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Universalities and intriguing analogies in the statistics of avalanches are
revealed for three physical systems defined on largely different length and en-
ergy scales. Earthquakes induced by tectonic scale dynamics, micro-scale level
quakes observed from slipping crystallographic planes in metals and a one-di-
mensional, room-scale spring-block type Burridge-Knopoff model is studied from
similar statistical viewpoints. The validity of the Gutenberg-Richter law for the
probability density of the energies dissipated in the avalanches is proven for all
three systems. By analysing data for three different seismic zones and perform-
ing acoustic detection for different Zn samples under deformation, universality
for the involved scaling exponent is revealed. With proper parameter choices
the 1D Burridge-Knopoff model is able to reproduce the same scaling law. The
recurrence times of earthquakes and micro-quakes with magnitudes above a
given threshold present again similar distributions and striking quantitative
similarities. However, the 1D Burridge-Knopoff model cannot account for the
correlations observed in such statistics.

Keywords: earthquakes, micro-plasticity, avalanches, universalities, scaling,
correlations, Burridge-Knopoff model

1. Introduction

Earthquakes are serious threats to humanity (Lewis, 2005), large earth-
quakes can easily destroy cities, killing thousands of people and causing inesti-
mable social and economic damage. Nowadays there are two main directions for
minimizing the destructive power of earthquakes by attempting predictions for
their appearance: (1) searching for precursors of large earthquakes or (2) achiev-
ing a better statistical understanding that would allow a useful probabilistic risk


https://orcid.org/0009-0009-7249-869X
https://orcid.org/0000-0003-2220-105X
https://orcid.org/0000-0001-6494-8069
https://orcid.org/0000-0002-5763-3445
https://orcid.org/0009-0005-5445-1303
https://orcid.org/0000-0002-8400-2307
https://orcid.org/0000-0002-9956-0061
https://orcid.org/0000-0001-9545-2015
https://orcid.org/0000-0002-6644-1365
https://orcid.org/0000-0002-7319-5123

2 A. KUKI ET AL.: STATISTICAL ANALOGIES BETWEEN EARTHQUAKES, MICRO-QUAKES ...

evaluation. While the first direction is largely debated in the scientific commu-
nity (Conti et al., 2022; Picozza et al., 2021), everybody agrees on the usefulness
of a statistical understanding of the observed events. Interesting statistical laws
have been revealed during the past century. The famous Gutenberg-Richter law
(Gutenberg and Richter, 1944; Gutenberg and Richter, 1956) and Omori law
(Utsu, 1961; Utsu et al., 1961) are well-known examples in such a sense. Al-
though, these laws have been confirmed in many seismologically active zones
and geographical regions of different sizes, the use of different scales on which
the strength of the earthquakes were measured and the incompleteness of the
data were serious impediment to directly compare scaling exponents. Univer-
salities in the relevant scaling exponents could offer however additional clues
toward a more complete statistical description.

Striking analogies of the Gutenberg-Richter and Omori laws for earthquakes
with the statistics observed in other avalanche-like phenomena catalyzed the
development of the field of Self-Organized Criticality (SOC). For the dynamics
of an ensemble of particles avalanches are defined, as a sudden increase in their
flow or collective displacement. Avalanche-like phenomena are considered those
processes where the dynamics of the system is dominated by such events. In SOC
the physical system converges to a dynamically steady-state, characterized with
energy dissipation events (in form of avalanches) having a power-law like distri-
bution in their sizes (Bak et al., 1988; Bak and Chen, 1991). Some basic models
of modern physics have been developed for exemplifying SOC. One could mention
in this sense the famous sand-pile model (Bak et al., 1987) or the spring-block
model of Burridge and Knopoff (Burridge and Knopoff, 1967). The Burridge-
Knopoff model was the first one to incorporate realistic elements for the fric-
tional movement of the tectonic plates that successfully reproduced the Guten-
berg-Richter law for the earthquake magnitude distribution. Aided by the
spectacular development in our computational resources, this model is still under
investigation in computational physics studies (Mori and Kawamura, 2006; Mori
and Kawamura, 2008).

Lately, an interesting similarity was reported with mechanically analog
micro-scale quakes, where one can observe and measure energy dissipations in
sliding crystallographic planes (Ispanovity et al., 2022). In the first half of the
20 century Orovan, Taylor and Polanyi were the first to understand the basic
mechanism of plastic deformation of metals (Orowan, 1934; Polanyi, 1934; Tay-
lor, 1934), namely, the concept of dislocation movement during shear deformation
of crystals. However, in a direct manner, dislocation dynamics was not studied
thoroughly until the discovery of electron microscopy. Since then, many interest-
ing phenomena were observed related to the collective behavior of dislocations,
such as the dislocation pattern formation (Groma, 2000), Portevin-Le Chatelier
(PLC) effect (Dierke et al., 2007), effect of dislocations on semiconductor proper-
ties (Hirsch, 1985), etc. The complementary acoustic emission study of dislocation
movement started two decades ago with the compressions of ice crystals by
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Miguel et al. (Miguel, 2006). Nevertheless, in the following years the extensive
improvement of the field resulted in the development of fabrication of micropil-
lars in metals via focused ion beam technology (Dimiduk et al., 2005; Dimiduk
et al., 2006), in-situ compressions (Kaldcska et al., 2020; Zoller et al., 2020) and
concurrent acoustic emission measurements (Hegyi et al., 2017; Ispanovity et
al., 2022).

The present work offers a unified, pedagogical discussion on the avalanche-
like statistics in three different processes: earthquakes at tectonic and micro-
scale level and the dynamics of a simple Burridge-Knopoff-type model. We at-
tempt to show quantitative analogies between the related phenomena and
discuss some aspects for probabilistic predictions. By reprocessing the available
earthquake catalogs, three different tectonic zones (Romania, Southern-Califor-
nia and Japan) are studied statistically. The data is unified by transforming all
magnitudes to energy scale, allowing to reveal further universalities in the sta-
tistics. This methodology offers a novel perspective to some already known em-
pirical laws. For the micro-scale level quakes observed in compressed micropil-
lars the same statistical analyses are performed and interesting analogies with
earthquakes are discussed. For a unified modelling of the statistics observed in
both the macro and micro-level quakes we use the simple one-dimensional Bur-
ridge-Knopoff model. During this computational exercise we successfully repro-
duce some previously known results, and study the model critically from novel
perspectives. We conclude on the applicability of this simple modeling paradigm
and discuss on possibilities for improving it.

