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Accurate visibility forecasting is essential for safe aircraft operations. This 
study examines how various configurations of the Random Forest model can 
enhance visibility predictions. Preprocessing techniques are employed, including 
correlation analysis to identify fundamental relationships in weather observa-
tions. Time-series data is transformed into a regular Data Frame to facilitate 
analysis. This study proposes a classification framework for organizing visibil-
ity data and phenomena, which is then used to develop a visibility forecast using 
the Random Forest method. The study also presents procedures for hyperpa-
rameter tuning, feature selection, data balancing, and accuracy evaluation for 
this dataset. The main outcomes are the Random Forest model parameters for 
a three-hour visibility forecast, along with an analysis of errors in low visibility 
forecasts. Additionally, models for one-hour forecasts and visibility forecasting 
under precipitation are also examined. The resulting models demonstrate a 
deterministic forecast accuracy of approximately 78%, with a false alarm rate 
of around 6%, providing a comprehensive overview of the capabilities of the 
Random Forest model for visibility forecasting. As anticipated, the model dem-
onstrated limitations in accurately simulating fast radiative cooling or abrupt 
decreases in visibility caused by precipitation. Specifically, in relation to pre-
cipitation, the model achieved an accuracy of 79%, yet exhibited a false alarm 
rate of 19%. Additionally, this method sets a foundation for enhancing prediction 
accuracy through the inclusion of supplementary forecast data, while its imple-
mentation on real-world datasets expands the reach of machine learning tech-
niques to the members of the meteorological community.

Keywords: aviation meteorology, visibility forecasting, nowcasting, landing fore-
cast (trend), machine learning, random forest, feature selection, hyperparam-
eters tuning

1. Introduction

Visibility forecasting is one of the fundamentals of aviation meteorology. It 
is included in forecasts, observations and warning information. Very often, fore-
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casters cannot rely on numerical models and have to use their own forecasting 
procedure. Thus, visibility provides great space for testing different forecasting 
approaches and developing new tools for forecasting improvement. 

The visibility forecast is issued by meteorologists in accordance with ICAO 
Annex 3. It is included in both longer-term TAF forecasts (valid for 9, 24 or 30-
hour period) and shorter-term forecasts, e.g. landing ‘TREND’ forecasts (valid 
for 2 hours from the time of the report which forms part of the landing forecast) 
(ICAO, 2010). It is the possibility of improving these short-term forecasts that 
motivates this research.

Examination of the quality of aviation landing forecasts in recent years has 
shown that these forecasts are not at the forefront of forecasters’ minds (Sládek, 
2021). The work reveals that the quality of TREND forecasts corresponds to the 
persistent forecasting. While its accuracy is high, the skill of the forecast is 
minimal. Thus, a product that could alert forecasters to an impending change 
would undoubtedly find use at any forecast station. Here, several options can be 
considered for such a short (nowcasting) interval. 

In the area of visibility prediction, several studies have been published that 
have taken different approaches to prediction. A study from the area of eastern 
Canada focused on more accurate parameterization within numerical models 
(Gultepe et al., 2006). This work relies on very advanced measurement and ob-
servation methods that may not be standard worldwide. 

In general, the use of complex statistical methods that are combined into 
Machine Learning models is now considered a very effective way of improving 
forecast accuracy (Patriarca et al., 2022). Although more for capturing local pat-
terns that can be characterized using meteorological data, rather than as a full 
replacement for numerical models (Schultz et al., 2021).  

An approach using deep learning methods was chosen by the author team 
to predict visibility at Urumqi international airport based on commonly observed 
variables (Zhu et al., 2017). The work concludes that the method is quite suc-
cessful, but especially the prediction of the time of deterioration and improve-
ment of the situation is very difficult. Similar problems were also encountered 
in another neural network application, for tested intervals of 3, but more notably 
for intervals of 6 or 8 hours (Deng et al., 2019). 

International research team focused on Rio de Janeiro Airport (Cordeiro et 
al., 2021) proposed ML methods to predict very short-term changes at the airport 
using more frequent measurements within the airport, radar measurements and 
other inter-hourly data collected. Their paper focuses on forecasts of ceiling and 
visibility shorter than one hour and confirms the usefulness of ML methods as 
a complement to NWP.

If we consider the contribution of each work, it is undeniable that they 
achieved certain results within their domain. However, it is important for avia-
tion to have a good control over the progress of machine learning and to know 
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the reason why errors occur in the results. Thus, it seems reasonable that we 
should rather focus on supervised methods in research.

Among the well-known statistical models, the authors Salman and Kanigoro 
used the ARIMA model to predict visibility. In their conclusions, while they 
admit that work can continue in this direction by testing different variants, they 
rather see an opportunity in further developments in the field of neural networks 
(Salman and Kanigoro, 2021). 

From a forecasting perspective, the use of decision tree-based methods also 
makes sense, as a decision tree is something that weather forecasters often use, 
consciously or unconsciously, when making forecasts. A very compelling argu-
ment for the use of the decision tree method is, for example, the work of F. 
Wantuch from Hungarian Meteorological Service, who presents that his pro-
posed method is already in operational use (Wantuch, 2001).

One suitable method using the principle of decision trees is the Random 
Forest method. The method conveniently uses groups of decision trees and re-
turns the most likely possible solution. The advantages of this method can also 
be used, for example, to predict ground characteristics such as soil temperature 
or greenhouse water content (Tsai et al., 2020). From a purely meteorological 
perspective, it can be used to forecast complex processes and influential phenom-
ena such as flood forecasting (Schumacher et al., 2021) or extensive rainfall (Hill 
and Schumacher, 2021). However, both of the aforementioned works have also 
applied this method to NWP outputs.

Since the above papers demonstrate that there are suitable methods that 
can create room for improved prediction, it is reasonable to ask how will the 
machine learning methods perform on only observational data? How will they 
be successful if they only “know” the conditions at a given location? 

