combined model are 3.5732 and 3.8426 seconds, respectively. 

5. Field examples

In this paper, four real magnetic data from various regions of the world are 
inverted using MTLBO algorithm and the computed parameters are compared 
with obtained results from previous evaluations that made by other inverse 
modeling methods. 

Based on the assumed search ranges, sixty primary models are randomly 
considered for the causative mass of all the real magnetic anomalies data. The 
number of iteration and permissible error for the MTLBO algorithm are deter-
mined as 50 and 0.01, respectively. The parameters search range for the regions 
under investigation are written in Tab. 4. These defined boundaries have been 
chosen based on the geological information and magnetic field of these area 
under investigation. The search range of the shape factor parameter (q) is con-
stant, i.e. 0.5 ≤ q ≤ 3.

Table 4. Parameters search range in field examples.

x0  
(m)

q k  
(nT)

θ  
(deg.)

z  
(m)

                           Parameter
Field example

5 to 180.5 to 3–50 to –200–10 to –401 to 5Parnaiba Basin, Brazil
1500 to 30000.5 to 31000 to 500010 to 30800 to 2000Bankura, India
100 to 2000.5 to 330000 to 6000035 to 6040 to 80Tabas, Iran
30 to 600.5 to 32000 to 500035 to 6010 to 30Kerman, Iran

5.1. Parnaiba Basin, Brazil
The black circles in upper graph of Fig. 9 present a total magnetic anomaly 

along a 20 m profile above and perpendicular to a Mesozoic diabase dyke in-
truded into Paleozoic sediments from the Parnaiba basin, Brazil (Silva, 1989). 
This anomaly was digitized at 41 points and with an interval of 0.5 m. The 
magnetic anomaly over this dyke structure was also interpreted by several au-
thors with different techniques, such as numerical approach (Abdelrahman et 
al., 2002), second derivative method (Abdelrahman and Essa, 2015) and second 
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moving average technique (Abdelrahman et al., 2016). The estimated results 
from the mentioned methods are summarized in Tab. 5.

We applied the MTLBO for inverting the magnetic anomaly profile over the 
diabase dyke. The generated magnetic response by the inverted parameters us-
ing MTLBO (Tab. 5) is shown in the upper graph of Fig. 9 (red curve). The blue 
line in the lower graph of the Fig. 9 shows the objective function (error) variations 
in which values reduction is associated with an increase in the number of itera-
tions. The least amount of the objective function value is 0.329  which was ob-
tained in the 24th iteration and this value remain invariable to latest iteration. 
The evaluated shape factor demonstrates that the shape of the buried structure 
is tabular. The evaluated depth using MTLBO is 2.86 m which is agree with the 
depth reported of 3 m to the magnetized part of the dyke by Silva (1989).

Figure 9. Observed total magnetic anomaly (black circles in the upper graphs), MTLBO inverted 
magnetic anomaly (red curve in the upper graphs) and error improvements versus iteration number 
(lower graphs) due to Mesozoic diabase dyke, Parnaiba basin, Brazil.

Table 5. Estimated parameters for mesozoic diabase dyke, Parnaiba basin, Brazil. Star sign indicates 
the value of q has been considered as a constant.

x0  
(m)

q
 

k  
(nT)

θ 
(deg.)

z 
(m)

Parameter

MethodResearcher(s)

––––3Transformation of nonlinear  
problems into linear onesSilva (1989)

–1*–74.2–29.63.34Numerical approachAbdelrahman et al. (2002)
–1.02––2.35Second derivative methodAbdelrahman and Essa (2015)
–0.9––2.703Second moving averageAbdelrahman et al. (2016)

110.94–128–27.22.86Present method (MTLBO)
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5.2. Bankura, India

The black circles in upper graph of Fig. 10 illustrate a vertical magnetic 
anomaly along a 4 km profile above a spherical mass of gabbroic composition 
from the Bankura area, west Bengal, India (Verma and Bandopadhyay, 1975). 
This anomaly was digitized at 17 points and with an interval of 0.25 km. The 
magnetic anomaly over this structure was also interpreted by several authors 
with different techniques, such as numerical approach (Abdelrahman et al., 
2002), least-squares minimization (Abdelrahman and Salem, 2005), second mov-
ing average technique (Abdelrahman et al., 2007) and second derivative method 
(Abdelrahman and Essa, 2015) where the estimated results from the mentioned 
methods are summarized in Tab. 6. We employed the MTLBO for inverting the 
magnetic anomaly profile over the gabbroic composition body. The generated 
magnetic response by the inverted parameters using MTLBO is shown by the 
red curve in the upper graph of Fig. 10. The blue line in the lower graph of the 

Figure 10. Observed vertical magnetic anomaly (black circles in the upper graphs), MTLBO in-
verted magnetic anomaly (red curve in the upper graphs) and error improvements versus iteration 
number (lower graphs) due to the gabbroic composition from the Bankura area, west Bengal, India.