2. Earthquakes and their statistics

2.1. Magnitude scales

The magnitude of an earthquake (Ohnaka, 2013; Bornmann and Saul, 2011)
is meant to represent the cumulative strength of it. The usual definition is that
“it is a number that characterizes the relative earthquake size” (Bornmann and
Saul, 2009) or “a number that characterizes the relative size or amount of elastic
energy released by such an event” (Bornmann and Saul, 2011). It should not to
be confused with the intensity, which is the severity/degree of ground shaking
and its impact on people, buildings and surroundings. During the past many
different magnitude scales have been elaborated. Most of the magnitude scales
are based on the measurement of a particular property of the seismic wave. This
property can be the maximal amplitude, the length of the signal, frequency etc.
One of the earliest magnitude scales was the Richter-scale, and even nowadays
this is among the most popular (Richter, 1935). The moment magnitude scale
(M,,) is however the one that characterizes in the best manner the total emitted
energy during an earthquake (Hanks and Kanamori, 1979). We will use this
magnitude in our statistics. It can be defined as
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M, = %[loglo(Mo) -9.1], (1)

where M, (in units of N.m) represents the required mechanical work to generate
the slipping of the respective rupture (Bormann and Dewey, 2014). More pre-
cisely M, = uAD, where p is the shear modulus of the respective rock, D is the
measure of the slip of the two sides of the rupture (average slip) and A is the
surface area of the fissure. M, represents the radiated seismic energy of the
earthquake and from here on it will be denoted with E, because we are focusing
only on scaling properties. From Eq. (1) the empiric relation between the moment
magnitude (M,,) and the total energy (F) follows as:

E ~10-"M. @)

2.2. Statistical laws

We shortly review here some well-known statistical laws for earthquakes.

The Gutenberg-Richter law quantifies an empiric finding concerning the
magnitude distribution of earthquakes: for a given seismic region and time in-
terval (Gutenberg and Richter, 1956a,b) the number of earthquakes (V) with
magnitude above a level M can be given as:

N=N, 107", 3)

tot

with the value of b around 1 (El-Isa, 2018). Here N,,, stands for the total number
of earthquakes within the statistics.

The Omori law gives a relation between the rate of aftershocks produced
after a main shock, and the ¢ time elapsed from the main shock (Utsu, 1961; Utsu
et al., 1961):

k
(c+t)?’

Here n(¢) is the rate of the aftershock occurrence, k& and c are characteristic pa-
rameters of the given aftershock sequence and p is an exponent, governing the
rate of decrease. Usually the value of p is in the interval 0.7—1.5. This law suggests
the temporal clustering for the aftershocks of an earthquake. The fact that the
rate of the aftershock occurrence follows a power law, implies that the relaxation
process does not have a characteristic time-scale. Furthermore, the presence of
the power law implies also the presence of temporal correlations in the statistics.

n(t) = (4)

Following on the time-like distribution of earthquakes, recently an interest-
ing statistical law was revealed for the recurrence time distribution (Corral,
2006). Assuming a fixed magnitude threshold M,, one can look for the time-in-
terval distribution between events with magnitude greater than M.. It was found
that the time intervals ¢ between such events are well approximated with a
Gamma distribution:
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oty = Lot m, ®)
I'(a)
The a and B parameters of the distribution depend on the chosen M, thresh-
old and investigated seismic region.

2.3. Earthquake data mining and processing

In the present work we first reconsidered the above discussed statistical
laws, searching for further universalities. For our statistical studies on earth-
quakes three seismic regions were considered: the Vrancea tectonic zone (Roma-
nia), Southern-California and Japan. The primary reason for selecting these
seismic zones were our access to their long-term, good resolution and document-
ed earthquake data.

The Vrancea seismic zone generates crustal and intermediate-depth earth-
quakes (Tugui et al., 2009), and the nature of the seismogeneity is still debated
(Radulian, 2015; Bokelmann and Rodler, 2014). The seismic activity in Southern
California are caused by the relative (lateral) movement of the Pacific and North
American plates. The largest part of the displacement is in the San Andreas fault
and other faults parallel with this: the San Jacinto, Elsinore, and Imperial faults.
The majority of earthquakes occur at depths from 1 to 30 km (Toppozada, 2004).
Japan is probably the most known seismic hotspot, where many historical seis-
micity data is well documented and modern time data are recorded with great
accuracy (Matsu’ura, 2017). The Japanese archipelago is located in an active
zone where four lithospheric plates are in interaction, and as a result of this
various types of earthquakes with different depths are generated.

In order to assure the completeness of the data and statistical consistency,
only earthquakes with magnitudes (M,) of at least 2.5 were considered, a limit
for which the catalogues are believed to be accurate. (Wiemer and Wyss, 2000;
Moldovan et al., 2005; Hutton et al., 2010). This also eliminates many magnitude
measurement errors that affects mainly the smaller and abundant earthquakes.
No spatial filters were considered; therefore all earthquakes present in the da-
tabase were used in the statistics. However, in order to have a clear separation
of the different events, we also introduced a time-like cutoff in the data. If the
elapsed time between two consecutive earthquakes did not exceed 10 seconds,
only the one with the greater magnitude was kept. In such manner we intended
to assure that our data surely indicate clearly separable earthquakes, although
some earthquakes that have very different epicenter but are simultaneous with
the selected one, are lost. This simplification could affect therefore in a tiny man-
ner the magnitude statistics for Japan. It is important to emphasize also the fact
that we did not consider any differentiation between fore-, after- and main
shocks. Instead of the individual events, we focus therefore rather on the long-
term, complex behavior of the seismic events. Considering the above-mentioned
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filtering criteria, we kept in the statistics 4849 individual earthquakes for Ro-
mania, 66,948 for Japan and 22,848 for Southern-California.

The catalog we used for Japan is available at the JUNEC (Japan Univer-
sity Network Earthquake Catalog) web-page (JUNEC web-page). The database
covers a time interval between 1985-1995. The values are given in the magni-
tude scale used by the JMA (Japan Meteorological Agency), called M;. The con-
version between M; and M,, is given by the empirical formula (Utsu, 1982):

M, =M;-0.171. (6)

The Romanian earthquake database, was granted by INFP (National In-
stitute for Earth Physics). The magnitudes are given in the moment magnitude
scale (M,,). In order to ensure that the database is complete for events above the
2.5 magnitude, we used only the data between 2000 and 2018 (Moldovan et al.,
2005).