The answer to this question may provide some new insights:
1. a new perspective on the statistical treatment of visibility observations at 

weather stations,
2. the basic accuracy of the machine learning model, which should improve 

as more data is added,
3. the identification of complex situations where changes occur that are sta-

tistically unlikely, and where human error in forecasting may also occur,
4. identifying the limits of the chosen method on the dataset used.
As mentioned, a method that is very close to human decision making even 

in operational practice is the decision tree-based method. It is one of the reasons 
why Random Forest was chosen as the main one. The goal of this paper is not 
only to establish a solid foundation for forecasting using machine learning, but 
also to show a different approach to it. Priority will be given to the prediction of 
dangerous phenomena over the accuracy of the whole model for insignificant 
values. The paper also aims to convey insight into the random forest method to 
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forecasters just on the prediction of this crucial element for them. After all, it is 
forecasters who will – without exaggeration – depend on ML products in the near 
future.

2. Data and methods 

As a main dataset, SYNOP reports (WMO, 2019) with hourly frequency were 
used. These reports follow the same format worldwide as defined by World Me-
teorological Organization (WMO). It contains of numerous valuable information, 
such as visibility, wind speed, temperature, dew point, pressure, precipitation 
sum, observed phenomena, etc. Advantage of using SYNOP reports is its stan-
dard quality, as methodology of observation does not significantly differ through 
time or station by station. Therefore, method can be used worldwide with a minor 
calibration, mainly in data preprocessing (units change, data cleaning, etc.).

The machine learning model will be implemented and tested on data from 
synoptic observations from the station at Brno-Tuřany Airport (WMO: 11723, 
ICAO: LKTB) from January 1998 to October 2019 (Fig. 1). 

As with all research, at least a basic exploratory analysis will need to be 
done. However, it cannot be assumed that the basic meteorological elements 
would be significantly different from the normal daily or annual climatic pattern, 
or that their distribution would be significantly different from the climatic pat-
tern. The distribution of meteorological phenomena that are probably most im-
portant for visibility prediction (and visibility itself) is depicted in the Figure 2.

A Spearman correlation matrix was calculated to confirm the assumptions 
about the factors influencing visibility. The influence of these factors was as-
sumed and derived from experience and physical laws, e.g. relative humidity, 
weather phenomena, precipitation, wind speed, cloud height, etc. Although not 
all of these factors need to directly affect visibility, an empirical link is assumed 

Figure 1. Schematic figure of the station position.
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between some of them. Some of the inappropriate parameters have been removed 
from the matrix depicted by Tab. 1.

Spearman correlation showed a relatively high dependence between visibil-
ity and temperature, probably due to thermodynamic principles and radiative 
cooling of air and condensation of water vapour. The correlation with relative 
humidity is as expected, as well as with wind speed. On the contrary, a higher 
value of correlation might be expected to precipitation. A higher correlation coef-
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Figure 2. Histograms of visibility (VIS), relative humidity (RH), present weather (WW), temperature 
(T), hourly precipitation sums and wind speed from observations from Brno-Tuřany station (1998–
2019).
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ficient with duration of ongoing meteorological events (WWL) is very promising. 
For the correctness, it should be noted that the correlation of non-quantitative 
values (ww) is not standard, arguably not statistically correct. However, this 
correlation has shown that the code itself can correlate with visibility and provide 
a suggestion for classifying phenomena. For completeness, p-values were also 
calculated to test statistical significance (at significance level of 0.05) and for 
none of the visibility variables did the probability value exceed 1%. Therefore, 
none of the predictors will be dropped in this phase.

2.1. Data preparation

First, the data had to be cleaned, or missing or wildcard values (e.g. ‘X’, ‘/’) 
had to be replaced with NaN (short for “Not a Number” in python). As the fol-
lowing table (Tab. 2) indicates, the data is very consistent and does not contain 
many records with missing values

Table 1 Spearman correlation matrix for relevant features (from left to right: T – temperature, Td – 
dew point temperature, RH – relative humidity, vis – visibility, dd – wind direction, ff – wind speed, 
n – cloud cover, ww – phenomena, r1 – precipitation in recent hour, sr6 – precipitation in recent 6 
hours, u, v wind components, WWL – duration of current phenomena)

T Td RH vis dd ff n ww r1 sr6 u v WWL
T 1.00 0.89 –0.54 0.50 0.01 0.09 –0.27 –0.34 0.01 0.01 –0.04 –0.36 1.00

Td 0.89 1.00 –0.14 0.26 0.01 –0.06 –0.13 –0.15 0.00 0.01 –0.08 –0.21 0.89
RH –0.54 –0.14 1.00 –0.67 0.01 –0.36 0.40 0.54 –0.02 0.00 –0.10 0.46 –0.54
vis 0.50 0.26 –0.67 1.00 0.13 0.24 –0.35 –0.58 0.01 –0.22 0.07 –0.59 0.50
dd 0.01 0.01 0.01 0.13 1.00 –0.02 0.09 0.03 0.00 –0.73 0.08 –0.06 0.01
ff 0.09 –0.06 –0.36 0.24 –0.02 1.00 0.07 –0.05 0.02 0.02 0.23 –0.10 0.09
n –0.27 –0.13 0.40 –0.35 0.09 0.07 1.00 0.53 0.03 –0.12 –0.07 0.35 –0.27

ww –0.34 –0.15 0.54 –0.58 0.03 –0.05 0.53 1.00 0.06 –0.05 –0.02 0.66 –0.34
r1 0.01 0.00 –0.02 0.01 0.00 0.02 0.03 0.06 1.00 –0.02 –0.01 0.00 0.01
sr6 0.01 0.01 0.00 –0.22 –0.73 0.02 –0.12 –0.05 –0.02 1.00 –0.12 0.08 0.01
u –0.04 –0.08 –0.10 0.07 0.08 0.23 –0.07 –0.02 –0.01 –0.12 1.00 –0.05 –0.04
v –0.36 –0.21 0.46 –0.59 –0.06 –0.10 0.35 0.66 0.00 0.08 –0.05 1.00 –0.36

WWL 1.00 0.89 –0.54 0.50 0.01 0.09 –0.27 –0.34 0.01 0.01 –0.04 –0.36 1.00

Table 2. Basic counts and characteristic of chosen database series of overall count – 189589 observa-
tions (VIS - visibility, T - temperature, RH - relative humidity, dd – wind direction, ff – wind speed, 
r1 – hourly precipitation sum, n – cloud coverage, h – cloud height).

