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A statistical post-processing forecast system for medium range predictions 
using the GFS model has been developed for Jharkhand (India) with the aim of 
improving rainfall and temperature predictions for agricultural applications. 
The basis of the integrated block level forecast system (IBL-FS) build includes 
(i) Decaying weighted mean (DWM) bias correction technique, (ii) Value addition 
and (iii) Inverse distance squared weighted (IDSW) interpolation. In the first 
step, model bias corrected district level forecast for 24 districts of Jharkhand is 
generated from the output of numerical GFS model (T1534L64) by applying 
DWM bias correction technique. In the second step, these bias corrected forecasts 
are value-added using forecast from various NWP models and synoptic methods. 
Finally in the third step, the IDSW interpolation method is used to generate the 
forecast at an unmeasured block from the value-added district level forecast of 
the surrounding districts. The value-added forecast for 263 blocks for the state 
Jharkhand is prepared up to medium range time scale (120 h). The performance 
skill of IBL-FS is evaluated for rainfall during monsoon season 2018 and 2019, 
for minimum temperature during winter season 2019, and for maximum tem-
perature during summer season 2019 using different statistical metrics. The 
skill of IBL-FS is found to be higher than the direct model forecast (DMFC) by 
15% to 43% for minimum temperature, by 18% to 41% for maximum tempera-
ture, and by 22% to 30% for rainfall forecast for day1 to day5 forecasts. This 
study concludes that the integrated approach is more skillful than DMFC for 
real time forecasts and useful for farming for the blocks of Jharkhand.

Keywords: block level forecast, district level forecast, Global Forecast System 
(GFS), statistical post processing, decaying weighted mean (DWM), inverse dis-
tance squared weighted (IDSW) interpolation

1. Introduction

Jharkhand is a state in the eastern part of India and is surrounded by the 
state Bihar to the northern side, West Bengal to the eastern side, Odisha to the 
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southern part and Chhattisgarh and Uttar Pradesh to the western side (shown 
in Fig. 1). The main seasons are summer, rainy and winter. The summer is 
characterized by mean maximum temperature around 35 °C. The southwest 
monsoon brings nearly all the state's annual rainfall which is about 1092 mm. 
Nearly half of the annual precipitation falls in July and August. The winter 
season is characterized by mean minimum temperature around 11 °C. Agriculture 
is important sector in the economy of Jharkhand. Farmers produce several crops 
such as rice, wheat, maize, pulses, potatoes, and vegetables such as tomato, 
carrots, cabbage, brinjal, pumpkin, and papaya.

Growth and yield of crops under normal environment are mainly determined 
by weather during the growing season. In case of wheat yield, average tempera-
ture during flowering time, minimum rainfall during planting time were effective 
while maximum humidity in harvest time was effective on barley yield (Ozkan 
and Akcaoz, 2002). Agarwal and Sinha (1993) showed that increase of tempera-
ture would decrease wheat yield. It is possible to minimize the effects of unfa-
vourable weather by suitable use of fertilization, nutrient, and appropriate selec-
tion of variety of crops.

In view of the impact of short to medium range weather variability on yield 
of crops, venturing into generation of Agro Meteorological Services (AMS) from 
district level quantitative weather forecasts to block level in the medium range 
time scale is a challenging task to the operational forecasters. Numerical Weath-
er Prediction (NWP) is the only state-of-the-art tool to provide quantitative 
weather forecast in real time. Significant improvement in accuracy and reliabil-
ity of NWP products has occurred due to development of sophisticated numerical 

Figure 1. Map of India and the state Jharkhand.
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techniques, significant enhancement of computational power, and phenomenal 
increase in the number of surface, upper air, radar and satellite observations. 
But accurate forecasting for surface parameters is a very challenging task due 
to complex terrain having different altitudes, orientations and also various mod-
el constraints. Further, the NWP model forecasts contain systematic bias due to 
imperfect initial conditions, model physics, and boundary conditions (Mass et 
al., 2002; Hart et al., 2004; Krishnamurti et al., 2004). The systematic bias in 
the NWP model also arises due to inability of the NWP models to handle subgrid 
scale phenomena correctly. The local weather dominated by small scale effects 
may be represented poorly or may not be represented in the model as NWP 
models generally homogenize the orographic and land surface characteristics. 
In real-time, there is variation in model outputs from various models (viz. WRF, 
NCUM, GEFS, ECMWF, NCEP GFS) and also it is not achievable to generate 
forecast up to medium range scale by subjective synoptic method considering the 
chaotic nature of atmosphere. Therefore, combination of both has become the 
mainstay of operational weather forecasting, which is known as value-added 
official forecast. Operational forecasters widely use the value addition by combi-
nation of objective and subjective methods as it can add skill to the dynamical 
forecast and can generate a consensus forecast under the scenario of wide varia-
tion of different model forecasts. Previous studies (Wilson et al., 2004, 2010) also 
showed that skill of NWP models is inconsistent and automated forecasting 
techniques are less skilful than human-machine blended forecasts. Experienced 
forecasters, assisted by statistics, are able to give best interpretation to a ma-
chine-produced forecast by exercising proper weighting and judgment. Kumar 
et al. (2017) proposed a simple downscaling from NWP model output at block 
level but because of various constraint of direct model output as discussed above, 
it has a limitation for real time use and they suggested for value addition. Durai 
and Bhardwaj (2014) and Kumar et al. (2018) used decaying weighted mean 
(DWM) bias correction technique for minimizing the model bias of daily maxi-
mum and minimum temperature forecast.

The importance and efficacy of statistical post-processing has long been rec-
ognized in weather forecasting (Glahn et al., 2009). Statistical post-processing 
methods are applied to quantify and reduce the uncertainties in the raw model 
forecasts. Early studies included analog method (AM) (Lorenz, 1969; Van Den 
Dool, 1994), analog ensemble (AnEn)(Delle Monache et al., 2013), perfect prog-
nosis (PP) (Klein et al., 1959), and model output statistics (MOS) (Glahn and 
Lowry, 1972). The AM essentially uses past forecast datasets that are similar to 
the current forecasts and forms calibrated forecasts from the observations. In 
the AnEn, the probability distribution of the future state of the atmosphere is 
estimated using past observations. The PP and MOS post-processing tools are 
mainly regression-based methods. Regression-based methods are used for sta-
tistical correlation between the predictand (the observation) and the predictors 
(the model forecasts). The MOS approach (Glahn and Lowry, 1972) has been 
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successfully used to provide location-specific (may not be at grid point) forecasts 
from model through bias removal and interpolation. In this approach, Mao et al. 
(1999) proposed a technique that updates bias using the most recent 2–4 weeks 
of model and observational data. Stensrud and Skindlov (1996) showed that 
previous 7-day running mean bias correction method can improve the direct 
model forecasts. Steed and Mass (2004) showed that removal of bias using a 
2-week running bias produce least amount of error compared to periods of 1, 3, 
4, and 6 weeks. Over the recent years, many other post-processing methods have 
been proposed including quantile regression (QR) (Bremnes, 2004; Friederichs 
and Hense, 2007), quantile mapping (QM) (Hashino et al., 2007; Piani et al., 
2010), standardized anomaly MOS (SAMOS) (Scheuerer et al., 2014) and en-
semble model output statistics (EMOS) (Stauffer et al., 2017).  Kleiber et al. 
(2011) developed the GMA (Geo-statistical Model Averaging) for precipitation 
forecasts. Skoien et al. (2016) developed the top kriging based EMOS method to 
interpolate EMOS parameters at unknown locations.  