The data for Southern-California was downloaded from the SCEDC
(Southern California Earthquake Data Center) web-page (SCEDC web-page).
We used the data between 1990 and 2019. This catalog uses the local magnitude
(M;). Assuming earthquakes with magnitudes 3 <M; < 7, for Southern-Califor-
nia, the relation between M; and M, (Hanks and Kanamori, 1979; Thatcher and
Hanks, 1973) suggests M; =M, with a good approximation, since in the database
there are only a few earthquakes with magnitude > 7, their effect on the statis-
tics is therefore negligible.

In our data analyzing methodology the first step was to convert each and
every magnitude value to M,,. Using now Eq. (2) with a constant multiplicator
factor (chosen as one) the corresponding total energy values were calculated.
The investigated databases contained also the occurrence time moments for
each earthquake, with a millisecond precision. These two properties (the total
emitted energy and the occurrence time) were used to analyze different statisti-
cal properties.

2.4. Results on the relevant statistics

Using the data presented in the previous section we have studied the mag-
nitude distribution of earthquakes and the distribution of the recurrence times.
Since we did not make any differentiation between fore-, after- and main shocks
we did not investigate the rates of the aftershocks, and consecutively Omori’s
law. The results that are presented in the followings confirm again the validity
of the known statistical laws. Moreover, the use of a consistent magnitude scale
and the uniform filtering allowed us to uncover some useful universalities in the
general statistics.

First, we constructed the mathematically well-defined probability density
function (p.d.f.) for the dissipated energy distributions in all three tectonic re-
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gions. The obtained results are summarized in Fig. 1. It can be clearly seen that
the distributions belonging to different tectonic zones, collapse on a single mas-
ter-curve, and can be well fitted by the Tsallis-Pareto (or Lomax II) p.d.f., with
the following form:

“1op'
o(E) =c.(1+§] , )

where 5’=0.6, 2=10%>* (in energy dimensions) and ¢=4.953x 10 (energy " di-
mension) seem to be universal constants, independent of the investigated seismic
region. The main motivation for the chosen fitting function instead of a simple
power-law fit is its behavior in the small E limit. A simple power-law p.d.f cannot
be normalized on the whole E >0 interval, it assumes a natural cutoff mecha-
nism, and on a log-log scale it does not show the observed slope changes for small
E values. The Tsallis-Pareto distribution is in the family of the g-exponential
distributions (Tsallis, 2009), that are obtained from the maximization of the
Tsallis entropy (Tsallis, 1988) under different constraints on the whole [0, o)
interval. The Tsallis entropy generalizes the well-known Shannon entropy for
processes where one cannot assume the extensivity of entropy. For multiplicative
processes, where power-law distributions are dominant, the Tsallis-Pareto dis-
tribution usually offers a fair description of the observed statistics. Some ex-
amples are discussed in the review article of Biré and Néda (2018).

The probability density function constructed for the used earthquake data,
confirm on eight orders of energy magnitudes the validity of the Gutenberg-
Richter law, and suggest an intriguing universality for the scaling exponent.

1074 + Japan: 1985-1995
% *  Romania: 2001-2018
10-6 v Southern-California: 1990-2019
—— Tsallis-Pareto fit
10784
@ 10-10
Q
10-124
10*14.
10*16.

104 108 108 1010 10%?
Seismic energy, E =10'"

Figure 1. The probability density function for the seismic energy distributions for the studied tec-
tonic zones on log-log scale. The clear scaling with exponent —1.6, on eight orders of magnitude proves
the validity of the Gutenberg-Richter law and suggests the universality of the scaling exponent.
Please note that according to Eq. (2) one needs a proportionality factor. In our case this was chosen
as 1, fixing the unit for energy. In order to show the scaling, one does not need to specify the units
used for energy.
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For the recurrence time distribution, we aimed to find further universalities,
allowing a connection between the statistics for large and small M, thresholds.
The motivation behind this is that due to the validity of the Gutenberg-Richter
law there is a much worse statistics for the greater events, yet one is interested
especially in the statistical aspects for such earthquakes. With this consideration
we studied the recurrence time distribution, separately for the three tectonic
regions, using several values for the threshold magnitudes. The Gamma distribu-
tion presented in Eq. (5), can be written for the ¢/ (f) rescaled time, where

o
ty=— (8)
()=
is the average recurrence time. The p.d.f. for ¢/ (¢) has in such case only one free
parameter, a: o ;
t a® [t —0{@]
Pl =] 7| e (@ ©)
{<t>} I'(a) [<t>]

In the following we present on the same graphs the rescaled recurrence time
distributions, obtained for different threshold magnitudes. Plots are on log-log
scale and they are presented separately for each tectonic zone in part (Fig. 2). In
these figures, the data points which belong to different threshold magnitudes
are plotted with different colors and symbols. These, together with the param-
eter of the fitted Gamma distribution are specified in the legends of the figures.
It is important to note that these distributions reflects also the Omori law (clus-
tering phenomenon, after the great earthquakes) as a clearly distinguishable
power-law trend in the ¢/(¢) <<1 limit. One will immediately observe that for
the fit with the Gamma function the a parameter which characterizes the recur-
rence time distributions is always smaller than 1. This leads to an interesting,
counter-intuitive conclusion for a given seismic zone. The probability of occur-
rence for an earthquake above a given magnitude in a fixed time interval (meas-
ured after the last such event) instead of increasing, will decrease in time (Cor-
ral, 2006).

103 Romania California Japan

M>25
M>3.0
M>35
M > 4.0
M>45
M >5.0
—— Gamma fit: a = 0.58

M>25
M>3.0
M>35
M > 4.0
M>45
M >5.0

1071« wm>2s A
v M>30
* M>35

—— Gamma fit: a= 0.9 —— Gamma fit: a = 0.28

< % + % 4 X
« % + &% 4 X

1073 107! 10! 1074 1072 10° 1073 1071 10t
t/<t>
Figure 2. The recurrence time distributions (probability density functions) for the recurrence time
rescaled with the mean. Different panels are for different seismologic regions as indicated on the
graphs.
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Figure 3. The cumulative number of earthquakes (dots) and the magnitudes of the events, for M,,> 6
(vertical bars) as a function of their occurrence times (data for the Southern-California earthquake
zone).