VIS T RH dd ff r1 n h
NaN 9 9 9 13 10 46 23 23

Range 0/75 –21/37 14/100 0/360 0/21 0/60 0/8 (9) 0/21000
Units km °C % ° m/s mm/h octas m
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The dataset contains many other columns corresponding to the data con-
tained in the SYNOP report (WMO, 2019). There the counts of the redundant 
data were higher. Columns that are only included in certain terms (e.g., mini-
mum or maximum daily temperature, 24-hour precipitation, etc.) have also been 
removed.

2.1.1. Wind handling
While the value for wind speed is unambiguous, there is one problematic 

value for direction, particularly the variable wind direction. It was necessary to 
translate the “variable” value in the SYNOP code “99” to some understandable 
value. Variable wind direction only accounts for 4.4% of the wind direction data. 
It is mostly associated with very low speeds (Tab. 3) therefore, using value of 
direction from preceding term would not cause significant bias.

Table 3. Occurrence counts of wind speeds by variable wind direction in examined dataset.

Wind speed [m/s] Count Relative
1 5570 68.7 %
2 2503 30.9 %
3 28 0.3 %
4 5 0.06 %

It should be noted, however, that some papers and online tutorials often may 
not address this problem. This is because they use average daily data which does 
not contain the variable value. Of course, this completely changes the research 
question, problem, or continuity of the data. For a correct assessment of wind 
direction and wind speed, the u and v wind components were used according to 
the formulas (1) and (2):
 u = ws ´ sinj,  (1)
 v = ws ´ cosj,  (2) 

where ws is wind speed and j stands for wind direction.
The advantage of using u and v wind components should be the separate 

quantification of the influence of zonal and meridional flow. For example, during 
significant advection, using u and v components could yield better results. It is 
also much easier to process for ML methods, because in the original format, for 
example, the values 350 and 10 are very far apart, although they indicate simi-
lar directions.

2.1.2. Creating shifted values
Another issue addressed during the preparation was how to deal with the 

time series data and prepare it correctly for the algorithm. In the case of applica-
tions such as neural networks, we have tools for time series, or a suitable type, 
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called long-short term memory (LSTM) networks  (Brownlee, 2017). In conven-
tional machine learning methods, especially supervised learning, we will cer-
tainly want to see what the importance of each observation term for forecasting 
is, etc.

For each term, duplicate predictors set values were created from the terms 
three and four hours ago (Fig. 3). Thus, the values themselves were not trans-
formed or subtracted in any way, but only copied from the term before the given 
time interval. 

Figure 3. The process of assigning predictors (black frame) to a predicted value (gray frame), values 
in the grey dotted frame do not enter modelling process directly.

Table 4. Pearson’s correlation for visibility in time of forecasting and 3 and 4 hours in advance.

T Td RH vis dd ff n ww w1 w2 sr6 u v

vis 0.48 0.24 –0.63 1.00 0.03 0.22 –0.26 –0.39 –0.31 –0.40 –0.02 –0.24 0.05

visshift3 0.43 0.24 –0.53 0.84 0.00 0.15 –0.27 –0.30 –0.27 –0.34 –0.03 –0.19 0.07

visshift4 0.41 0.24 –0.49 0.79 0.00 0.12 –0.27 –0.28 –0.26 –0.32 –0.03 –0.18 0.07

Theoretically, the problem could also be approached by classifying the trend 
of presumably important variables (e.g. relative humidity, temperature, wind 
speed…) and thus expressing the trend of the past terms well.  However, such 
an approach could lose valuable information and the classification itself could 
degrade our results and we would hardly know the reason for the lower success 
rate.

The validity of such an approach can be anticipated with the help of statis-
tics, i.e. Pearson’s correlation coefficient of forecasting features and forecasted 
parameter (Tab. 4). This could suggest how significant the values from previous 
measurements will be.

The low correlation of precipitation, which did not reach more than 0.05, may 
be rather surprising. Moreover, it was experimentally tested by hourly rainfall, 
on a limited data set, with stratification by hourly rainfall, but even so a very 
low correlation was obtained.
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2.1.3. Time handling (cyclic)

Since, especially with fog, the time of day or month of the year when the fog 
is formed is quite important, the time must be handled rationally. It seems sen-
sible to create a cyclic dataset that helps to determine the hour of the day and 
month of the year so that December and January are not seen as the most distant 
numbers, but relatively close ones. Similarly, the 23rd hour of the day and the 1st 
hour of the day could be read wrong by the method. For these purposes, the 
gonio metric functions sine and cosine applied to the number of seconds since the 
beginning of the day and hour of year work well (Fig. 4).

Figure 4. Cyclical time (sin and cos function applied to a second of the day or hour of the year).

The graph corresponds very suitably to the part of the day in terms of incom-
ing solar radiation and daytime temperature, so this visualization shows the 
correct treatment of the time characteristics.

2.1.4. Visibility labelling

For testing purposes, two visibility category labels were chosen. One is sub-
jective, chosen to see the effect of method parameters on arbitrarily chosen cat-
egories. The other refers to the criteria for issuing SPECI reports and classifying 
change groups according to ICAO Annex 3 (International civil aviation organiza-
tion, 2010), which is a fundamental regulation in aviation meteorology.

The criteria set out in the aeronautical meteorology regulations, which spec-
ify under what conditions an exceptional observation report must be issued, can 
be considered formally correct. These criteria are shown for clarity in Tab. 5.

For the purpose of method tuning, subjective partitioning of the dataset ac-
cording to visibility, or data labelling, was used. Values were chosen that are 
important in meteorology, e.g. instrument meteorological conditions (IMC), 
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 visual meteorological conditions (VMC) or fog (FG) or mist (BR) threshold. All 
these categories are listed with their counts in Tab. 6.

As can be seen from the table, categories were created in intervals of one 
kilo metre, with only three categories above five kilometres. First, category 5 
(5–6 km), to show how the model handles values between high visibility and 
mist in the resulting matrix. Next one, category 6 (6,015,010 km), where there 
are, for example, the colour code boundaries, the mist boundaries in the SYNOP 
report or boundaries of visibility observation (code 9999) in the METAR report 
(WMO, 2019). The last category contains visibilities above 10 km.