In view of implementation of various new schemes for the benefit of farming 
community at the block level, improved model forecast by post-processing has 
been widely used by many operational centres. India Meteorological Department 
(IMD) has implemented ‘Gramin Krishi Mausam Sewa (GKMS)’ scheme at Kri-
shi Vigyan Kendras (KVKs) for the benefit of farming community at district 
level across the country. Presently, district Agromet Advisory Service (AAS) 
bulletins are issued bi-weekly (Tuesday and Friday) by Agro Meteorological Field 
Units (AMFUs) of each state to minimize the impact of adverse weather on crops 
and to boost agriculture production.

There are three AMFUs in Jharkhand namely Ranchi, Dumka and Darisai. 
The list of AFMUs and their area of responsibility based on Agricultural climate 
area for the State of Jharkhand is given in Tab. 1.  There is an operational need 
and growing demand from the AMFUs of Jharkhand to provide weather forecast 
objectively in the medium scale range to enhance the service at block level to 
satisfy the farmers and for other services.  In view of this, in this study a three 
stage integrated approach has been developed to generate value-added bias cor-
rected forecast of three surface parameters (maximum temperatures, minimum 

Table 1. The AFMU and Agriculture Climate area for the State of Jharkhand.

S. No. AMFU Agriculture climate area Area of responsibility (Districts)

1 Ranchi Central and Western 
Plateau

Ranchi, Khunti, Bokaro, Hazaribagh, Ramgarh, Chatra, 
Garhwa, Palamau, Latehar, Lohardaga, Gumla and 
Simdega

2 Dumka Central and North- 
Eastern Plateau

Dumka, Sahebganj, Godda, Pakur, Deoghar, Giridih, 
Dhanbad, Jamtara and Koderma

3 Darisai South-Eastern Plateau West-Singhbhum, East-Singhbhum and Saraikela-
Kharsawan
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temperatures, and rainfall,) up to five days (24 h, 48 h, 72 h, 96 h, 120 h) for all 
the 263 blocks of Jharkhand. The paper is organized as follows. Qualitative as-
sessment in weather forecasting is briefly described in section 2. The data used 
in this study is described in Section 3. Three step integrated approach is de-
scribed in section 4. Statistical metrics used in this study are described in section 
5. Results and summary are discussed in section 6 and section 7, respectively.

2. Qualitative assessment in weather forecasting

Prediction of chaotic nature of atmosphere is very challenging task to the 
forecasters. Forecasters have greatly benefited from the objective guidance by 
NWP models. Different NWP models rarely can generate similar forecasts, i.e. 
sophisticated numerical models can not reproduce consensus forecasts as each 
model has its own configuration and limitation. Under such scenario, it is a chal-
lenge to the operational forecasters to generate a consensus single and more 
skilful official forecast. Forecasters execute it by considering various factors (dis-
cussed in section 4.2). The official forecasts generated by various centres are the 
final forecast for a region and found to be more skilful.  Karstens et al. (2018) 
also showed benefit of human-machine mix forecast for both user and forecaster. 
Furthermore, a satellite based scientific method known as “Dvorak technique” 
(SDT), (Dvorak, 1975) used to determine intensity and forecast of tropical cy-
clones by analyzing satellite image patterns. Regional Specialized Meteorological 
Centre (RSMC), New Delhi entrusted by the World Meteorological Organization 
(WMO) and Joint Typhoon Warning Center (JTWC) use the SDT to determine 
intensity of tropical cyclones over the north Indian Ocean (NIO) but there are 
discrepancies (Kotal et al., 2018). Similarly, there are discrepancies for other 
ocean basins also (Yu et al., 2007; Song et al., 2010). In the SDT (Dvorak, 1975), 
the technique proposed various stages for tropical cyclone intensity analysis and 
forecasting from satellite imagery qualitatively. The operational scientific tool 
SDT is subjective and the success of this technique largely depends on the skill 
of the forecasters. Nevertheless, the SDT has become an important operational 
tool, widely used by the cyclone centers for ocean basins all over the globe. As no 
method is perfect in weather forecasting, therefore, analysis and forecast of cha-
otic nature of atmosphere has been the best assessment by combination of both 
objective and subjective methods for operational use in real-time.

3. Data

There are number of surface and upper air observatories available at various 
locations in India. These observatories are equipped with meteorological instru-
ments and observations are taken both manually (eye-reading) by the observers 
and by self-recording instruments. Regular observations of meteorological pa-
rameters are taken at three-hour interval (00 UTC, 03 UTC, 06 UTC, 09 UTC, 
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12 UTC, 15 UTC, 18 UTC, 21 UTC) daily. Observational data are stored in 
standard WMO (World Meteorological Organization) coded format and dissemi-
nated to the users. These data are also used in the data assimilation of numeri-
cal models. The Global Forecast System (GFS), adopted from National Centre 
for Environmental Prediction (NCEP) has been operational at IMD, New Delhi 
at T1534  (~ 12 km in horizontal over the tropics) resolution. Ensemble Kalman 
Filter (ENKF) based Grid point Statistical Interpolation (GSI) scheme is used 
for global data assimilation for the forecast up to 10 days. The model is run four 
times in a day (00 UTC, 06 UTC, 12 UTC, and 18 UTC). The real-time outputs 
are made available to the national web site of IMD. In addition to GFS forecasts, 
for the day-to-day weather forecasting, IMD also use NWP products prepared by 
some other operational NWP Centers like, NCMRWF (National Centre for Me-
dium Range Weather Forecast, India), ECMWF (European Centre for Medium-
Range Weather Forecasts), NCEP Global Forecast System (NCEP GFS). The 
GFS model forecast data of 00 UTC are used as input to generate block level 
forecast using IBL-FS for AAS bulletins, issued bi-weekly (Tuesday and Friday). 
In this study, the minimum temperature forecast and maximum temperature 
forecast is verified for the winter season 2019 (January and February) and for 
the summer season 2019 (March, April and May), respectively. Rainfall forecast 
is verified for the monsoon season 2018 and 2019 (June, July, August, Septem-
ber). Verification has been carried out up to five-day forecast.