For a =1 the Gamma distribution reduces to a simple exponential distribu-
tion, which indicates a Poisson process with no time-like correlations between
the events. The difference relative to the a =1 value characterizes the presence
of correlations.

For illustrating more clearly the presence of the Omori law in our data, in
Fig. 3 we present the cumulative number of earthquakes (blue dots) as a function
of the occurrence time (the time elapsed since 1990/01/01 01:03:44.49 in seconds).
On the same graph with the orange bars we present the magnitudes of earth-
quakes, selecting only those with M,,>6. This graph is obtained for the Southern-
California dataset. As one can clearly observe, after the large earthquakes there
is an abrupt increase in the rate of the earthquake occurrences. This leads to the
appearance of earthquake clusters, which are a manifestation of the Omori’s law.

3. Micro-scale quakes and their statistics

In the following the experimental study of micro-level “earthquakes” in met-
als are briefly presented and discussed. A more detailed discussion for the ex-
periments can be found in the recent study of Ispanovity et al. (2022), uncovering
also some similarities between earthquakes and dislocation motion induced
avalanches in metals. We will use the same statistical analyses here as the one
adopted for studying the earthquakes in the previous section.

In order to study the statistical properties of acoustic emission signals ob-
tained during the deformation of metals one has to choose a suitable material
and deformation mode for this task. The appropriate metal was selected based
on its main deformation mechanism, which may also reflect on the strength of
the acoustic activity. According to earlier investigations, fluctuations related to
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sudden local strain bursts undergo a so-called wild-to-mild transition depending
on the sample size (Weiss et al., 2015). Even single crystalline metals are char-
acterized by a length-scale due to internal mechanisms such as interactions
between dislocations and solute atoms (Weiss et al., 2021; Zhang et al., 2017),
which act like motion barriers for dislocation movement, restricting the dissi-
pated energy and number of produced acoustic signals. Specimens smaller than
this scale exhibit scale-free fluctuations reminiscent to critical phenomena (wild
regime), whereas in larger samples these fluctuations become weak/subcritical
(mild regime). During the deformation of Faced-Centered Cubic (FCC) and Body-
Centered Cubic (BCC) systems the avalanche numbers and sizes are highly
temperature and sample size dependent (Alcala et al., 2020), which is mainly
due to the strong influence of dislocation reactions and cross-slip phenomena on
the dynamics. On the other hand, in pure Hexagonal Close Packed (HCP) single
crystalline materials this length scale diverges, that is, large fluctuations are
always observed, even for bulk samples. Therefore, Zn was chosen as a model
material for studying micro-quakes.

3.1. Experimental details

A zinc single crystal (HCP structure) was obtained from Goodfellow Cam-
bridge Ltd., with (10-11) surface normal direction. The compressions were carried
out along the surface normal direction, meaning that the basal plane and the
compression plane had an intersection angle of 45°, i.e. the single slip mechanism
was favored during the experiments. The original crystal was embedded in poly-
acrylic resin (Dentacryl) and was cut into smaller samples using a diamond
cutting disc. The samples were etched with HNO, solution, before annealing.
Heat treatment was carried out in a vacuum furnace for 6 hours on a tempera-
ture of 150 °C and under a pressure of 102 Pa. After the annealing, the samples
were electropolished using electrolyte D2 from Struers, at a voltage of 12 V and
maximum current of 1.5 A. Two samples of size 6 mm X 1.6 mm X 1.6 mm and
one of size 8 mm X 2.6 mm X 2.6 mm were used for bulk compressions.

The micropillars were fabricated in a Quanta Fei 3D dual-beam scanning
electron microscope (SEM) using the focused ion beam (FIB) technology. The
fabrication was carried out using Ga ions by starting with a rough milling (30 kV,
10-15 nA) at low incidence angle (1°-2°) and ending with fine polishing (5 kV,
100 pA) at high angle of incidence (7°-8°). The side length of the prism shaped
pillars having a square-shaped cross-section were 8 pm, 16 pm and 32 pm, while
the height was three times the side length. Figure 4 shows one of the compressed
micropillars. In total, four 8 pm, three 16 pm and two 32 um sized pillars were
compressed, and statistical results are discussed for these.

In order to detect the micro-quakes during compression the phenomenon of
acoustic emission was utilized. By definition, the phenomenon of acoustic emis-
sion is the generation of transient elastic waves during the irreversible struc-
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Figure 4. Secondary electron image of a compressed zinc micropillar with 8 um side length.

tural changes in materials. The component of the elastic waves which is perpen-
dicular to the surface of the sample can be detected with piezoelectric
transducers that are attached to the surface (or they are near the surface). In
order to increase the efficiency of acoustic detection a layer of vacuum grease
was applied between the sample and detector. The Acoustic Emission (AE) device
consisted of a wide-band (100-1000 kHz) AE detector made by Physical Acoustic
Corporation (PAC) WSa, a Vallen AEP5 40 dB,y pre-amplifier and the com-
puter controlled Vallen AMSY-6 system, which was responsible for further am-
plification, continuous mode data-acquisition (at a rate of 2.5 MHz) and data
processing. Acoustic Emission measurements were done simultaneously with
the compression of samples. On Fig. 5a one can see the schematic drawing of a
conventional stepper motor driven press for material testing procedures. This
was used for the bulk samples. Since in this case the maximum stress applied
to the system is in the range of hundreds of MPa, the exerted force on a millime-
ter sized area will be in the range of hundreds of N, corresponding to 10-100
kilogram-force. The AE detector would not withstand such a huge force, so in-
stead of directly placing under the sample, it was positioned on the plunger as
close as possible to the sample in order to avoid the dampening effect and the
reflection generator nature of an interim medium. This type of compression can
be considered a strain-controlled one, because one can assume that the elastic
constant of the ram is infinitely high in comparison to that of the sample (the
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Figure 5. Schematic drawings of the a) stepper motor press and b) custom-made nano-indenter.

ram has a much larger tensile strength). The maximum z-axis resolution is ap-
proximately 10 nm.