It is clear that in both cases of categorization we are dealing with an imbal-
anced dataset (counts of categories are very different). Therefore, since there is 
an imbalance in the target variable, it will be correct to focus on balancing tech-
niques as well (Brownlee, 2019).

2.1.5. Phenomena classification and labelling

Different meteorological phenomena have different effects on visibility. To 
evaluate their influence within the RF method, it will undoubtedly be necessary 
to group them into categories. Without grouping, RF would assume that, for 
example, codes 52 and 54 are completely different, even though they indicate 
intermittent drizzle in both cases. For the purposes of this research, a classifica-
tion of thirteen categories will be used (Tab. 7), which emphasizes primarily the 
characteristics of precipitation and its likely effect on visibility.

Table 5. Visibility categories based on ICAO Annex 3 and their occurrence frequency in dataset.

Visibility Category Count in dataset
< 0.8 km 0 3815

0.8 – 1.5 km 1 2529
1.5 – 3.0 km 2 7119
3.0 – 5.0 km 3 13140

> 5.0 km 4 162940

Table 6. Description of test categories and their counts in the dataset.

Visibility Label Description Count in dataset
< 1 km 0 Fog 4221

1 – 2 km 1 Severe mist 4218
2 – 3km 2 Moderate mist 5024
3 – 4 km 3 Moderate mist 6059
4 – 5 km 4 IMC threshold 7081
5 – 6 km 5 Reduced visibility within VMC conditions 5795
6 – 10 km 6 Mist by SYNOP report 25140
> 10 km 7 Visibility not reduced 132005
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This categorization of phenomena could undoubtedly be improved. It would 
certainly be possible to experiment with different groups of phenomena and 
observe their influence on the modelling results. The greatest contribution can 
be expected with precipitation, i.e. the designation of its state.

Involvement of past weather code represented in SYNOP report by W1 and 
W2 was questionable. Their usefulness would probably be outweighed by un-
necessary duplication of information. Indeed, in the RF method, highly corre-
lated values or duplicate information reduce their impact on the modelling. Thus, 
here the effect of the current WW weather ensemble would be suppressed (Bre-
iman, 2001), (Chase et al., 2022).

In the experimental phase, also one-hot encoding of phenomena was tested. 
Besides removing rare events, assigning low importance, one-hot encoding did 
not bring any significant improvement. Therefore, it was not used in final re-
search.

2.2. Methods
The Random Forest method was chosen as the most suitable for visibility 

modelling. Firstly, it corresponds well with the procedure of the forecaster, who 
compares all possible values of the predictors and determines whether they are 
suitable for fog occurrence, or visibility improvement, etc. 

The second motivation is data-based. Decision trees, and hence RF, can 
handle categorical and continuous variables well, which is useful in such a di-
verse dataset.

And the third reason was the testing that was done on a limited subset of 
data (3 years). Models of several traditionally used methods in their baseline 
calibrations were created and their success rates were visualized (comparison of 

Table 7. Subjective categorization and labelling of phenomena used for RF modelling. 

Label Synop code range (WW) Description
1 0–12 No precipitation
2 13–19 Precipitation in vicinity
3 20–29 Precipitation or fog in preceding hour, not during observation
4 30–39 Dust storm, sandstorm, drifting or blowing snow
5 40–49 Fog or freezing fog present
6 50–59 Drizzle
7 60–69 Rain
8 70–79 Solid precipitation
9 80–82 Rain showers
10 83–84 Sleet showers
11 85–90 Showers with prevailing solid precipitation
12 91–94 Thunderstorm within preceding hour
13 95–99 Thunderstorms
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testing set of 3 years dataset in Appendix 2 – Methods comparison). According 
to the results, the random forest performed best in modelling.

The Random Forest consists of a random set of decision trees that can be 
compared to the forecaster’s thought processes. After testing all sequences 
(trees), the result that came out the most often (majority vote) from all trees is 
selected (Fig. 5).

The way the nodes are split is the same as for ordinary decision trees. In this 
case, the default Gini index was chosen based on testing, since none of the options 
(gini, entropy, log_loss) recorded very different results. The Gini index for each 
node determines the probability of misclassification when randomly selected 
from the set. Thus, for example, if there are only values of one class in a node, 
the probability of misclassification will be zero (Pedregosa et al., 2011).

Figure 5. Schematic model of Random Forest method (Sruthi, 2021).

As creators of a specific RF model, we can define its main properties, the 
hyperparameters. These are, for example, the number of trees in a forest (num-
ber of estimators), the maximum depth (number of tree levels to split), the min 
sample split specifying the minimum number of observations at a point to be 
split, etc.  (Pedregosa et al., 2011).

Since we want to know the ideal values of the hyperparameters, it is possible 
to create a loop that creates a model with new values and returns its accuracy 
at each iteration. The most accurate combination of hyperparameters would be 
selected. However, this procedure would be very computationally and time con-
suming. Thus, it will only be used to tentatively determine the hyperparameters 
for control of the automatic algorithm.

The other subactivity will be dataset balancing. If the dataset is imbalanced, 
i.e., values in one category are far more numerous than in another, then balanc-
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ing needs to be addressed. This is done because with a large imbalance, the al-
gorithm would be trained on a high number of high visibility examples and a 
very small number of fog examples. It would then have a hard time identifying 
fog instances when it knew the minimum number of them. There are different 
ways to deal with imbalanced dataset, using advanced combined methods, e.g., 
threshold changes, cost sensitive learning, or data sampling (Brownlee, 2021). 
From the mentioned methods, sampling is very easy to apply, and it would not 
affect idea of the research.

The data sampling is either done manually during data preprocessing, where 
some data from the most populated category is manually removed, or data from 
less populated categories is duplicated. The second option is to use the already 
built-in BalancedRandomForest model, where the sampling strategy can be ad-
justed. This particular option will be used because it takes a minimum of lines 
of code and requires much less testing of the appropriate sampling ratio (Bal-
ancedRandomForestClassifier, 2012).

