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Land cover change detection (LCCD) is essential for facilitating environ-
mental conservation and sustainable development efforts around the world. This 
study examines the relationship between LCCD and land surface temperature 
(LST) in Thakhek, Laos, from 2000 to 2023. We evaluate the relationship be-
tween changes in land use patterns and land surface temperature (LST) varia-
tions using Landsat-5, Landsat-8, and Moderate Resolution Imaging Spectro-
radiometer (MODIS) datasets. Our results indicate a significant reduction in 
forest area, which decreases from 46,912 km² in 2000 to 33,955 km² in 2023, 
primarily due to human activities and rapid urbanization. At the same time, 
the barren area increased to 515.33 km², while the agricultural area decreased 
significantly to 2,975.97 km². The observed LST values show significant chang-
es, ranging from 24 °C to 33 °C in 2000 and extending to 20 °C to 41 °C in 2023, 
indicating a general increase in temperature. The results illustrate the signifi-
cant correlation between urban development, population growth, and land 
cover changes, which influence regional temperature trends in Thakhek. These 
results highlight the urgent need for targeted research and policy measures that 
combine development and environmental sustainability and ensure a harmoni-
ous regional future.

Keywords: land cover change, land surface temperature, Laos, urbanization, 
remote sensing 

1. Introduction

Land use and land surface temperature (LST) are fundamental to under-
standing the interaction between human activities and environmental change. 
The rapid change in land cover due to urbanization, agriculture, and industrial 
development poses a major challenge to ecological stability and climate regula-
tion. As populations grow and urban areas expand, the consequences of these 
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changes are becoming increasingly evident, leading to changes in local climate, 
loss of biodiversity, and shifts in ecosystem services. Research has shown that 
changing land use can significantly affect on global and regional temperatures, 
as urban areas tend to exhibit the "urban heat island" effect, where temperatures 
are higher than in surrounding rural areas (Xu et al., 2021). This phenomenon 
is caused by factors such as reduced vegetation, larger impermeable surfaces, 
and heat-generating human activities.

In the study of the Thakhek district in Laos, the local government has pur-
sued a land use policy over the past twenty-three years to convert forested and 
agricultural land into urban and industrial zones (Gogoi et al., 2019). This con-
version has led to a significant increase in urban land cover, which contributes 
to temperature rise and changes in the climate dynamics of the region (Aram et 
al., 2019). Natural factors like forest fires and deforestation, along with infra-
structure development, affect land cover and LST and play a crucial role in 
shaping land cover and influencing temperature patterns (Derdouri et al., 2021). 
The study was conducted by José Maria Cardoso da et al. (2017). Understanding 
these dynamics is crucial for effective environmental management and urban 
planning as land use is constantly evolving (Jin et al., 2009).

Remote sensing technologies have proven to be powerful tools for analyzing 
land cover change and its impact on LST. With these technologies, researchers 
can collect vast amounts of data over time, providing insight into spatial and 
temporal trends in land use. For example, Bucała (2014) used remote sensing to 
study the impact of human activities on the natural environment, highlighting 
the value of these technologies for environmental monitoring. Similarly, Mah-
mood et al. (2010) investigated the impact of land cover dynamics on summer 
climate and emphasized the need for comprehensive data for climate adaptation 
strategies.

In addition, to monitoring temperature changes, remote sensing has proven 
its worth in assessing the state of ecosystems and the effective management of 
resources. A study by Sruthi et al. (2015) looked into the connection between the 
normalized difference vegetation index (NDVI) and LST. The results showed 
how important vegetation is for keeping temperatures down and helping farm-
ing. The results of these studies emphasize the potential benefits of using remote 
sensing technologies to address pressing environmental issues, particularly in 
the context of sustainable land management. 

The aim of this study is to investigate the relationship between LST and 
land cover change in the Thakhek district between 2000 and 2023. This work 
focuses on understanding how urbanization and industrialization affect local 
temperature patterns and whether the trends observed in other regions apply 
to this study. By clarifying these relationships, the aim of this research to gain 
valuable insights that can inform policymakers and stakeholders in their efforts 
to promote environmentally sustainable practices and enhance climate resilience 
in the region. 
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Through this research, the objective is to enhance our understanding of how 
land use changes impact land surface temperature (LST), emphasizing the im-
portance of incorporating remote sensing data into environmental management 
strategies. Ultimately, the goal is to support informed decision-making process-
es that foster sustainable development in the Thakhek District and similar areas 
facing rapid land cover transformations.