For micropillars the experimental device allowed also in-situ SEM observa-
tion, and therefore the acoustic signals could be correlated with the observed
slipping of the crystallographic planes (Mathis et al., 2021; Ispanovity et al.,
2022). Figure 5b represents the schematic of the custom-made nano-indenter,
which can be installed in the chamber of the SEM. This feature makes possible
the observation and in-situ compression of micropillars. The “x-axis” and “y-axis”
are positioning stages with precision of 0.5 pm. The “z-axis (Coarse)” is a stepper

Figure 6. Photo of the custom made nano-indenter mounted on the stage of the SEM at open mic-
roscope chamber.
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motor that allows the coarse positioning of the sample to the vicinity of the flat
punch tip. On top of this, the “z-axis (Fine)” is a piezoelectric component, which
upgrades the z-axis resolution to 1 nm. We have used this stage during the com-
pression of the micropillars. A photo of the custom made nano-indenter mounted
on the stage of the SEM at open microscope chamber is given in Fig. 6. Since the
compressions were carried out with constant platen velocity, the system is again
close to being strain-controlled (Ispanovity et al., 2022).

In Tab. 1 the used samples and corresponding deformation parameters are
summarized.

Table 1. The samples and compression rates used for the studies of avalanches induced by dislocation
motion in metals.

Sample Dimensions Strain rate (compression rate in mm/s)
Bulk Zn —nr. 1 8 mm X 2.6 mm X 2.6 mm 6.25107*(5-107%)
Bulk Zn —nr. 2 6 mm X 1.6 mm X 1.6 mm 8.331074(5-107%)
Bulk Zn —nr. 3 6mm X 1.6 mm X 1.6 mm 3.33107%(2:107%)
Micropillar Zn —nr. 1 8 um X 8 um X 24 pm 8.33-107*(2-107)
Micropillar Zn — nr. 2 16 um X 16 um X 48 pm 4.12-107*(2-107%)
Micropillar Zn — nr. 3 32 um X 32 pm X 96 pm 2.08-107*(2:107%)

During data analysis, it was assumed that the energy E of acoustic signals
are proportional to U? where U is the electric potential difference, i.e. the ampli-
tude of a single acoustic event produced in the piezoelectric acoustic sensor. Once
the sensor produces an electric signal, it is pre-amplified and transmitted to-
wards further amplification in order to allow a precise determination of the peak
position and amplitude. The noise level of the measurement (e.g. the noise from
the rotation of the stepper motor) is determined from preliminary measurements
and a threshold value for peak identification is set appropriately. The exported
data consists of peakwise data batches in the form of timeseries. From every
batch the background threshold is set and the highest amplitude fluctuation is
considered as the intensity of the signal. One could argue, that not only the high-
est fluctuation is responsible for the total dissipated energy. If ones take the
squared valued signal, corresponding to dissipated energy timeseries and inte-
grates, the area difference between the highest signal and the total data batch
1s insignificant. Nevertheless, before every batch of experiments the detectors
are recalibrated with a pencil lead breaking test, which in ideal case produces a
characteristic curve of the test (Sause, 2011; Yousefi, 2018). With this test, one
can also check the reliability of the AE detectors, by comparing the results of
several tests carried out successively.

During the compression of the bulk samples and micropillars the event rates
change as a function of time during the compression. In Fig. 7 we show how the
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Figure 7. On the left side the cumulative number of AE events for Zn bulk compression as a func-
tion of time. The grey dashed lines mark the selected stationary region for analysis. On the right
side the same graph for micropillar compression.

number of cumulative events depends on time for both bulk samples and micro-
pillars. Several regions can be clearly distinguished as we indicate on the figure
with dashed lines. In case of micropillars, the deformation is attributed purely
to single slip on the basal plane, while for bulk crystals after a certain amount
of time the single slip may dominate over other effects such as twinning. At the
beginning, additional volume, surface and structure faults may dominate the
dynamics, such as twinning or stacking fault. The statistics that will be pre-
sented and discussed in the following is based on the events detected in the region
between the two dashed lines, where the rate of acoustic events is close to con-
stant.

A common perception about acoustic emission phenomena detected in bulk
samples is that the stress-time series and acoustic data do not exhibit any cor-
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Figure 8. In case of single slip mechanism, even for bulk samples, there is a strong correlation
between stress drops and acoustic events. Acoustic signals and their magnitude are presented with
vertical bars.
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relation in time. In other words, when an acoustic event occurs, the stress does
not drop abruptly, but rather smoothly increases or fluctuates. In this case, since
the crystal was intentionally oriented for single slip and forest dislocations are
practically absent due to the HCP structure of Zn, strong correlations were de-
tected in the stress-time series, even for bulk samples. This effect is illustrated
in Fig. 8. Even more pronounced correlations are found for the compression of
micropillars. Another common belief is that, although micropillars produce sim-
ilar acoustic (microearthquake) statistics as earthquakes, due to the lack of spa-
tial correlation these can be hardly compared to real earthquakes. Ispanovity et
al. (2022) answered the question of spatial correlation via in-situ micropillar
indentation and edge detection techniques.

3.1. Experimental results and relevant statistics

The experiments performed on bulk Zn samples proved nicely the validity
of the Gutenberg-Richter law for the energy of the detected micro-quakes (Fig.
9). Using ’=0.58, 2=5.4-10"1' V2 and ¢=1.1-108V2in Eq. (7) the observed data
could be nicely fitted. We illustrate this fit by the dashed white line. The scaling
with the exponent b’ =0.58 is in good agreement with the scaling observed for
earthquakes (Fig. 1), where we got the 5’ =0.6 exponent. For much smaller sam-
ples, i.e. using micro-pillars instead of the bulk samples it is possible also to
study the size-effects. One would expect that for larger samples the statistics
would be better and the power-law span a wider region. The very simple reason
for this is that a controlled larger sample would allow larger slips. As it is shown
in Fig. 9 (right-hand-side panel), the compression of micropillars with different
sizes nicely confirm this prediction. It is interesting to note that the scaling ex-
ponent for the power-law tail remains invariant, with the same value as for bulk
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Figure 9. Probability density of acoustic event energies. On the left side the results obtained for
bulk samples. The observed distribution is fitted with a Tsallis-Pareto type probability density fun-
ction, with scaling exponent b’ =0.58 (Eq. 9). On the right panel results for micropillars are shown.
Compression of bigger pillars result in higher energy events, leading to longer power law tail.
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samples. This is again a striking similarity with our finding for earthquakes in
different seismologic regions.