2.2.1. Hyperparameter tuning
To obtain best set of hyperparameters, there were created three separate 

data subsets. This was done because in this stage, we could not surely say wheth-
er we would use balanced, imbalanced dataset or e.g., separate model for pre-
cipitation. Therefore, procedure was applied to three scenarios, where all predic-
tors were used:

1. Random forest without balancing dataset,
2. Balanced random forest,
3. Observations with precipitation only.
First, the roughly calibrated model was processed in a loop and examined to 

obtain a possible range of parameters and to detect any serious errors in the 
automatic hyperparameter search. The loop iterated through the list of possible 
values, evaluated the accuracy, and finally only the values with the highest ac-
curacy were retained.

After obtaining outcomes from manually programmed loop, Randomized-
SearchCV method was applied in estimated grid of parameters (sklearn.model_
selection.RandomizedSearchCV, 2022). This method uses random selection of 
parameters in a specified grid (sklearn.model_selection.GridSearchCV, 2022), 
tests models with these parameters, performs cross-validation, determines ac-
curacy of the model and returns the most accurate combination. As a scoring 
metrics, negative mean squared error was chosen.

This procedure simulated three scenarios (the above mentioned imbalanced, 
balanced, collision). Three sets of hyperparameters were thus obtained (Tab. 8).

RF models were built with these hyperparameters. To make the models more 
easily comparable in terms of other influences, these hyperparameters were not 
further modified.
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2.2.2. Feature selection

Correct selection of predictors (features) significantly affects model perfor-
mance. It was done in three phases during this research. Firstly, predictors with 
insufficient counts or different frequency (e.g. maximum temperature, reported 
once daily) were dropped from the dataset. Also, irregularly appearing predictors 
or predictors with many missing values were discarded (e.g. highest cloud layer). 
As a second step, predictors obviously redundant for visibility forecasting (e.g. 
report type information) were also dropped. The third step was the actual search 
for the ideal combination of predictors. Again, this can be done using manually 
written code or imported functions from the Sci-kit learn library. 

To get best predictors combination automatically, recursive feature elimina-
tion with cross-validation (RFECV) method was chosen. This estimator is ini-
tially trained on a complete set of features (Tab. 9) and the importance of each 

Table 8. Hyperparamteres values returned by the randomized search with cross validation.

Dataset Max_depth Max_features Max_samples N_estimators
Balanced 9 0.6 0.8 125
Imbalanced 9 0.7 0.8 110
Precipitation 5 0.1 0.3 50

Table 9. Original and complete set of predictors for visibility forecast in three hours.

Predictor Time Series label Symbol Remark
Month of Forecast mm M Observed

Cyclical value of month of Forecast month_sin  
month_cos Msin, Mcos Calculated

Cyclical hour of the day of Forecast HH H Calculated
Visibility 3 and 4 hours ago visshift3, visshift4 VISn-3 ,VISn-4 Observed
RH 3 and 4 hours ago rhshift3, rhshift4 RHn-3 , RHn-4 Observed
Temperature 3 and 4 hours ago Tshift3, Tshift4 Tn-3 ,Tn-4 Observed
Dew point temperature 3 and 4 hours ago Tdshift3, Tdshift4 Tdn-3, Tdn-4 Observed
Wind speed 3 and 4 hours ago ffshift3, ffshift4 Wsn-3 ,Wsn-4 Observed
Cloud base height 3 and 4 hours ago h1shift3, h1shift4 Chn-3 ,Chn-4 Observed
Cloud amount 3 and 4 hours ago n1shift3, n1shift4 Nn-3 ,Nn-4 Observed
Hourly precipitation sum 3 and 4 hours ago r1shift3, r1shift4 R1n-3 ,R1n-4 Observed
6-hours precipitation sum 3 and 4 hours ago r6shift3, r6shift4 R6n-3 ,R6n-4 Observed

Visibility category 3 and 4 hours ago vis_cshift3,  
vis_cshift4

VISCn-3 

,VISCn-4
Observed

Category of phenomena 3 and 4 hours ago ww_catshift3,  
ww_catshift4

WWCn-3 

,WWCn-4
Calculated

U-component of wind 3 and 4 hours ago ushift3, ushift4 Un-3 ,Un-4 Calculated
V-component of wind 3 and 4 hours ago vshift3, vshift4 Vn-3 ,Vn-4 Calculated
Duration of phenomena 3 hours ago WW_l WWL Calculated
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feature is calculated. Then the least important feature is dropped. This procedure 
is repeated recursively on the set of predictors until the defined number of fea-
tures is finally reached. (sklearn.feature_selection.RFE, 2022). 

As the most suitable parameter for cross validation, f1 parameter was chosen 
(see Appendix 1). The main advantage is that f1 reflects the ideal ratio of accu-
racy and bias very well. 

2.2.3. Output accuracy evaluation

The four most representative evaluation metrics were used for evaluating 
the model. As usual in various other meteorological works, the Jolliffe and Ste-
phenson contingency table method will be applied (Jolliffe and Stephenson, 
2012). In a very comprehensive manner, the output statistics will show accuracy, 
false alarm, miss rate, and fog detection probability. Their characteristics are 
listed in Tab 10. It should be noted that a variety of other accuracy metrics exist, 
but in the interest of maintaining clarity of the procedure, these have been se-
lected as representative and relevant. It should be recalled that this evaluation 
of forecasts is somehow different from the usual binary classification, i.e., di-
chotomous forecasts, as it is rather multi-categorical. Abbreviations have been 
defined for this purpose: n for number of all tested cases, Fi for category i fore-
casted, Oi for category i observed.

Table 10. Accuracy metrics for model evaluation.

Metrics Equation Explanation

Accuracy Acc
n

F Oi i= ∑1 What fraction of forecasted values 
were correct?

Total False Alarm Rate FAR
n

F Oi j= ∑1  For Fi < Oj

What fraction of all the forecasts 
were alarming – predicting lower 
visibility?

Miss Ratio Miss
n

F Oi j= ∑1  For Fi > Oj

What fraction of all the forecasts 
were erroneous – predicting higher 
visibility?

Fog Probability Detection PoFgD
n

F O
i

i i= ∑1
 For i = 1 What fraction of fog observations 

were forecasted correctly?