2. Study area

This study is conducted in the Thakhek district of Laos (17°30'2.70" N, 
104°53'49.17" E). Laos, a landlocked country in Southeast Asia, borders China 
to the north, Myanmar to the northwest, Thailand to the west and southwest, 
Vietnam to the east, and Cambodia to the south. The district of Thakhek covers 
an area of around 97,858 km² and includes a variety of landscapes, including 
forests, rivers, and agricultural land. Lao PDR covers an area of 236,800 km² 
and has a population of approximately 7.5 million with an annual growth rate 
of 2% (Cosslett and Cosslett, 2018). Demographic growth has a significant impact 
on land use and environmental change in the region. Assessing the topography 
and demographic patterns of the region is important to understand the impact 
of land cover changes and surface temperature variations in Thakhek district, 
especially with regard to urbanization and industrial growth (see Fig. 1).

3. Dataset and methodology

3.1. Dataset

The research employs satellite-imagery remote sensing data to analyze LST 
over several years. We have collected the data from MODIS, Landsat 4, 7, 8, and 
9 satellite imagery from 2000, 2005, 2010, 2015, 2020, and 2023. Table 1 displays 
the summary data source. The estimation of LST during both daytime and night-
time is analyzed using MODIS data through Google Earth Engine. These data-
sets were acquired through the United States Geological Survey (USGS) Earth 
Resource Observation Data Center (ERODC) website (https://www.usgs.gov/). 
The approach was conducted with the geospatial tool ArcGIS 10.8 software in 
conjunction with Python analysis.

3.2. Methods

The study uses Landsat data and Python analysis techniques to estimate 
land cover change detection (LCCD) over periods 2000, 2005, 2015, 2020, and 
2023. We employ the unsupervised classification of Landsat satellite imagery to 
examine changes in land cover and land use patterns. The data sourced from 
Landsat satellites: 4 (TM) from 2000, Landsat 7 (ETM+) from 2005 to 2010, 



152  K. PHOMMAVONG AND J. YAN: UTILIZING REMOTE SENSING FOR MONITORING LAND ...

Landsat 8 (OLI/TIRS) from 2015 to 2020, and Landsat 9 (OLI/TIRS) from 2023, 
maintaining a 30 m resolution for OLI and 100 m for TIRS, with the same 16-day 
revisit period.

Figure 1. Map overview of the study area in Laos: Elevation and land cover change detection in 2023.

Table 1. Summary data collection.

Satellite Sensor Year(s) used Spatial resolution Temporal 
resolution Data type

MODIS Terra/Aqua 2000, 2015, 
2020, 2023 1 km (LST) Daily Surface reflectance, 

LST
Landsat 4 TM 2000 30 m 16 days Surface reflectance

Landsat 7 ETM+ 2000, 2015, 
2020 30 m 16 days Surface reflectance, 

LST

Landsat 8 OLI/TIRS 2020, 2023 30 m (OLI), 100 
m (TIRS) 16 days Surface reflectance, 

LST

Landsat 9 OLI/TIRS 2021, 2023 30 m (OLI), 100 
m (TIRS) 16 days Surface reflectance, 

LST
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We calculate the linear correlation coefficient (LCCD), which measures the 
linear relationship between the two variables, x and y. This metric is critical for 
analyzing the strength and direction of relationships between variables, helping 
to make informed decisions and improve research findings. The correlation for-
mula used was Eq. 1.
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where LCCD is the Land Cover Change Cetection, xi and yi The individual data 
points for LCCD and LST. x and y: The means values of the LCCD and LST data. 
n: The number of data points in set. (xi, yi): The coordinates of the data points in 
the set. x: The mean value of the x-value of the data point. y: The mean value 
y-value of the data point.

To calculate the percentage change in LCCD by dividing the difference be-
tween two measurements by the LCCD2000 measurement and then multiplying 
the result by 100. The formula employed was Eq 2.

 
−

= ×2023 2000

2000

    100,LCCD LCCDLCCD
LCCD  (2)

where LCCD2023 represented the LCCD measurement in 2023 and LCCD2000 
represented the LCCD measurement in 2000. 