We now turn our attention to the recurrence time statistics for the AE events.
The same methodology that was applied for earthquakes is used. In Fig. 10 we
plot the corresponding statistics for several AE energy threshold limits. Simi-
larly to the statistics obtained for earthquakes, the distributions for different
threshold values E collapse in the case of micropillars if we consider a rescaled
recurrence time. Again, a clear power-law trend is present for low recurrence
times which is related to the clustering effects in the system, expressed by the
Omori-law. For this region in the case of bulk samples the governing exponent
1s p=1.6-1.8, slightly changing from experiment to experiment while for micro-
pillars p =1.2—1.3 is obtained. The large difference for the bulk from the p=1
value in the original Omori law confirms our previous assumptions that for the
bulk sample although a single-slip dominated region was used in the statistics,
other micromechanical effects (noise) may still be present in much stronger man-
ner than in the case of micropillars. Another aspect worth of mentioning, is the
fact that similarly to earthquakes « < 1 is consistently obtained for the Gamma
distribution fits.

4. Computational approach with the Burridge-Knopoff model

The Burridge-Knopoff spring-block model was introduced in the late 1960s
by R. Burridge and L. Knopoff to model the phenomenon of earthquake produc-
tion (Burridge and Knopoff, 1967). Our aim here is to reconsider the simple
one-dimensional version of the model in view of the empirical results discussed
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Figure 10. Recurrence time statistics for AE events for a given E threshold. The black dashed line
indicates a fit with the Gamma distribution given in Eq. (11), and the red dashed line is a Tsallis-Pa-
reto fit for the region where Omori’s law is supposed to be valid. The p parameter is defined in Eq.
(4). The left panel is for the bulk samples the right panel is for micropillars.
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Figure 11. Schematic illustration of the main elements in a 1D Burridge-Knopoff model.

in the previous sections. The Burridge-Knopoff model uses a simple mechanical
analogy to approach the dynamics of two interacting (slipping) “planes” and the
phenomena of energy accumulation and release in such a process. The interaction
between the planes and the accompanying plastic mechanical deformations are
captured using an ensemble of blocks interconnected by springs as it is illus-
trated in Fig. 11. The motion of the blocks on the surface is friction-controlled,
as it will be detailed in the followings. The model can be studied in the simple
one-dimensional case or in the more realistic two-dimensional topology (Mori
and Kawamura, 2008). We consider here a simple one-dimensional (1D) compu-
tational exercise. The reason for considering the 1D version of the model and not
the 2D one is that for a proper statistics large systems and averages are needed.
Our computational resources did not allow for running such ensembles in the
more complex 2D topology.

4.1. The 1D Burridge-Knopoff model

In the 1D topology a row of blocks with identical masses (m) are placed on a
plane. The blocks are attached to their neighbors by identical springs (having
spring constant k,.). There is a second plane above and every block is attached to
this plane also by identical springs (with spring constant k,in this case). The
upper plane moves with velocity v and due to the interplay of the friction and
elastic forces the blocks will have a complex stick-slip motion leading to ava-
lanches of different sizes. Periods of potential energy accumulation (when the
blocks are stationary on the bottom plane) and release (when some of the blocks
slip to get in a more stable position) will continuously follow each other, leading
to a typical SOC-like phenomenon.

The equation of motion of the j-th block is the following:
mi; = Ro(xj_y — 2x; + x51.0) — kpx; — Fp(v + X)) (10)

where x; denotes the position of the block j relative to its equilibrium position; F;
1s the friction force (also called as the viscous term) which depends on the relative
velocity of the planes v, and the velocity of block j.

From our viewpoint the relevant property of the system is its total potential
energy. An analogy to an earthquake would be an avalanche-like decrease in the
total potential energy, from a local maximum to the closest local minimum. It is
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already known from the literature (Carlson and Langer, 1989) that this model
leads to a Tsallis-Pareto-like energy distribution (which was obtained in the case
of the real earthquakes as well). The main reason why we re-examine this mod-
el here is to learn whether it can also reproduce other relevant statistical fea-
tures, like the seemingly general Gamma distribution for the recurrence times.
Some properties of this 1D model have already been studied (see for example the
work of Mori and Kawamura, 2006), therefore many of the results that we pres-
ent are intended just for confirming earlier observations. In such cases we did
however a more detailed mapping of the model’s parameter space by attempting
to get scaling exponents in agreement with the ones obtained for earthquakes
and micro-quakes.

4.2. Implementation

The Python programming language was used to numerically implement the
previously described spring-block model. For solving the equations of motion, we
used the well-known fourth-order Runge-Kutta method. The dimensionless form
of Eq. (10) was used for the numerical implementation:

U, =12, +U,_, —2U,)-U, - $(2¢v +2LU,), (11)
where U, is the dimensionless displacement of the i-th block, relative to its equi-
librium position, [ = |—= isthe so-called stiffness parameter, vis the dimension-

p

less relative velocity of the two planes. The parameter ¢ characterizes how the
friction decreases with the increasing block velocity. According to the related
scientific literature (Mori and Kawamura, 2006) we used the following velocity-
-weakening friction force:

fif f<1 2=0

@)= i [>1 2=0, (12)
o) z2>0
1+§

where: z=2¢v+ 2¢(U) and f = (U, + U, , — 2U)) — U,

In the case of z = 0, if the resultant spring force has the same direction as
velocity v, it will be completely compensated by the friction (this is applied in
order to avoid the back-slip of the blocks). On the other hand, if z= 0 and the
direction of the resultant spring force is the opposite to v than it is compensated
by the friction up to the value 1, and above the value 1, the friction has always
unity value (this is basically due to the sticking part of the motion). Please note,
that from here on all the used quantities and parameters are dimensionless and
no units are therefore specified. Since we are interested only in scaling relations,
such a numerical simplification is well-motivated and therefore acceptable.
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There are two parameters that characterizes this velocity-weakening friction
force: the o which represents the drop in the friction force, when the respective
block starts to slip (it was introduced by Carlson et al., 1991) and { which char-
acterizes how the friction decreases with the increasing block velocity. Totally,
there are five parameters that can influence the behavior of the system: N (the
number of block elements) and [, ¢, 0, v which were previously mentioned.