Other very relevant metrics are mentioned e.g., in (Jolliffe and Stephenson, 
2012), particularly Gerrity skill score, Heidke skill score or Peirce’s skill score 
that can be very conveniently used for multicategory forecasts. However, the 
potential ability to accurately assess leads to the use of a high number of metrics, 
which reduces the clarity of the assessment. Therefore, for the purposes of this 
article, rather basic metrics are used. However, if interpreted correctly, their 
predictive capability is preserved.
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3. Results

Different combinations of predictor sets were tested in the experimental 
phase. The experiments were initiated with the entire data set listed in Tab 9.. 
Each set of predictors was tested on different model configurations (balanced, 
imbalanced, with different hyperparameters or, in the case of balanced RF, with 
different sampling strategies). The importance of each predictor (feature) was 
estimated as the permutation importance. This is calculated as the reduction in 
the model score when one predictor value is randomly shuffled (Breiman, 2001). 
Besides numerical value, importance was also visualized (Fig. 6) since it in some 
cases yielded quite different results.

                                                                       (a)                                                                            (b)

Figure 6. Permutation importance visualization for (a) full dataset, and (b) experimental balanced 
dataset by imblearn.ensemble.BalancedRandomForest.

After the experiments, it was possible to highlight four subsets of predictors 
that achieved the highest accuracy or produced other interesting value, such as 
very low FAR or high fog detection capability. Predictors in these subsets were 
selected based on permutation importance.

D1.  Complete dataset (as shown in the Tab. 9.)
D2.  Msin, VISn-3, VISn-4, RH-3, Tn-3, Un-3, Vn-3, Chn-3, VISn-4, RHn-4, Tn-4, Un-4, 

Vn-4, Chn-4, WWL;
D3.  H, VISn-3, VISn-4, VISCn-3, WWCn-3, RH-3, Tn-3, Un-3, Vn-3, Chn-3, VISn-4, 

RHn-4, Tn-4, Un-4, Vn-4, Chn-4, WWL;
D4.  Msin, VISn-3, VISn-4, RH-3, Tn-3, Un-3, Vn-3, Chn-3, VISn-4, RHn-4, Tn-4, Un-4, 

WWL;
Some results that represent well the differences between the subsets, sam-

pling strategies and balancing are shown in the Tab. 11. 
The table shows that it is possible to achieve almost 80% accuracy on the 

test set. The balancing of the dataset is of great importance and the values of 
underestimation and overestimation of the model (Miss, FAR) are flipped accord-
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ing to the procedure used. At first sight, the worst success rate accomplished the 
‘majority’ sampling strategy used, which reduces the number of only the most 
numerous categories. This significantly alters the data set. In contrast, the ‘auto’ 
sampling strategy, which resamples all classes, performed better. Obviously, the 
sampling strategy must also be handled cautiously. The following key statements 
can be drawn from the tables:

1.  When balancing the dataset, the FAR increases significantly and the Miss 
value decreases. This is due to the nature of the balancing. It creates da-
taset, where significantly more low visibility situations occur during train-
ing than in reality. 

2.  The balanced dataset shows the highest value of fog detection potential. 
It can be assumed that a model specialized for fog prediction can also be 
created, but it will be inapplicable for the other categories.

3.  The selection of an appropriate set of attributes is one of the main factors 
in the percentage evaluation. However, even with a manually calibrated 
set of features, similar values can be achieved. It depends on what accu-
racy metrics are used and what is the capture of the model author.

The thresholds were set somewhat subjectively to make the results univer-
sally applicable. However, when considering the aviation application and directly 
the ICAO Annex 3 thresholds (800, 1500, 3000, 5000 m) for TAF change groups, 
the accuracy changes. PoFgD has of course been calculated for the 0–800 m 
category, so the results in the Tab. 12 are not directly comparable to those pre-
viously presented. 

Table 11. Accuracy metrics for the random forest method applied to the 3h visibility forecasting (ap-
plied on four defined subsets).

Dataset no. Balanced Remark Acc Miss FAR PoFgD
D1 Yes Sampling_strategy = auto 72% 7% 21% 69%
D1 Yes Sampling_strategy = majority 60% 8% 32% 65%

D1 (WWL excl.) Yes Sampling_strategy = auto 70% 8% 22% 65%
D2 Yes Sampling_strategy = auto 72% 7% 21% 68%
D3 No ---- 78% 15% 6% 61%
D4 No ---- 78% 14% 8% 54%
D4 Yes Sampling_strategy = auto 71% 9% 19% 59%

Table 12. Output accuracy metrics of model for 3h visibility forecasting of ICAO Annex 3 categories.

Dataset no. Balanced  Remark Acc Miss FAR PoFgD
4 Yes Sampling_strategy = auto 82% 3% 15% 62%
4 No – 90% 3% 7% 57%
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The results presented in the table look promising, especially in the case of 
an imbalanced dataset. It should be recalled that there was a very high fre-
quency of visibilities greater than 5 km. Therefore, for these visibility categories, 
the model was slightly advantaged over those predicting smaller categories.

3.1. One-hour model results

As the forecast above is meant only to forecast value after three hours, it is 
also valid to test how well we can forecast values before this term. Therefore, 
one-hour time-span was also modelled in order to see its possible accuracy im-
provement (Tab. 13).

Table 13. Output accuracy metrics of model for 1h visibility forecasting.

Dataset no. Balanced Remark Acc Miss FAR PoFgD
4 No Sampling_strategy = auto 85.6% 7.80% 6.50% 77%
4 Yes Sampling_strategy = auto 81.7% 5.70% 12.50% 77%

As expected, the model accuracy for the hourly forecast is substantially bet-
ter. Since the hourly forecast was not the focus of this paper, no in-depth analy-
sis was performed, neither exploratory nor output statistics. An interesting 
value regarding the random forest in general, in terms of the three-hour model 
results, is that the FAR and Miss ratio values remained much lower for both the 
balanced and unbalanced data sets.

3.2. Persistent fog forecasting comparison

To check if the model does not merely copy the persistent forecast, an analysis 
of the theoretical success of the persistent forecast was performed (see  Appendix 
2 – Fog observations analysis for a more detailed discussion of visibility values 
and their effect on fog forecast accuracy).  This was based on the analysis of 
observations. The frequency with which fog would persist at 1, 2 and 5 hours 
ahead of the forecast was calculated.