LST is crucial for environmental and climate studies as it influences pro-
cesses such as temperature transfer and ecosystem dynamics. The MODIS on 
the Terra and Aqua satellites provides data to assess LST over specific spectral 
bands, which is essential for climate monitoring, agricultural management, and 
urban heat island research. To convert the raw satellite measurements into 
meaningful temperature values in degrees Celsius, we use special formulas to 
determine accurate LST values. We utilized Eqs. 3 and 4.

 ( )= × −_ _1     _ _1    0.02    273.15LST day km LST day km , (3)

where the LST_Day_1km band, which is derived from the MODIS Land Surface 
Temperature products, provides the daytime land surface temperature in Kelvin, 
which is indicative of Earth's thermal infrared radiation. This formula converts 
the scaled digital values to Celsius.

 = +_ _1     6 * 0.02   273.15LST night km Band , (4)

where Band6 is used to calculate nighttime LST from satellite data, specifically 
from the MODIS sensor. Band6 corresponds to the thermal infrared wavelengths 
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that are critical for detecting surface temperature variations. A scaling factor of 
0.02 is applied to convert raw digital data to Kelvin, while an offset of 273.15 is 
used to convert the temperature from Kelvin to Celsius.

4. Results

4.1. Dynamics of land use transitions
Over the past twenty-three years, the land cover changes demonstrate mas-

sive-scale geographical categories with maximum and minimum variations in 
the Thakhek district of Lao PDR. The results are a quantitative summary of the 
dynamics of the land use transitions from 2000 to 2023, as shown in Fig. 2. In 
2000, forests and agriculture dominated the landscape, with minimal urban 
areas present. Forest cover was extensive, indicating less human intervention. 
The distribution of bare land was sparse, and water bodies remained intact. 
Agriculture and urban areas replaced some forest areas in 2005, especially those 
near water bodies. Urban expansion has slightly increased in the red regions, 
indicating that urbanization is beginning to take root in certain areas. In 2010, 
urban areas continued to expand, encroaching upon forested and agricultural 
land. Deforestation was noticeable, with some forest areas replaced by agricul-
ture and bare land. A slight increase in bare land was visible, possibly due to 
urban development or agricultural land degradation. In 2015, urban areas 
showed considerable expansion, with forest loss continuing. Bare land areas 
increased, possibly due to soil degradation or human activities like mining or 
deforestation. In 2020, urban dominance was evident, with forest cover shrinking 
further, particularly in areas close to urban settlements. Agricultural land fluc-
tuated over the years, indicating changes in land use priorities linked to popula-
tion growth. In 2023, urban expansion is at its peak, taking over previously 
forested and agricultural areas.

Land use change is an essential aspect of environmental management and 
urban planning, with Tab. 2 illustrating the dynamic relationship between hu-
man activities and natural ecosystems. This study examines land use patterns 
from 2000 to 2023, focusing on five primary categories: forest, agriculture, water, 
urban area, and bare land. The data reveals significant changes in land cover 
due to factors like urbanization, agricultural expansion, and environmental man-
agement practices. The study found that the forest area declined to 1,190.92 km² 
by 2023, indicating deforestation or land conversion. Urban area increased from 
879.08 km² in 2000 to 1,787.79 km² in 2023, indicating urban expansion and 
increased anthropogenic pressure.

Agricultural land use showed variability, peaking in 2010 at 3,490.70 km², 
before declining to 2,975.97 km² by 2023. The water category remained stable, 
with minor fluctuations, highlighting the importance of water bodies in the land-
scape.
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Figure 2. Dynamics of land cover change and urban expansion: A comprehensive analysis from 2000 
to 2023.
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However, the population trends from 2000 to 2023 focus on key indicators 
like total population, density, yearly changes, and urbanization rates. The data 
show a consistent upward trend in population, from 79,345 in 2000 to 96,485 in 
2023.  The population density decreased from 33 people per km² in 2000 to 25 
people per km² in 2023, suggesting urban areas may be expanding outward to 
accommodate a growing population while reducing pressure on infrastructure. 
The analysis also shows fluctuations in yearly population change, with the urban 
population percentage increasing from 60% in 2000 to 50% by 2023, raising ques-
tions about the distribution of growth between urban and rural areas and its 
implications for land use and environmental sustainability.