Table 6. Estimated parameters for the gabbroic composition from the Bankura area, west Bengal, 
India. Star indicates the value of q that has been considered as a constant.

x0
(km)

qk  
(nT)

θ  
(deg.)

z  
(km)

Parameters

MethodResearcher(s)
–2.5*29,089551.47Numerical approachAbdelrahman et al. (2002)
–2.5*25,21253.11.37Least-squares minimizationAbdelrahman and Salem (2005)
–2.5*––1.457Second moving averageAbdelrahman et al. (2007)
–2.58––1.43Second derivative methodAbdelrahman and Essa (2015)

2.252.613,16731.831.453Present method (MTLBO)
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Figure 10 shows the objective function (error) variations in which the minimum 
error with a value of 0.258 was estimated at the end of the 31th iteration and this 
value remain constant to latest iteration. The estimated parameters at the 31th 
iteration as the best solutions are brought in Tab. 6. The evaluated inclination 
angle shows a good coincidence with the geomagnetic inclination angle of the 
Bankura region.

5.3. Field examples from Iran
Two dimensional variations of the magnetic fields related to two areas under 

consideration situated in east of Iran, namely Tabas and Kerman are shown by 
the black circles in upper graphs of Figs. 11 and 12, respectively. These regions 

Figure 11. Observed vertical magnetic anomaly (black circles in the upper graphs), MTLBO in-
verted magnetic anomaly (red curve in the upper graphs) and error improvements versus iteration 
number (lower graphs) due to the Magnetite deposit from the Tabas area, Iran.

Figure 12. Observed vertical magnetic anomaly (black circles in the upper graphs), MTLBO in-
verted magnetic anomaly (red curve in the upper graphs) and error improvements versus iteration 
number (lower graphs) due to the Magnetite deposit from the Kerman area, Iran.
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are significant for their iron ores deposits potential such as Magnetite. The mag-
netic data measurement for the Tabas area was done at 25 points along 240 m 
profile with an interval of 10 m and for Kerman area was sampled at 27 points 
along 78 m profile with an interval of 3 m. The estimated structure parameters 
using MTLBO algorithm for the Tabas area are z = 68.4 m, θ = 50.8°, k = 46,700 nT, 
q = 1.87 and x0 = 150 m and for the Kerman area are z = 17.9 m, θ = 44.7°, 
k = 3,162 nT, q = 1.07 and x0 = 45 m as have been written in Tab. 7. Based on 

Table 7. Estimated parameters for the Magnetite deposits from the Tabas and Kerman areas, east of 
Iran. 

x0  
(m)

q k  
(nT)

θ 
(deg.)

z 
(m)Parameter

150.71.874670050.868.4TabasPresent method 
(MTLBO) 45.31.07316244.717.9Kerman

the computed shape factors, the geometric shape of the anomaly causative mass 
in the Tabas and Kerman areas can simulate the horizontal cylinder and sheet 
(dyke structure), respectively. The inverted magnetic fields according to the es-
timated parameters for both case studies are represented by the red curve in 
upper graphs of Figs. 11 and 12.

Considering the error variation versus iteration number for both areas under 
investigation (lower graphs in Figs. 11 and 12), the minimum values of the objec-
tive function for the Tabas site is 0.121 and for the Kerman site is 0.073. These 
objective function values for the Tabas and Kerman sites were obtained in the 
23th iteration and 27th iteration, respectively as these values remain invariable 
to latest iteration.

6. Conclusions
The MTLBO algorithm is indeed a machine learning algorithm and popula-

tion-based approach. we have developed this method to interpret the theoretical 
and real magnetic data in an iterative process as can estimates the model un-
known parameters, simultaneously. In fact, the MTLBO algorithm is a nonlinear 
inversion modeling method. Solving a system of nonlinear equations with some 
unknown parameters with common methods, such as least square without an or 
some initial guesses is impossible. Using optimization approaches based on ar-
tificial intelligence are the best strategy for solving these problems. In this paper, 
we have introduced the multivariable teaching-learning-based optimization 
(MTLBO) algorithm for interpreting the residual magnetic data caused by the 
simple geometry shapes.