 The state Jharkhand has 24 districts, and each district has some number 
of blocks which altogether constitutes the district. On average, each district has 
about 11 blocks. There is total 263 blocks in the 24 districts. The state Jharkhand 
has an area of 79,710 km². Out of 24 districts, West Singhbhum is the biggest 
district in the state with an area of 7,224 km² and Ramgarh is the smallest dis-
trict with an area of 1,341 km². The Capital of Jharkhand is Ranchi with an area 
of 5,097 km². Average area of one district is about 3,321 km², and average area 
of one block is about 303 km².

4. Methodology

There are various commonly used statistical post-processing methods to re-
duce model forecast uncertainties. Model Output Statistics (MOS) is a type of sta-
tistical post-processing technique used to improve NWP model forecasts by relat-
ing model outputs to observational or additional model data. MOS post-processing 
tools used in weather forecasting are mostly based on regression methods. Arti-
ficial neural networks (ANNs), support vector machines, multivariable regression 
models, and fuzzy reasoning techniques are major technologies used for a MOS 
application.  Statistical post-processing techniques in MOS approach, like decay-
ing weighted mean and interpolation have been used in the IBS-FS to improve 
model forecasts. The three step IBL-FS for real time forecasts at block level for 
the state Jharkhand is briefly described below. The three steps are: (i) Decaying 
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weighted mean (DWM) bias correction technique, (ii) Value addition, and (iii) 
Inverse distance squared weighted (IDSW) interpolation. The flow diagram of 
IBL-FS is shown in Fig. 2. An Excel program is developed for the IBL-FS for real 
time application.

4.1. STEP-I: Decaying weighted mean (DWM) bias correction technique
District level forecast are generated from the operational GFS model. In this 

district level forecasts, a statistical algorithm is used to minimize the model bias 
by applying decaying weighted mean (DWM) bias correction technique to the 
forecasts for different lead time (24 h, 48 h, 72 h, 96 h, 120 h). In DWM bias cor-
rection method (Durai and Bhardwaj, 2014), the model forecast bias bkl(i) = fkl(i) 
− Okl(i) for lead time l is defined as the difference between the forecast fkl(i) and 
observation Okl(i) at time l for a location (k). The bias at each observatory and 
each forecast hour is computed from the previous 14 days forecast error starting 
from the forecast issue day (l = 0) using decreasing weight so that the nearest 
recent data has the largest weight which ranges from 0.3 to 0.02. The DWM with 
the weight coefficient wkl(i) is computed as:
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The weight wkl(i) considered for computing model bias from its past perfor-
mance starting from the forecast issue day (l = 0) and successively previous first 
14 days is illustrated in Fig. 3.

Figure 2. Flow diagram of Integrated Block Level Forecast System (IBL-FS)
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The bias Bkl at each observatory is computed daily by applying the weight 
coefficient wkl(i ) at each forecast hour as:
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This bias Bkl is subtracted from the model forecasts to produce the bias cor-
rected forecast, which is defined as:

 Fkl = fkl − Bkl , (3)

where fkl is the direct model forecasts.
The DWM bias is computed at each observatory and used for the districts 

having observatory, whereas interpolated values from the nearest observatories 
are used for the other districts. The advantage of this technique is that it takes 
into account the day-to-day changes in forecast bias and gives more weight to 
recent model forecast error and less to older error. The bias correction is done to 
eliminate the common systematic errors in the GFS model forecasts. This step 
is not applied for rainfall, considering the discrete nature of occurrence of rainfall 
(unlike the temperature).

4.2. STEP-II: Value addition
The model bias corrected (by DWM) district level forecast generated from 

GFS model is value-added. Value addition is done by considering initial model 
forecast differences from observations, and model outputs from various models 
(WRF, NCUM, GEFS) including models from other countries (ECMWF, NCEP 
GFS). Thereafter subjective corrections are made based on official forecasts issued 
by Meteorological Centers and Regional Meteorological Centers. Value addition 

Figure 3. Illustration of weights used in the decaying weighted mean bias correction with previous 
14 days for computing daily model bias.
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is done for 24 districts of Jharkhand and 18 surrounding districts of neighboring 
five states (Tab. 2). Twenty-four districts of Jharkhand and 18 surrounding dis-
tricts neighboring states (Bihar, West Bengal, Odisha, Chhattisgarh, Uttar 
Pradesh) are shown in Fig. 4 and the 263 numbers of blocks are shown in Fig. 5.

The step I and step III are objective techniques and are based on sophisti-
cated statistical methods. But in Step II, the value addition component is done 
operationally by experienced forecasters. Guidelines combining objective and 
subjective procedures have been followed to generate more accurate value-added 
official forecasts for 24 districts. These are:

(i) Initial bias correction: In this correction, initial difference (ID) of model 
analysis and observation (if any) is removed. After application of interpolated 
DWM bias correction, if any district has significant difference (beyond usable 
range) from the nearest observation at the initial time (lead time = 0) then the 

Table 2. Eighteen surrounding districts of neighboring five states of Jharkhand.

S. No. Neighboring five 
states Districts

1. Odisha Sundergarh, Kendujhar, Mayurbhanj
2. Chhattisgarh Jashpur, Surguja
3. Uttar Pradesh Sonbhadra
4. Bihar Bhabua, Orangabad, Gaya, Nawada, Jamui, Banka, Bhagalpur, Katihar
5. West Bengal West Medinipur, Purulia, Birbhum, Malda

Figure 4. Districts of Jharkhand and surrounding states (solid red circles for temperature and 
solid blue circles for rainfall indicate location of observational points).
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difference (initial bias) is removed at the initial time. Similarly, value for district 
at any forecast lead time can also be modified if larger deviation of forecasts from 
the surrounding districts is noticed, thus improving spatial consistency. As ob-
servation for all districts are not available, the difference at the available obser-

Figure 5. Blocks of Jharkhand state.

Table 3. Observatories in Jharkhand and nearest surrounding districts (applied for correction).