The evolution of land cover types such as forest, agriculture, cultivated land, 
bare land, and water is evident in the percentage changes in land use from 2000 
to 2023. Factors like urbanization, agricultural expansion, and climate change 
influence these changes, making understanding them crucial for effective envi-
ronmental management, urban planning, and conservation. Each entry reflects 
the percentage change resulting from these changes. Figure 3 displays the result. 
The positive percentage changes in transitions such as "Water - Forest" (10.15%) 
and "Agriculture - Forest" (5.24%) indicate successful afforestation and refores-
tation efforts, highlighting a potential commitment to ecological restoration and 
biodiversity enhancement. Conversely, the negative shifts, such as "Forest - Wa-
ter" (–9.34%) and "Bare Land – Water" (–8.89%), indicate significant losses of 
forested land that may impact local ecosystems, including habitat degradation 

Table 2. The quantitative summary of dynamics land use transitions and population data overview 
from 2000 to 2023.

Land use change

Year Forest  
(km²)

Agriculture 
(km²)

Water 
(km²)

Urban area 
(km²)

Bare land 
(km²)

2000 1,984.06 3,303.79 391.67 879.08 4,940.19
2005 1,933.10 3,019.66 398.6 986.3 5,161.13
2010 1,387.30 3,490.70 377.39 1,346.83 4,896.57
2015 1,344.91 3,409.54 393.9 1,436.27 4,914.17
2020 1,146.13 3,338.67 389.34 1,550.08 504.57
2023 1,190.92 2,975.97 389.78 1,787.79 515.33

Population data overview

Year Population Density 
(P/Km²)

Yearly 
change

Yearly 
change (%)

Density 
change

Density 
change (%)

Urban 
 population (%)

Urban 
Population

2000 79345 33 0 0 0 0 60 47607
2005 83957 33 4612 0.0581 0 0 58 48684
2010 85000 32 1043 0.0124 –1 –0.0303 56 47600
2015 90464 29 5464 0.0643 –3 –0.0938 54 48810
2020 94300 27 3836 0.0424 –2 –0.069 52 48886
2023 96485 25 2185 0.0232 –2 –0.0741 50 48243
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and increased susceptibility to erosion. These shifts may also reflect broader 
trends related to water management and land reclamation practices that pri-
oritize agricultural or urban development over natural landscapes. The transi-
tions affecting built-up areas present a complex picture. For example, "Built-up 
- Agriculture" (–0.94%) indicates a slight reduction in agricultural land due to 
urban expansion, while the positive change in "Built-up - Built-up" (0.12%) in-
dicates continued urban development. This data highlights the challenges faced 
by policymakers in balancing the need for development with the preservation of 
agricultural land and natural habitats.

Figure 3. Dynamics of land use change: A comprehensive analysis (2000–2023).
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Land use dynamics are essential for comprehending biological and environ-
mental transformations within a region. Figure 4 analyzes the changes in land 
use categories—Forest, Agricultural, Urban, and Bare Land—over twenty years, 
from 2000 to 2023. The analysis highlights the substantial changes in land dis-
tribution and the effects of urbanization and environmental protection. In 2000, 
land use distribution indicated an increase in forest (39.7%) and agricultural 
(36.3%) regions, while urban areas (12.5%) and bare land (11.5%) represented a 
slightly smaller percentage. This equitable distribution signifies an area primar-
ily defined by natural ecosystems and agricultural activities. By 2005, the urban 
area increased to 16.3%, indicating initial signs of urban expansion, while forest 
and agricultural areas decreased very little to 36.7% and 33.0%, respectively. 
Bare land experienced an increase of 14.0%, indicating a possibility of degrada-
tion or conversion. In 2010, the urban area expanded to 19.8%, while the forest 
area declined to 32.6%, signifying a transition toward urban land utilization. 
Bare land increased to 16.8%, highlighting persistent environmental change. 
The trend continued into 2015, with the urban area increasing to 23.4% and the 
forest area declining to 28.5%. Bare land increased to 21.0%, indicating a sig-
nificant increase in areas with reduced vegetation. By 2020, the urban area 
reached a peak of 30.6%, demonstrating the increasing rate of urbanization. The 
forested area decreased to 25.3%, but bare land was constant at 21.0%. The lat-
est data from 2023 indicates that the urban area has reached its peak at 36.5%, 

Figure 4. Total areas change for each class from 2000 to 2023.
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while the forest area has significantly declined to 20.1%. The percentage of bare 
land increased to 42.6%, signifying a significant change in land use patterns and 
raising concerns about environmental sustainability.