The following figure shows the percentage of observed visibility categories 1 
to 5 hours before the hour when the fog was observed (Fig. 7). In the first hour, 
77% of the observed fog corresponds to the accuracy of the persistent forecasts. 
In contrast, in the three-hour time range, the random forest clearly outperformed 
the probability of fog detection for a persistent forecast. In the five-hour time 
span, the persistent forecast would only reach 40%.

3.3. Influence of phenomena on fog forecasting

The outputs were analyzed not only in terms of visibility but also in terms 
of association with phenomena. It is assumed that if the fog was not well pre-
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dicted, it could have been caused by sudden precipitation, advective factors or 
sudden radiative cooling.

Of RF (D3, imbalanced) forecasting results set, those where category 0 vis-
ibility (below 1 km) was observed but not predicted were selected. These forecast 
errors were separated into columns according to the visibility category that was 
incorrectly predicted. One column was assigned to each visibility category, which 
is divided according to the phenomena observed 3 hours before the not predicted 
fog (Fig. 8). All phenomena categories that were observed during not forecasted 
fog were involved.

Analysis of the events preceding the incorrect fog forecasts showed that in 
terms of the three-hour forecast, most of the inaccurate fog forecasts are associ-
ated with category 1, which reports no phenomena, therefore this category has 
minor or no apparent influence. This could be attributed to sudden radiative 
cooling or advection that would not be picked up by the model. Category 3 is also 
often represented, most often in the 1–2 km forecasts. This represents recent 
precipitation in the previous hour, which could indicate a fluctuating weather 
pattern and very difficult to capture effects of water vapour and surface moisture. 
Precipitation impacts are captured by categories 6, 7 and 8, followed by rare oc-
currences of categories 10 and 13. 

3.4. Current phenomena analysis

Particularly during sudden episodes of precipitation associated with showers 
and thunderstorms, a very sharp drop in visibility can be expected. Therefore, 
although this cannot be included in the forecast, current (observation time) phe-

Figure 7. Relative frequency of occurrence of visibility categories (0 represents fog, 7 represents 
10–100 km visibility) in the time range 1–5 hours before fog observation (represented by five lines).
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nomena have also been investigated (Tab. 14). The aim was to reveal if the 
method can deal with phenomena that suddenly cause a drop of visibility within 
one hour. 

The high counts of categories 6 and 7 suggest insufficient modelling of ra-
diative cooling, as the model predicts very good visibility when in fact it is below 
1 km. It can also be concluded that the category 1 prediction (visibility 1–2 km) 
models the process very promisingly with a relatively small error. Concerning 
rain showers, it is obvious that model did not expect any visibility drop, although 
it dropped under 1 km. Here is place for improvement in terms of phenomena 

Table 14. Counts of phenomena categories observed during incorrectly forecasted visibility (visibility 
lower than 1 km forecasted, 1–7 standing for visibility categories, 1 for visibility 1–2 km, 7 for cate-
gory 10–100 km, corresponding with Tab. 6, phenomena categories corresponding with Tab. 7.

WW 
category Shortened description

Visibility category
1 2 3 4 5 6 7

1 No precipitation 9 5 2 0 0 0 3
3 Precipitation in preceding hour 4 2 0 0 0 1 0
5 Fog 144 83 54 36 0 60 53
6 Drizzle 48 17 16 2 0 2 2
7 Rain 32 7 7 2 0 3 3
8 Snow 24 5 4 3 0 0 10

11 Showers 0 0 0 0 0 0 5

Figure 8. The visibility categories predicted at the time the fog was predicted. Each column repre-
sents one category and is divided by the categories of phenomena that were observed. (1 for visibil-
ity 1–2 km, 7 for category 10-100 km, corresponding to the Table 6, phenomena corresponding to the 
Table 7).
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classification. It should be noted that this method basically cannot predict that 
a storm or rain shower will come. From the set of predictors, it can only be a 
change in wind characteristics, a storm or shower that has already occurred that 
day, or cloud height characteristics. However, convection is far too complex a 
phenomenon to be perfectly predicted from a set of observational data alone.

3.5. Visibility in precipitation

The effect of precipitation was also tested (Tab. 15). The purpose of this test-
ing was to determine if the RF method can help in predicting decreasing visibil-
ity during precipitation. The model has only been trained and tested based on 
observations of precipitation and has not been thoroughly calibrated as part of 
this work, so it can undoubtedly be improved. Obviously, it will be necessary to 
include parameters to predict precipitation so that its effect can be better pre-
dicted by the model. These would probably be the amount and height of cloud 
base and ideally the form of precipitation.

Table 15. Output accuracy metrics of model for 3 h visibility forecasting when precipitation observed.

Dataset no. Balanced Remark Acc Miss FAR PoFgD
D1 Yes Sampling_strategy = auto 76% 5% 19% 89%

The rainfall observation model showed relatively good accuracy. The prob-
ability of detecting very low visibility increased to 89%. In any case, it did not 
avoid a high FAR due to the balanced data set. The better performance in the 
lowest visibility region (below 1 km) can be attributed to the higher proportion 
of observations where fog is followed by rain or drizzle. The main problem with 
using this model is the assumption that we actually know whether it will rain 
in the following hours. Rather, this is an example to guide further research. 

4. Discusion

Visibility modelling using the random forest method for a three-hour forecast 
interval based on observational data only has achieved quite promising results. 
For the unbalanced data set, it achieved an accuracy of 78% with 14–15% error 
rate and approximately 6–8% false alarms. The balanced random forest achieved 
an accuracy of 71–72% and reduced the error rate to only 7–9% but 19–20% false 
alarms in comparison.

Such a success rate shows that even with only knowledge of the observation 
statistics, one can make a reasonably good estimate of the likely future trend in 
visibility. Another very important finding is that the ratio of false alarms and 
misses is reversed when balancing the dataset. This can be of considerable use 
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for further applications of the random forest method in visibility prediction. 
These findings also show where the basic accuracy of RF classifiers for visibility 
prediction can be expected and where it can be further improved by adding ad-
ditional data.

The research results have several limitations that were known in advance. 
However, they are primarily based on the data set itself. Firstly, the modelling 
was done on data from a single station, so it is not possible to use a set of predic-
tors or perhaps model hyperparameters. What can be used is the procedure used.