S. No. Observatories Surrounding districts (value within parenthesis indicates distance from 
the observatory in km)

1. Ranchi Ranchi (0), Ramgarh (35.8), Lohardaga (67.7), Gumla (84.8), Purulia (WB) 
(143.3)

2. Jamshedpur East-Singhbhum (0), Saraikela-Kharsawan (37), Medinipur (WB) (129.5), 
Mayurbhanj (OD) (77.7)

3. Chaibasa West-Singhbhum (0), Simdega (136.7), Khunti (73.8), Jaspur (CH) (177.1), 
Sundergarh (OD) (189.4), Kendujhar (OD) (89.5)

4. Bokaro Bokaro (0), Hazaribagh (86.8), Dhanbad (31.7), Giridih (50.7), Koderma 
(95.1), Nawada (120)

5. Dumka(AWS) 
Sahibganj (100.6), Godda (53.6), Dumka (0), Pakur (72.7), Deoghar (60.8), 
Jamtara (52.2), Katihar (BR) (122.8), Banka (BR) (67.9), Bhagalpur (BR) 
(95.9), Birbhum (WB) (55.9), Mushirdabad (WB) (108.5), Malda (WB) 
(117.1), Jamui (BR) (122.8)

6. Daltonganj
Chatra (81.9), Garhwa (33.6), Latehar (49.3), Palamu (24.4), Bhabhua 
(BR) (108.5), Aurangabad (BR) (68.9), Surguja (CH) (140.6), Gaya (BR )
(102.8), Sonbhadra (UP) (123.8)

(OD: Odisha, CH: Chhattisgarh, UP: Uttar Pradesh, BR: Bihar, WB:West Bengal)
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vatories is applied at nearest surrounding districts assuming the homogeneity 
for these districts. There are six observatories in the Jharkhand (Ranchi, Jam-
shedpur, Chaibasa, Bokaro, Dumka and Daltonganj). The observatory Dumka 
is an automatic weather station (AWS). The surrounding districts where IDs of 
the six observatories are applied are shown in Tab. 3.

(ii) Model guidance: Output of all available models is consulted. Digital data 
of some models available in real time are also considered for simple ensemble 
and used to generate objective value of the parameters.

(iii) Subjective value addition: Finally, a subjective correction is made by the 
forecasters of Meteorological Centers.

Therefore, the final weather forecast is issued by the professional forecaster, 
using or discarding the guidance of information provided from all sources as 
mentioned in Step-I and II. Step-I is used for statistical bias correction and Step-
II is all about human-machine blending. The value-added official forecast is 
prepared based on statistical bias correction and human-machine blending for 
all the districts, where human (forecaster) modify the machine (model) gener-
ated forecast (for all lead time). Value addition is done by considering the facts 
of consistency of different NWP model forecasts, synoptic features, past perfor-
mance of models, persistency of evolution and movement of weather phenome-
non, and forecaster’s skill, experience, and geographical and climatological 
knowledge over the region.

The modified GFS forecast after step-II is the actual operational official 
forecast, routinely generated by forecasters of the Meteorological Centre of the 
state. Value-added official forecasts are generated for all 24 districts of the state 
Jharkhand, but there is requirement to generate such forecasts for blocks also 
for agrometeorological and other services. It can be mentioned that it is practi-
cally near impossible to generate such value-added official forecasts for all 263 
blocks in real-time. Therefore, in this study, a mathematical approach (inverse 
distance weighted (IDW) interpolation method) is proposed (presented below) to 
augment the official forecast from district level to block level.

4.3. STEP-III: Inverse distance squared weighted (IDSW) interpolation
After step-II, the deterministic inverse distance weighted (IDW) interpola-

tion method is used to generate the final forecast at an unmeasured block from 
the value-added district level forecast of the surrounding districts. Districts of 
surrounding states are also used for IDW interpolation (for the blocks in a district 
of Jharkhand attached to the district of neighboring states).

Several studies have been conducted on the post-processing forecasts for 
locations without observatories. The most common interpolation techniques 
 estimate a parameter at an unknown location by a weighted average of nearby 
data. Among statistical methods, variants of kriging are often proposed as sta-
tistical techniques with superior mathematical properties (Journel, 1986; 
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Cressie, 1993; Deutsch, 2002). Among deterministic methods, the IDW interpo-
lation method (Franke, 1982; Nalder and Wein, 1998) has been often used for 
spatial analysis. There are several reasons why IDW technique may be preferred 
over the kriging-based techniques. It is simple and easy applicable to any num-
ber of dimensions. Besides these, it does not suffer from the string effect of krig-
ing (Deutsch, 1993, 1994), screening effect due negative weights (Deutsch and 
Journel, 1998), and does not require solving system of equations for the weights. 
Moreover, it is robust in estimation and provides reasonable estimates. Many 
comparative studies have also shown that the IDW technique is even better than 
kriging-based techniques (Weber and Englund, 1992). For that reason, IDW 
interpolation method has been used in this study. In the IDW interpolation, the 
assumption is made explicitly that values that are closer to required location are 
more alike and have more influence on the required location than those that are 
farther apart, that is, local influence decreases with distance. Therefore, IDW 
uses the known values surrounding the required location and gives more weights 
to values closest to the required location (same value for co-location) and the 
weight diminishes as a function of distance (d). The weights are inversely pro-
portional to the distance between the data point and the required location, and 
to the power value p of the distance. As the distance increases, the weights de-
crease rapidly. The rate at which the weights decrease is dependent on the 
value of p as demonstrated in Fig. 6. The figure shows that if p = 0, there is no 
decrease with distance, and if the p value is very high, only the immediate 
surrounding points will influence the value of the required location and other 
values will have little relationship to the value of the required location.

The preferred default value p = 2 (no theoretical justification) is used in this 
study and the method is known as the inverse distance squared weighted (IDSW) 
interpolation. The unknown value is computed using following equation:

Figure 6. Illustration of decrease of weight with 
distance.

Figure 7. Illustration of known (six districts) 
points and unknown (block) point.
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where z is the required value at unknown point, d is distance, p is the power of 
the distance, n is the number of known points and i = 1, …, n.

In this study, a set of 6 (n = 6) known points of surrounding districts includ-
ing the same district point of the block within which it belongs are considered to 
estimate the value for the unknown block as demonstrated in Fig. 7. 

5. Statistical metrics used for verification
a. Statistical metrics for evaluation of temperature (maximum and minimum) 
forecasts 

Various statistical metrics are used to evaluate the performance of IBL-FS.  
Five statistical metrics are used for evaluation of temperature (maximum and 
minimum) forecasts. These are: (i) Forecast error (E), (ii) Absolute error (AE), 
(iii) Mean absolute error (MAE), (iv) Root mean square error (RMSE). Details of 
the metrics are given in the Appendix. In addition, the forecast skill of IBL-FS 
is also computed and defined as

 (%) 100DMFC IBL FS

DMFC

MAE MAESkill
MAE

−−
= × , (5)

where MAEDMFC and MAEIBL-FS are the MAE of direct model forecast (DMFC) 
and MAE of IBL-FS forecast, respectively.

b. Metrics for rainfall verification
In addition to MAE, and RMSE various skill score (given in Appendix) for 

dichotomous categorical forecasts are also computed using the contingency table 
(Tab. 4). These are: Bias (B), Probability of Detection (POD), False Alarm Ratio 
(FAR), Critical Success Index (CSI), and Percentage Correction (PC).