The MTLBO inversion has some advantages in comparison with the previous 
interpretation techniques which we have discussed in this study. The MTLBO 
is able to estimate five parameters, i.e. the depth (z), amplitude coefficient (k), 
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shape factor (q), angle of effective magnetization (θ) and axis location (x0) simul-
taneously in a very short time with a satisfactory accuracy. Moreover, if the 
MTLBO be employed for a magnetic data set several times, the responses are 
always equal.

In MTLBO algorithm, each variable or parameter has its own individual 
teacher which is presumed to be a highly learned person and assigned as the 
best learner or solution. The enhancement of the accuracy of the solutions in 
learner phase is performed by a reciprocal interaction between two learners 
which are randomly chosen.

The selection of the appropriate ranges for the model parameters is related 
mainly to the obtained residual magnetic field after processing of the measured 
magnetic data.

Although, the MTLBO is a flexible and dynamic algorithm and for each range 
of the parameters converges to the optimal solutions, provided that the defined 
ranges include the value of structure parameters, having geological information 
and other geophysical methods results can be useful for choosing the optimal 
ranges until the consumed time for inverting decreases.

The proposed technique has been firstly examined on theoretical magnetic 
data sets, with and without added random noise, as the inferred model param-
eters simulate almost the assumed ones. The evaluated error for the noise-free 
synthetic magnetic anomalies related to the sphere and horizontal cylinder mod-
els are 0.00085 and 0.00066, respectively. By adding the random noise to the 
theoretical magnetic data, objective function values are increased to 0.109 and 
0.119, respectively. The proficiency of the MTLBO was investigated by a com-
posite model consisting of a deep-seated thin sheet structure as main causative 
source and two shallow neighboring sphere models as interference causative 
masses, as the inferred structure coincides closely with the main assumed one. 
The MTLBO was also applied for inverting several real magnetic anomaly pro-
files. Analysis of real field magnetic anomalies related to the Parnaiba basin, 
Brazil and Bankura area, India shows that the estimated parameters are close 
the other researchers results as shown in Tabs. 6 and 7. The processing total 
times taken for the Parnaiba basin, Bankura, Tabas and Kerman areas using 
MTLBO are 3.46238 sec, 3.62345 sec, 3.36271 sec and 3.56214 sec, respectively.

The advantage of the MTLBO algorithm, as a powerful and intelligent opti-
mization tool, is that it can estimate the best permanent solutions very fast 
without falling into local minimum. This method is able to achieve the optimal 
responses even if a small population of learners are considered.
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SAŽETAK

Multivarijabilni algoritam optimizacije podučavanjem-učenjem 
(MTLBO) za procjenu strukturnih parametara podzemnih objekata 

pomoću magnetskih podataka 
Ata Eshaghzadeh i Sanaz Seyedi Sahebari

U ovom radu je predstavljen prirodno utemeljen multivarijabilni algoritam optimi-
zacije poučavanjem-učenjem (MTLBO). MTLBO algoritam tijekom iterativnog postupka 
može procijeniti najbolje vrijednosti parametara podzemnih struktura (model) u više
predmetnom problemu. Algoritam djeluje u dvije računske faze: fazi učitelja i fazi učeni-
ka. Glavna svrha algoritma MTLBO je mijenjati naučene vrijednosti te poboljšavajući 
tako vrijednosti parametara modela dovesti do optimalnog rješenja. Varijable svakog 
učenika (model) su: dubina (z), koeficijent amplitude (k), faktor oblika (q), kut učinkovite 
magnetizacije (θ) i parametri osi (x0). U radu je korištena MTLBO metoda na podacima 
magnetskih anomalija uzrokovanih podzemnim strukturama jednostavnog geometrijskog 
oblika, poput sfere i vodoravno postavljenog cilindra. Učinkovitost MTLBO metode ta-
kođer je proučavana na šumom kontaminiranim sintetičkim podacima, budući da su 
dobiveni prihvatljivi rezultati. MTLBO metoda je primijenjena za interpretaciju četiri 
profila magnetske anomalije u Iranu, Brazilu i Indiji.

Ključne riječi: magnetski, MTLBO algoritam, optimizacija, multi-objektni problem
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