As we already mentioned, we intend to follow the dynamics in the potential
energy of the system, and to detect from here distinguishable avalanches that
are associated with earthquakes. In Fig. 12 an example of a potential energy
time series for the dynamics of the model is given. Generally, we observe that
the energy drops from a local maximum to the closest local minimum, a process
which is considered to be analogous to what happens both in earthquakes and
dislocation motion. In order to clearly distinguish avalanches, we used the fol-
lowing restriction: when all of the blocks were stationary, the loading velocity
(v) was non-zero, and the elapsed simulation time (which is used as a variable
to locate the occurrence times) passed uniformly (increased with a d¢ value in
each and every numerical cycles). However, when one of the blocks started to
slip, the value of v was set to 0, and also the elapsed simulation time was “frozen”.
By this trick one could avoid that during an ongoing avalanche another one ap-
pears in a different part of the block chain. It allows also a clear time-like sepa-
ration of different events. During such an avalanche the potential energy mono-
tonically decreases.

Periodic boundary conditions were implemented and the first, unstable part
of the time series was not considered in the statistics. During the simulations
we recorded the variation of the total potential energy. The energy associated to
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Figure 12. Example of the potential energy time series. The parameters in the simulation are:
N=6000,/=10,v=107,¢=1,0=0.01, dt=0.1 (time step).
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an avalanche was defined as the differences between the consecutive maxima
and minima. We also recorded the occurrence times: the values of the previ-
ously described evolution time, at the starting points of the avalanches. Having
in mind these we can conclude, that in Fig. 12 only the successive maxima and
minima are in fact represented, since the intermediary steps are not important,
and those were not even saved during the simulations.

4.3. Distribution of the dissipated energies

First, we wanted to assure that the size of the examined systems (the num-
ber of blocks, V) are sufficiently large, to exclude finite size effects. We fixed:
v=107,1=10,¢=1,0=0.01, d¢=0.1, and studied the distribution of the energies
in the avalanches for different system sizes between N=500 and N=25000. The
results presented in Fig. 13 suggest, that the obtained probability density func-
tions for the energies of the detected avalanches do not differ substantially,
therefore for N=6000 the finite size effects can be already excluded. During our
simulations we observed however, that the stiffness parameter, /, is the one that
mostly influences the finite size effects. By increasing the value of /, the char-
acteristic size of the avalanches increases, therefore larger systems are needed
for eliminating finite size effects. Based on these observations we found that for
[=10, one can use N =6000 without being concerned for the finite size effects. In
Fig. 13 one can observe the validity of the Guttenberg-Richer law on six orders
of energy magnitudes. For the considered parameters the &’=0.54 scaling expo-

104 & X N=500
v N =3000
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T-Pfit: b" = 0.54, A = 0.00005,
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Figure 13. Probability density function for the energy distribution of the avalanches observed for
the Burridge-Knopoff model. Simulation result for different system sizes, IV, as shown in the legend.
The solid line represents the Tsallis-Pareto fit with the parameters given in the legend. The other
simulation parameters are: v=107,1=10,¢{=1,0=0.01, dt =0.1.
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Figure 14. Probability density function for the energy distribution of the avalanches observed for
the Burridge-Knopoff model. The influence of the ¢, o and [ parameters are shown on Figs. a, b and c,
respectively. For Fig. a we have: [ = 10 and 0 = 0.01, for Fig. b: /=10, « =1, (=1 and for Fig. c: { =1
and 0 = 0.01. The other parameters are fixed for: N = 6000, v= 10" and d¢ = 0.1.

nent in a Tsallis-Pareto fit is very similar to the value @ =0.6 observed value for
real earthquakes and 5 =0.58 observed for the micro-quakes.

Let us study now systematically the influence of the model parameters.

a. The { parameter governs the friction force, and characterizes how the
friction decreases with the increasing block velocity. By increasing the value of
¢ the friction decreases in a more accentuated manner with the velocity. The
results obtained for different { parameters (Fig. 14a) suggests that for {=1 one
can get similar distributions to the ones observed for earthquakes. For smaller
or larger { values, the energy distributions substantially differ from a Tsallis-
Pareto distribution.

b. The o parameter describes the drop in the friction force, which appears
when a sticking block suddenly starts to slip. The results presented in Fig. 14b
indicates that o has also a major influence on the shape of the p.d.f’s for the
energy distributions of the avalanches. The best scaling is for 6=0.01. Interest-
ingly, the influence of this parameter was not studied in the previous studies on
the Burridge-Knopoff model.

c. The [ parameter describes the stiffness of the spring-block chain. The re-
sults presented in Fig. 14c¢ suggests that the characteristic exponents of the
power law region for the p.d.f. are not influenced by the value of . As it was al-
ready discussed, this parameter influences the cutoff in the scaling and conse-
quently the finite-size effects.

4.4. Recurrence time distribution

It is known from the early days of the Burridge-Knopoff model that it can
reproduce successfully the Tsallis-Pareto-like p.d.f. for the dissipated energies.
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Figure 15. Recurrence time distributions in the simulated Burridge-Knopoff model. Results for
different M thresholds. The other parameters of the simulations are: N=6000, v=107,[=10,{=1,
0=0.01, dt=0.1.

Up to our knowledge, the recurrence time distributions were not studied within
this model, so it is challenging to see whether the model is successful for repro-
ducing also this stylized fact. We considered simulation for a broad range of
model parameters, looking for reproducing the previously presented experimen-
tal results. Interestingly, we observed that for all the considered model param-
eters the results of the simulations were similar, leading to the recurrence time
distribution presented in Fig. 15. Similarly, with the experimental results, dif-
ferent threshold magnitudes were implied, and the distributions for these were
collapsed by renormalizing the time to the average value. The M threshold mag-
nitudes were calculated as follows: M = log,(E), similarly to real earthquakes (E
represents the dissipated energy during the related event).