Table 4. Contingency table for rainfall forecast.

    Event observed →
Yes No Marginal total

←
 E

ve
nt

 
fo

re
ca

st

Yes YY (Hit)
a

YN (False alarm)
b

Forecast Yes
(a+b)

No NY (Miss)
c

NN (Correct non-event)
d

Forecast No
(c+d)

Marginal total Observe Yes
(a+c)

Observe No
(b+d)

Sum total
(n = a+b+c+d)



34  S. D. KOTAL AND R. SHARMA: DEVELOPMENT OF A NWP BASED INTEGRATED BLOCK ...

In view of usability of rainfall and temperature forecast, a conditional table 
(Tab. 5) has been prepared (Kumar et al., 2018) to evaluate the usability of fore-
cast in agrometeorological services. Classification of 24-hour  accumulated rain-
fall as per IMD convention is given in Tab. 6. Total number of usable forecasts 
is considered as sum of correct forecasts and usable forecasts as shown in Tab. 
5. Overall usability in terms of percentage is defined as total number of correct 
and usable forecasts divided by total number of forecasts. Mathematically it is 
defined as:

 ( )(%) 100
( )

Number correct usableUsability
Number correct usable unusable

+
= ×

+ +
. (6)

Table 5. Classification of usability of rainfall and temperature (maximum and minimum).

Parameter Category Possible outcome from 
contingency table (Tab. 4) Criteria

Rainfall

Correct
NN Always
YY If AE ≤ 0.25 of observed rain

Usable
YY If 0.25 of observed rain < AE ≤ 0.5 of observed 

rain
YN If AE ≤ 0.5 of upper limit of light rainfall 

category (Tab. 6)NY

Unusable
YY If AE > 0.5 of observed rain
YN If AE > 0.5 of upper limit of light rainfall 

category (Tab. 6)NY

Temperature
Correct – AE ≤ 1.0 °C
Usable – 1 °C < AE ≤ 2.0 °C
Unusable – AE > 2.0 °C 

*AE: Absolute error

Table 6. Classification of 24-hour accumulated rainfall.

S. No. Terminology Rainfall range [mm]
1 Very light rainfall Trace–2.4 
2 Light rainfall 2.5–15.5 
3 Moderate rainfall 15.6–64.4 
4 Heavy rainfall 64.5–115.5 
5 Very heavy rainfall 115.6–204.4 
6 Extremely heavy rainfall ≥ 204.5

7 Exceptionally heavy rainfall 
When the amount is a value near about the highest recorded 
rainfall at or near the station for the month or season. How-
ever, this term will be used only when the actual rainfall 
amount exceeds 12 cm. 
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6. Result and discussions

The main purpose of the analysis of forecast errors was to bring out a nu-
merical measure of the quality of forecasts and also to assess the improvement 
of the value-added forecast generated by IBL-FS compared to DMFC. A quanti-
tative evaluation of IBL-FS forecast errors of maximum and minimum tem-
perature and inter-comparison of error statistics between DMFC and IBL-FS 
forecast for all the five regular observatories (Ranchi, Daltonganj, Jamshedpur, 
Bokaro and Chaibasa) over Jharkhand are discussed. Ten rainfall observatories 
are also considered for rainfall verification. In this study, the closest grid point 
values of GFS from the observational points are used for forecast verification 
and all the official forecasts (issued in real time) are verified for forecast lead 
times 24 h, 48 h, 72 h, 96 h, and 120 h.

6.1. Minimum temperature forecasts

In this section, performance of the IBL-FS has been analyzed for all 85 fore-
casts of minimum temperature (including all five observatories) for each lead 
time, issued in winter season 2019 (January and February). The frequency dis-
tribution analysis (Fig. 8) of MAE shows that in 73% to 86% cases the MAE was 
less or equal to 2 °C (usable), for about 13%–18% cases the MAE was greater 
than 2 °C but less or equal to 3 °C and in about 4% to 12% cases MAE was 
greater than 3 °C. Figure 9 shows the IBL-FS forecast frequency skill over 
DMFC, where frequency refers to the number of cases with MAE within one out 
of three different ranges that describe usability (as shown in Fig. 8). The exact 
number is thus used as metric in Eq. (5). In other words, the increased frequen-
cy of usable cases (MAE < 2 °C), compared to DMFC, leads to positive frequency 
skill, which is a desirable outcome. On the other hand, the number of unusable 
cases (MAE > 3 °C) is reduced when frequency skill is negative, which is also 
preferable. The results suggest that IBL-FS improves usability in terms that the 

Figure 8. Frequency distribution of MAE for 
minimum temperature of IBL-FS.

Figure 9. The frequency skill of IBL-FS over DMFC 
for minimum temperature in terms of usability.
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frequency of MAE below 2 °C is increased if compared to DMFC, up to 51% for 
day4. The improvement over DMFC is also supported by the fact that the fre-
quency of higher error range (MAE above 3 °C) is reduced.

Figures 10a-e depict the forecast errors of minimum temperature of the IBL-
FS and DMFC for five observatories. The IBL-FS forecast error (MAE) for Ran-
chi (Fig. 10a) ranged from 1.1 °C to 1.7 °C during day1 to day5 with maximum 
error of 1.7 °C on day2, while RMSE ranged from 1.3 °C to 2.1 °C during day1 to 
day5 with maximum error of 2.1 °C on day2. Figure 10b for Jamshedpur shows 
that the MAE ranged from 1.2 °C to 1.5 °C during day1 to day5 and RMSE ranged 
from 1.2 °C to 1.9 °C during day1 to day5.  The MAE ranged from 1.0 °C to 1.7 °C 
and corresponding RMSE ranged from 1.3 °C to 2.2 °C for Daltonganj (Fig. 10c), 
MAE ranged from 1.1 °C to 1.5 °C and corresponding RMSE ranged from 1.3 °C 
to 2.0 °C for Bokaro (Fig. 10d). For Chaibasa (Fig. 10e) the MAE ranged from 
1.1 °C to 1.7 °C and corresponding RMSE ranged from 1.4 °C to 2.0 °C during 

Figure 10. MAE and RMSE of minimum tem-
perature of the IBL-FS and DMFC for five ob-
servatories.
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day1 to day5. Figure 10(a-e) shows there were improvements for all stations and 
for all forecast hours except for Jamshedpur and Chaibasa on day2.