As far as point forecasts are concerned, they usually take the form of prob-
abilities or a more specific determination, e.g. they can take the form “visibility 
over 10 km, initially 3–5 km”, i.e. they allow more values. Most forecasts also 
predict for longer intervals, not exactly one hour. This approach was therefore 
strictly deterministic.

5. Conclusions

The main research question that was asked beforehand was: How will the 
random forest method perform on observational data alone? 

As anticipated, the research provided a way for interested individuals to 
handle and analyze visibility. The work established the basic accuracy of an 
observation-only machine learning model for different predictors, hyperparam-
eter configurations, or target categories thresholds. The work also identified the 
limitations of the Random Forest method on the observational data set. Analyz-
ing the results, the work identified some situations where the RF model is wrong 
and where human error in prediction can occur. 

The work formed the basis for the development of a combined or hierarchical 
system to support forecasting in practice. Based on the procedures used, the 
method can be applied to other groups of predictors and other locations.

The results of the paper are still limited by the limitations of the data used. 
The work does not present the possibility of implementing other different data-
sets such as radar data, forecasts, etc. Also, the possibility of using several ML 
models simultaneously is not applied.

The future use of this method can be considered for the construction of a 
comprehensive tool to support aviation forecasting (e.g. take-off forecast, TREND 
forecasts). These are sometimes issued every 30 minutes and can be very difficult 
to concentrate on fully. Obviously, other data would need to be factored into the 
calculation, such as radar to capture the effects of convection and incoming pre-
cipitation, processed radar imagery, etc. It would certainly be useful to add data 
from nearby stations, weather type data, information from upper-air sounding, 
etc. Adding numerical model outputs would be a separate topic.
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SAŽETAK

Kratkoročna prognoza vidljivosti određena 
metodom slučajne šume

David Sládek

Točno predviđanje vidljivosti ključno je za sigurne operacije zrakoplova. Ova studija 
ispituje kako različite konfiguracije modela slučajne šume (eng. Random Forest) mogu 
poboljšati predviđanja vidljivosti. Koriste se tehnike predprocesiranja, uključujući anal-
izu korelacije za prepoznavanje temeljnih odnosa u promatranjima vremena. Podaci vre-
menskih nizova pretvaraju se u redoviti podatkovni okvir kako bi se olakšala analiza. Ova 
studija predlaže klasifikacijski okvir za organiziranje podataka o vidljivosti i meteoroloških 
pojava. Taj okvir se zatim koristi za razvoj prognoze vidljivosti korištenjem metode 
slučajne šume. Studija također prikazuje postupke za podešavanje hiperparametara, 
odabir značajki, uravnotežavanje podataka i procjenu točnosti za taj skup podataka. 
Glavni rezultati su parametri modela slučajne šume za trosatnu prognozu vidljivosti te 
analiza pogrešaka prognoze slabe vidljivosti. Dodatno, ispitani su i modeli za jednosatnu 
prognozu i prognozu vidljivosti u slučaju oborine. Dobiveni modeli pokazuju točnost 
determinističke prognoze od približno 78%, uz oko 6% lažnih uzbuna, dajući sveobuhvatan 
pregled mogućnosti modela slučajne šume za predviđanje vidljivosti. Kao što se i očekivalo, 
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model je pokazao ograničenja pri simulaciji brzog radijacijskog hlađenja i pri naglom 
smanjenju vidljivosti uzrokovanom oborinama. Naime, u odnosu na oborine, točnost mod-
ela je bila 79%, ali stopa lažnih uzbuna iznosila 19%. Dodatno, metoda slučajne šume 
postavlja temelje za poboljšanje točnosti prognoza uključivanjem dodatnih prognostičkih 
podataka, dok njezina primjena na skupove realnih podataka proširuje primjenu tehnika 
strojnog učenja na na meteorološke probleme.

Ključne riječi: zrakoplovna meteorologija, predviđanje vidljivosti, prognoza sadašnjeg 
vremena, prognoza pri slijetanju (trend), strojno učenje, slučajna šuma, odabir značajki, 
podešavanje hiperparametara
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Appendix 1 – F1 score

“The F1 score can be interpreted as a harmonic mean of the precision and 
recall, where an F1 score reaches its best value at 1 and worst score at 0. The 
relative contribution of precision and recall to the F1 score are equal” (sklearn.
metrics.f1_score, 2011). F1 score can be calculated as:

 F p r
p r

1 2
=

+
( * )
( )

,

where p is precision and r recall. Precision is defined by scikit.learn as the num-
ber of true positives (Tp) over the number of true positives plus the number of 
false positives (Fp);
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Recall is defined as the number of true positives (Tp) over the number of true 
positives plus the number of false negatives (Fn) (Precision-Recall, 2007):

 R
T

T F
p

p n
=

+
.



100  D. SLÁDEK: APPLICATION OF THE RANDOM FOREST METHOD ON THE OBSERVATION...

Appendix 2 – Methods comparison

The following three-year comparison (2012–2015) was used to support an 
assertion of the appropriateness of using the RF method. It shows presumable 
model performances of:

1. Random Forest Classifier
2. Logistic Regression
3. Gaussian Naive Bayes classifier
4. Linear SVC (support vector classification)1 

 

Appendix 3 – Fog observations analysis

Following table composition presents overview of all hours of fog forecasted. 
Boxplots show values of visibility observations (from left to right) 5 hours - 1 hour 
preceding the fog observation. 

 

1 Sources: (sklearn.svm.SVC, 2012; sklearn.naive_bayes.GaussianNB, 2012; 
sklearn.ensemble.RandomForestClassifier, 2012; 
sklearn.linear_model.LogisticRegression, 2012)
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Figure 9. Boxplots of observed visibility before fog was observed. Categorized by correct (a), (b) and 
incorrect forecasts (in categories as captioned).
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From the table composite in the Fig. 9, it is obvious that fog is correctly 
forecasted in case it is observed three hours in advance of observation (a). How-
ever, there are also situations (b), when fog is forecasted correctly although 5 
and 4 hours before, visibility is about 20 or 30 km. Extremely problematic, on 
the other hand, are situation when visibility is more than 10 km – even 20-40 
km, as shown in (h) – and fog is observed. 