One will observe that the value of the fitting parameter for the Gamma-
distributions is @ = § ~ 1, in all cases. In this limit the Gamma-distribution
simplifies to the simple exponential distribution, which is specific to Poisson-like
processes meaning lack of correlations between the large avalanches. It is also
observable that similarly with the experimental data, in the limit of smaller
recurrence times, our data does not follow the fitted Gamma-distribution, reach-
ing higher probability density values and following a power-law trend. This in-
dicates, that a clustering phenomenon is present at this scale, similarly with the
Omori law observed for earthquakes and micro-quakes. Proceeding similarly
with what has been done for earthquakes in Fig. 3, we can plot the cumulative
number of events and their magnitudes as a function of the occurrence times to
better visualize the clustering. This is done in Fig. 16. From this figure we ob-
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Figure 16. Cumulative number of events (dots) and the magnitudes of the six biggest simulated
“earthquakes” (vertical bars) as a function of the occurrence time in the Burridge-Knopoff model.
The model parameters are: N=6000, v=107,[=10,¢=1,0=0.01, dt=0.1.

serve that there are no aftershock sequences, unlike for real earthquakes and
micro-quakes in the deformation of metals. For earthquakes we observed that
after a great earthquake, the rate of the detected earthquakes visibly increased,
leading to the well-known Omori law. Instead of such an increase, here a de-
crease is observable right after the large avalanches. On the other hand, one can
observe time periods with increased avalanche rates, but these are before the
occurrence of the events with a large magnitude and not after them. This is a
very different dynamical picture from the one offered in real earthquake dynam-
ics, and suggests a critical self-organization before the occurrence of large block
avalanches. This difference in the dynamical behavior is probably the result of
the frozen simulation time, implied during an avalanche, necessary in order to
clearly separate the events. We recall here, that in our computational model,
several avalanches occurring at different places in the chain are taken together,
as the simulation time is “frozen” until an avalanche stops. Seemingly this is the
price one has to pay, for a simpler computational implementation of the Burridge-
Knopoff model, without attempting a complicated de-clustering of the events.
However, the critical self-organization observed before the occurrence of large
avalanches, cannot be attributed to the chosen relaxation methodology.

5. Summary and conclusions

Three different, but seemingly strongly related physical phenomena leading
to avalanche like processes were statistically analyzed: earthquakes in different
seismotectonic areas, micro-quakes resulting from the slipping of crystallograph-
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ic planes due to dislocation motion in metals and slipping of blocks in a stick-slip
Burridge-Knopoff type model.

By using a proper energy scale for the energy dissipated in the avalanches
we have shown the validity of the Guttenberg-Richter law on many orders of
magnitude for the energy. The standardization of the magnitude scale allowed
for collapsing the relevant probability density functions, and observing a univer-
sal scaling exponent for the power-law type tail. A Tsallis-Pareto type (Lomax
II) probability density function with this universal exponent fitted excellently
the data for earthquakes, micro-quakes and the stick-slip dynamics of the Bur-
ridge-Knopoff model. From the view of the energies dissipated in the avalanches
these three phenomena are therefore analogous.

Evidences for the Omori law (aftershocks in form of avalanche clusters after
a large event) were observed both for the studied earthquake databases and the
acoustic recordings during the slipping dislocation planes. Although clustering
of avalanches was observed in the dynamics of the Burridge-Knopoff model as
well, these were shown to precede the large events, so they do not correspond to
the conditions of the Omori’s law.

The recurrence time of events above a given magnitude threshold was stud-
ied by following again the distribution for all three related phenomena. For
earthquakes and micro-quakes, it was observed that for different magnitude
thresholds their probability density function is well fitted with a non-trivial
Gamma distribution. The distributions obtained for different magnitude thresh-
olds collapse if we rescale the time with the average recurrence time. The 1D
Burridge-Knopoff model shows similar statistics, although the fit parameters
suggest here a trivial situation. One obtains an exponential distribution suggest-
ing a total lack of correlations.

The statistical studies considered here lead to some clear overall conclusions.
We proved that earthquakes and micro-quakes are clearly analogous phenom-
ena, and the investigated statistics point not only to qualitative, but also to much
deeper quantitative analogies. However, the 1D Burridge-Knopoff model which
is extensively used for modeling earthquakes presents some deficiencies when
one considers the time-like correlations between the events. The avalanche size
statistics of this model reproduces elegantly the scaling in the Guttenberg-Rich-
ter law, but it fails to reproduce the Omori’s law and the statistics observed in
the recurrence times. This insufficiency is due to the lack of strong correlations
in the system. Consequently, a step to be followed in modeling is to introduce
some further elements in this simple model. Such endeavors were already ex-
plored, for example considering viscous coupling (Pelletier, 2000; Hainzl, 1999)
1s one successful route, where one can reproduce the Omori-law and certain
important foreshock statistics as well.
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SAZETAK

Statisticke analogije izmedu potresa, mikropotresa u metalima
ilavina u 1D Burridge-Knopoff modelu

Andras Kuki, Sandor Lipcsei, Istvan Gere, Ferenc Jarai-Szabd,
Attila Gergely, David Ugi, Péter Dusan Ispanovity, Zoltan Dankhdzi,
Istvan Groma i Zoltan Néda

Univerzalnosti i intrigantne analogije u statistici lavina otkrivene su za tri fizicka
sustava definirana na uvelike razli¢itim duljinama i energijskim skalama. Potresi uzroko-
vani dinamikom na tektonskoj skali, mikro-potresi koji nastaju na klizeéim kristalografskim
ravnina u metalima i jednodimenzionalni Burridge-Knopoffov model opruga i blokova na
skali sobe prouceni su sa sli¢nih statistickih stajalista. Valjanost Gutenberg-Richterove
relacije za gustocu vjerojatnosti energija disipirane u lavinama dokazana je za sva tri
sustava. Analizom podataka za tri razli¢ita seizmicki aktivna podrucja i detekcijom
akustickih valova za razlic¢ite uzorke Zn pod deformacijom, otkrivena je univerzalnost za
ukljuceni eksponent skaliranja. S pravilnim izborom parametara 1D Burridge-Knopoffov
model moze reproducirati isti zakon skaliranja. Vremena ponavljanja potresa i mikro-
potresa s magnitudama iznad zadanog praga opet predstavljaju slicne distribucije 1
zapanjujuce kvantitativne slicnosti. Medutim, 1D Burridge-Knopoffov model ne moze
objasniti korelacije opazene u takvim statistikama.

Kljucne rijeci: potresi, mikroplasti¢nost, lavine, univerzalnosti, skaliranje, korelacije,
Burridge-Knopoffov model
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