The above analysis shows that for all the stations and for all the forecast 
hours, lowest MAE ranged from 1.0  °C to 1.2 °C and highest MAE ranged from 
1.5 °C to 1.7 °C. This error range also demonstrates that error characteristics for 
all the stations were near similar. On average, the MAE of IBL-FS for all the 
five stations (Fig. 11) ranged from 1.1 °C to 1.5 °C and RMSE ranged from 1.4 °C 
to 1.8 °C during day1 to day5. The inter-comparison has been carried out by 
computing the skill (Eq. 5) using MAE metric. The inter-comparison of MAE 
(Fig. 12) reveals that IBL-FS has positive skill over DMFC and the skill of IBL-
FS was higher by about 15% to 43% than DMFC during day1 to day5 and an 
overall improvement of RMSE ranged from 18% to 40% (not shown). 

6.2. Maximum temperature forecasts
In this section, performance of the IBL-FS has been analyzed for all 135 fore-

casts of maximum temperature for each lead time (including all five observatories), 
issued in summer season 2019 (March, April and May). The frequency distribution 
analysis (Fig. 13) of MAE shows that 64% to 79% cases the MAE was less or equal 
to 2 °C (usable), about 12%–19% cases the MAE was greater than 2 °C but less or 
equal to 3 °C and about 5% to 24% cases MAE was greater than 3 °C. The com-
parison with DMFC (Fig. 14) also suggests that the number of usable maximum 
temperature forecasts (number of cases of MAE ≤ 2 °C) for IBL-FS has increased 
in all forecast hours up to 31% at day1 and 29% at day5. Similar like for minimum 
temperature, the results suggest the improvement in maximum temperature is 
also noticeable for higher error range (> 3 °C), in terms of reducing the cases with 
high error. The improvement in skill in terms of usability measured by frequency 
is somewhat less pronounced for day3 than for other lead times.

The IBL-FS forecast error (MAE) for maximum temperature of Ranchi (Fig. 
15a) ranged from 1.1 °C on day1 to 1.5 °C on day5 with maximum error of 1.9 °C 

Figure 11.  Average error for minimum tempera-
ture of the IBL-FS for all five observatories. 

Figure 12. Skill in terms of MAE of IBL-FS 
over DMFC for minimum temperature for all 
the five observatories. 
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on day3, while RMSE ranged from 1.5 °C on day1 to 1.8 °C on day5 with maxi-
mum error of 2.5 °C on day3. Figure 15b for Jamshedpur shows that the MAE 
ranged from 1.3 °C to 2.0 °C and RMSE ranged from 1.5 °C to 1.8 °C during day1 
to day5. The MAE ranged from 1.3 °C to 1.8 °C and RMSE ranged from 1.9 °C 
to 2.5 °C for Daltonganj (Fig. 15c), while MAE ranged from 2.0 °C to 2.5 °C and 
RMSE ranged from 2.6 °C to 3.3 °C for Bokaro (Fig. 15d). For Chaibasa (Fig. 15e) 
the MAE and RMSE ranged from 1.3 °C to 2.0 °C and 1.6 °C to 2.5 °C, respec-
tively. Figures 15a-e show there was improvement for all stations and for all 
forecast hours.

Previously discussed frequency analysis of MAE shows that the number of 
cases (73% to 86%) of minimum temperature forecast error within the usable 
range (MAE ≤ 2 °C) was higher than the number of usable maximum tempera-
ture (64% to 79%) forecasts. Additionally, the analysis also shows that for all 
the stations and for all the forecast hours, the lowest MAE for maximum tem-
perature ranged from 1.1 °C to 2.0 °C and the highest MAE ranged from 1.8 °C 
to 2.5 °C. These error ranges are higher than for the minimum temperature, 
which also demonstrates that the error characteristics of maximum tempera-
ture for all the stations were not like minimum temperature. It needs to be 
mentioned that the summer season in the area is mainly dominated by the 
convective type of weather such as thunderstorms, dust storms, hailstorms, and 
associated rainfall. The frequency of convective activity (62.5%) is the highest 
during the 0630 UTC to 1230 UTC time (Kotal et al., 2021) when maximum 
temperature of a day attains. Wide variation of maximum temperature (22.6 °C 
to 46.7 °C) during the season and relatively unpredictable (beyond a few hours) 
convective weather events in the medium range forecast scale (Clerk et al., 
2009) may be the plausible reason for larger variation of maximum temperature 
error.

On average, the MAE for all the five stations (Fig. 16) ranged from 1.3 °C to 
1.9 °C and RMSE ranged from 1.7 °C to 2.4 °C during day1 to day5. Figure 17 
shows the inter-comparison (using Eq. 5) of the MAE of IBL-FS with the DMFC 

Figure 13. Frequency distribution of MAE for 
maximum temperature of IBL-FS.

Figure 14. The frequency skill of IBL-FS over 
DMFC for minimum temperature in terms of us-
ability.
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for the forecast period day1 to day5. The inter-comparison of error reveals that 
IBL-FS has higher accuracy (smaller error) than DMFC for maximum tempera-
ture forecast for about 18% to 41% during day1 to day5. Similarly, the improve-
ment of RMSE is found to be from 17% to 44% (not shown).

It is also to be noted that the skill is higher (Figs. 12 and 17) at short and 
long lead time and comparatively less in between. A similar trend is noticed in 
the error distribution of DMFC. Previous studies showed that in the short-range 
scale, convective predictability decreases with forecast lead time (Golding, 1998) 
and synoptic-scale flows can support the predictability at medium-range fore-
casts (Richardson et al., 2020). Predictability is also higher during strong syn-
optic scale forcing than during weak forcing (Christian Keil et al., 2014). The 
variations in the predictability may have affected the forecast skill.

Figure 15. Average error for maximum tem-
perature of IBL-FS and DMFC for five observa-
tories.
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6.3. Rainfall forecasts

In this section, performance of the IBL-FS has been analyzed for all 350 fore-
casts of rainfall for each lead time (including all ten observatories), issued in each 
monsoon season 2018 and 2019 (June, July, August, September). Ten rainfall 
observatories at block level (Panki, Bishrampur, Chaibasa, Ghatsila, Gomia, Ma-
hespur, Mandar, Ormanjhi, Barhi and Pakuria) chosen from all parts of the state 
are considered for rainfall verification. These stations are also under the scheme 
of daily rainfall monitoring system (DRMS) of Meteorological Centre, Ranchi. 
Therefore, the site of the observatories is as per WMO defined criteria and regu-
larly maintained. The daily rainfall data are also available for these stations. 

Figure 18, prepared using contingency table (as in Tab. 4), shows that there 
was a trend of over forecast (higher BIAS) for all forecast hours. The POD was 
found to be between 0.93 to 0.98, FAR between 0.45 to 0.61, PC between 0.48 to 
0.62 and CSI between 0.38 to 0.48 during day1 to day5 forecasts for monsoon 
season 2018 (Figure 18a). For the monsoon season 2019, the BIAS was higher, 

Figure 16. Average error of maximum tempera-
ture of IBL-FS for all the five observatories. 

Figure 17. Skill in terms of MAE of IBL-FS 
over DMFC for maximum temperature for all 
the five observatories.

Figure 18. Statistical metrics for rainfall forecast: (a) for 2018, (b) for 2019.

a)                                                                              b)
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POD was found to be between 0.82 to 0.93, FAR was between 0.43 to 0.56, PC 
was between 0.52 to 0.65 and CSI was between 0.40 to 0.54 during day1 to day5 
forecasts (Fig. 18b). The MAE for all ten stations ranged from 9.5 mm to 13.7 mm 
for IBL-FS forecast and it ranged from 13.7 mm to 19.5 mm for DMFC for mon-
soon season 2018 (Fig. 19a). For the monsoon season 2019, the MAE for all ten 
stations ranged from 7.7 mm to 10.0 mm for IBL-FS forecast and it ranged from 
7.8 mm to 13.6 mm for DMFC (Fig. 19b). The RMSE of IBL-FS and DMFC ranged 
from 13.2 mm to 18.9 mm and 18.3 mm to 27.7 mm, respectively, during day1 to 
day5 forecast for the monsoon season 2018 and these were 10.6 mm to 16.3 mm 
and 14.1 mm to 21.0 mm, respectively, for 2019. The skill of IBL-FS was found 
to be higher than DMFC by 24% to 30% at all forecast hours for 2018 (Fig. 20a) 
and by about 22% to 29% at all forecast hours (except on day2 where it was 9%) 
for 2019 (Fig. 20b). The improvement of RMSE is found to be from 18% to 35% 
for 2018 and from 17% to 32% for 2019. Rainfall verification results for all the 
locations show no trend of errors for the forecast lead time from day1 to day5 
due to higher variability of rainfall. Usability of rainfall (Fig. 21a) based on Tab. 
5 suggests that the usability (correct plus usable) of IBL-FS was higher than 
DMFC at all forecast hours for 2018, but for 2019 the usability of IBL-FS was 
higher at day1, day3, day4 and comparable at day2 and day5 (Fig. 21b).

Figure 19. Rainfall forecast errors: (a) for 2018, (b) for 2019.

Figure 20. Rainfall forecast skill: (a) for 2018, (b) for 2019. 

a)                                                                              b)

a)                                                                          b)
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Overall usability (based on equation 6) in 2019 (47%–60%) was higher than 
2018 (34%–45%). The characteristics of the monsoon of 2018 and 2019 may have 
impact on the forecast performances. Monsoon rainfall over the state Jharkhand 
was deficient in 2018 and was normal in 2019. District wise rainfall distribution 
was also different for the two seasons. In 2018, out of the total 24 districts of the 
state, 7 districts received normal rainfall (departure from normal –19% to +19%) 
and 17 districts received deficient (departure from normal –20% to –59%) sea-
sonal rainfall. Overall seasonal departure was –28%. In 2019, out of the total 24 
districts of the state, 1 district received excess (departure from normal +20% to 
+59%), 13 districts normal (departure –19% to +19%) and remaining 10 districts 
received deficient (departure –20% to –59%) seasonal rainfall. Overall seasonal 
departure was –19%. There was also difference in monthly distribution of rainfall. 
During the monsoon season 2018, the rainfall departure was –35% in June, –18% 
in July, –26% in August and –40% in September. During the monsoon season 
2019, the monthly departure of rainfall was –55% in June, –25% in August, –13% 
in August, and +13% in the month of September. Therefore, the skill is found to 
be higher for normal rainfall season than deficient rainfall season. Such sea-
sonal and district wise variability of rainfall may have affected the results. 

7. Summary and conclusions

There is operational need for prediction of surface meteorological parameters 
in the medium range scale (120 h) at block level to augment the Agro Meteoro-
logical services (AMS). The present paper describes development of a NWP based 
three steps integrated block level forecast system (IBL-FS) for improvement of 
rainfall and temperature predictions for the state Jharkhand. The three compo-
nents of IBL-FS are: (i) Decaying weighted mean (DWM) bias correction, (ii) 
Value addition and (iii) Inverse distance squared weighted (IDSW) interpolation. 
All the three steps are applied on the GFS (T1534L64) model forecasts (opera-
tional at IMD) to generate the forecast for all 263 blocks of Jharkhand. Forecasts 
of three surface parameters (maximum and minimum temperature, and rainfall) 
are generated for five days in the medium range time scale (24 h, 48 h, 72 h, 96 

Figure 21. Usability (correct plus usable) of rainfall forecast: (a) for 2018, (b) for 2019.

a)                                                                            b)
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h, 120 h). Verification of performance of IBL-FS has been made to identify the 
quality of forecasts in terms of numerical measures. Awareness of the biases 
would also aid concerned AMFUs to issue Agro advisories for farmers.   

The performance skill of IBL-FS has been evaluated for rainfall during mon-
soon season 2018 and 2019 (June, July, August, September), for minimum tem-
perature during winter season 2019 (January, February), and for maximum 
temperature during summer season 2019 (March, April, May). The inter-com-
parison of the MAE between IBL-FS with the DMFC reveals that IBL-FS has 
positive skill over DMFC and skill of IBL-FS was higher by about 15% to 43% 
and 18% to 41% than DMFC for minimum temperature and maximum tem-
perature, respectively, for day1 to day5 forecasts. Analysis of forecast error shows 
that although there was improvement of MAE in IBL-FS for all forecast lead 
times but in some cases it, unexpectedly, reaches the maximum for medium lead 
times due to similar inconsistency in MAE of direct model forecasts. The differ-
ent ranges of errors in minimum and maximum temperature for all the forecast 
hours demonstrate that error characteristics for all the stations, even though 
similar for minimum temperature, are inconsistent and higher for maximum 
than minimum temperature. Domination of more unpredictable (beyond few 
hours) convective weather systems during the summer season may have im-
pacted the maximum temperature error. Further, the reduction of error in both 
maximum temperature and minimum temperature is more pronounced for the 
higher error range of MAE (> 3 °C) than lower error ranges, in general. Inverse 
distance squared weighted (IDSW) interpolation technique is applicable over a 
smaller region and shows skillful results for rainfall also in both monsoon sea-
sons (2018 and 2019). The skill of IBL-FS was found to be higher than DMFC by 
24% to 30% and 22 % to 29% for 2018 and 2019, respectively, at all forecast hours. 
Overall usability in 2019 (47%–60%) and 2018 (34%–45%) suggests that the skill 
was higher for normal rainfall season (2019) than deficient rainfall season (2018). 
The characteristics of monsoon rainfall in 2018 (deficient) and 2019 (normal), 
and district wise variability of rainfall (more rain-deficient districts in 2018) may 
have affected the forecast performances.

Finally, the integrated approach by combination of both subjective (human-
machine blending) and objective methods used for official forecasting for the state 
Jharkhand was found to be more skillful than direct model forecast for both 
maximum and minimum temperature, and for rainfall at all forecast hours (24 
h, 48 h, 72 h, 96 h, 120 h). Regional Meteorological Centre of the state generates 
the bulletin and disseminates to the AMFUs for the guidance to the farming 
community. However, separate study is needed to evaluate the impact of subjec-
tive correction only without applying any objective correction. The integrated 
block level forecast system is implemented from 01 June 2019 for real time 
forecasting for the 263 blocks of Jharkhand. An Excel based program has been 
developed to make the system more user friendly for real time application. In 
view of the encouraging result, by applying similar technique, it would be pos-
sible to develop separate systems for all other states also.
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SAŽETAK

Razvoj numeričke prognoze vremena na temelju združenog 
više-stupanjskog prognostičkog sustava (IBL-FS) uz korištenje 
naknadne statističke korekcije pristranosti modela za državu 

Jharkhand (Indija)
Shyam Das Kotal i Radheshyam Sharma

Za državu Jharkhand (Indija) razvijen je prognostički sustav na temelju statističkog 
pristupa za srednjoročnu prognozu pomoću GFS modela s ciljem poboljšanja prognoze 
količine oborine i temperature za primjenu u poljoprivredi. Osnova formiranja združenog 
više-stupanjskog prognostičkog sustava (IBL-FS) uključuje (i) tehniku   korekcije pristra-
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nosti ponderirane srednje vrijednosti (DWM), (ii) zbrajanje vrijednosti i (iii) ponderiranu 
interpolaciju temeljenu na obrnuto-proporcionalnom kvadratu udaljenosti (IDSW). U 
prvom koraku, modelska pristranost u prognozi na razini okruga se ispravlja za 24 ok-
ruga Jharkhanda koja su dobivena iz rezultata numeričkog GFS modela (T1534L64) 
primjenom DWM tehnike korekcije pristranosti. U drugom koraku, prognozi kojoj je 
uklonjena pristranost dodaje se rasap vrijednosti iz različitih prognostičkih modela za 
numeričku prognozu vremena i sinoptičkih metoda. Konačno, u trećem koraku, IDSW 
metoda interpolacije koristi se za generiranje prognoze na područjima bez mjerenja, na 
temelju korigiranih vrijednosti prognoze drugih okolnih područja (blokova). Prognoza 
korigirana dodanom vrijednošću za 263 bloka za državu Jharkhand radi se u vremenskom 
okviru srednjoročne prognoze (120 h). Uspješnost prognoza sustava IBL-FS radio se za 
oborinu tijekom sezone monsuna 2018. i 2019., za minimalnu temperaturu tijekom zim-
ske sezone 2019. i za maksimalnu temperaturu tijekom ljetne sezone 2019. koristeći 
različite statističke metrike. Utvrđeno je da je uspješnost prognoze IBL-FS bolja od same 
nekorigirane prognoze modela (DMFC) za 15% do 43% za minimalnu temperaturu, za 
18% do 41% za maksimalnu temperaturu i za 22% do 30% za prognozu količine oborine 
za prognoze od dana 1 do 5. Ova studija zaključuje da je prikazani združeni više-stupanjski 
prognostički sustav uspješniji od DMFC za svakodnevnu prognozu u realnom vremenu i 
da je koristan za poljoprivredu u državi Jharkhand.

Keywords: prognoza na razini bloka, prognoza na razini okruga, globalni sustav prog-
noze (GFS), statistička naknadna obrada, opadajući ponderirani prosjek (DWM), inter-
polacija s obrnuto proporcionlanim kvadratom udaljenosti (IDSW)
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Appendix

Statistical Metrics

a. Statistical metrics used for evaluation of temperature  
(maximum and minimum) forecasts 

(i) Forecast error, E, is defined as,

 E = (Fi – Oi), (i)

(ii) Absolute error, AE, is defined as,

 AE = |(Fi – Oi)| , (ii)

(iii)  Mean absolute error, MAE, is defined as,

 
1

1 ( )
N

i ii
MAE F O

N =
= −∑ , (iii)

(iv) Root mean square error, RMSE, is defined as,

 2
1

1 ( )
N

i ii
RMSE F O

N =
= −∑ , (iv)

where Fi  and  Oi are forecast and observed value of the verification parameter 
and N is the total number of observation. 

b. Metrics for rainfall verification

(i) Mean absolute error (MAE) and root mean square error (RMSE) as de-
fined above are computed.

(ii) For dichotomous categorical forecasts, having only two possible outcomes 
(Yes or No), a contingency table (Tab. 4) is used to compute following five skill 
score.

Bias (B): For categorical forecasts, bias (also known as frequency bias) is 
equal to the total number of forecast events divided by the total number of ob-
served events. 

 B = (a+b)/(a+c). Perfect score: 1 (unbiased),

if B>1 (over forecast), the event was forecast more than it was observed,
if B<1 (under forecast), the event was forecast less than if was observed.
Probability of detection (POD):  A measure of discrimination, POD is defined 

as the number of hits divided by the total number of observed events.

 POD = a/(a+c). Range: 0 to 1. Perfect score: 1.
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False Alarm Ratio (FAR):  A measure of reliability, FAR is defined as the 
number of false alarms divided by the total number of forecast events.

 FAR = b/(a+b). Range: 0 to 1. Perfect score: 0.

Critical Success Index (CSI): A value of warnings combines Hit Rate and 
False Alarm Ratio into one score. It is calculated as follows:

 CSI = a/(a+b+c). Range: 0 to 1. Perfect score: 1.

Percent Correct (PC): The percent correct is the percent of forecasts that are 
correct.

 PC = (a+d)/n. Range: 0 to 1. Perfect score: 1.