Table 3 provides a comprehensive examination of land use change in spe-
cific regions from 2000 to 2010 and from 2010 to 2023, highlighting the variations 
between different land cover categories, including forest, agriculture, water bod-
ies, urban areas, and wasteland. They indicate the area change for each catego-
ry at the beginning and end of the period.  Between 2000 and 2010, the forest 
area decreased significantly, from 1984.06 km² to 1387.30 km², a decrease of 
30.1%. The agricultural area increased only slightly, from 3303.79 km² to 
3490.70 km², which corresponds to an increase of 5.6%. The water area decreased 
only slightly from 391.67 km² to 377.39 km², which corresponds to a decrease of 
3.6%. The urban area increased considerably, from 879.08 km² to 1346.83 km², 
which corresponds to an increase of 53.3%. The bare area decreased slightly from 
4940.19 km² to 4896.57 km², which corresponds to a decrease of 0.9%. From 2010 
to 2023, the forest area increased only slightly, from 1387.30 km² to 1190.92 km², 
which corresponds to a decrease of 14.2%. The area used for agriculture de-
creased from 3490.70 km² to 2975.97 km², which corresponds to a decrease of 
14.7%. The water area remained constant with a small increase from 377.39 km² 
to 389.78 km², which corresponds to an increase of 3.8%. The urban area grew 
from 1346.83 km² to 1787.79 km² and from 4896.57 km² to 515.33 km², an in-
crease of 5.3%.

4.2. Land surface temperature trends
To understand the daily mean LST of MODIS, we analyze the relationship 

between daytime and nighttime temperatures, which illustrates a fairly stable 
pattern over several years, with some fluctuations attributable to changes in 

Table 3. The quantitative summary of results land cover change detection.

Land use change 2000–2010
Land use type 2000 (km²) 2010 (km²) Change (km²) Percentage Change

Forest 1984.06 1387.3 –596.76 ↓ 30.1%
Agriculture 3303.79 3490.7 186.91 ↑ 5.6%

Water 391.67 377.39 –14.28 ↓ 3.6%
Urban area 879.08 1346.83 467.75 ↑ 53.3%
Bare land 4940.19 4896.57 –43.62 ↓ 0.9%

Land use change 2010–2023
Land use type 2010 (km²) 2023 (km²) Change (km²) Percentage change

Forest 1387.3 1190.92 –196.38 ↓ 14.2%
Agriculture 3490.7 2975.97 –514.73 ↓ 14.7%

Water 377.39 389.78 12.39 ↑ 3.8%
Urban area 1346.83 1787.79 440.96 ↑ 32.6%
Bare land 4896.57 515.33 66.76 ↑ 5.3%
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atmospheric conditions or shifts in land cover dynamics and only minor varia-
tions observed at night. The daytime and nighttime temperature fluctuations 
have a significant impact on both human activities and natural ecosystems. The 
results as shown in Tab. 4. The average nighttime and daytime temperatures of 
the areas in 2000 ranged from 17 °C to 28 °C for 25% of the areas, and from 20 °C 
to 28 °C for 50% of the areas, and from 23 °C to 29 °C for 75% of the areas. In 
comparison, the standard deviation is 3.08 and 1.26. Nevertheless, In 2015 the 
average temperature range 21 °C to 29 °C for 25% of the areas, from 23 °C to 
31 °C for 50% of the areas, from 25 °C to 33 °C for 75% of the areas. In compari-
son, the standard deviation is 3.13 and 3.77. However, in 2020 the average 
temperature ranges from 20 °C to 28 °C for 25% of the areas, from 23 °C to 30 °C 
for 50% of the areas, and from 25 °C to 31 °C for 75% of the areas. In comparison, 
the standard deviation is 3.27 and 1.85. However, in 2023 the average tempera-
ture ranges from 22 °C to 29 °C for 25% of the areas, and from 24 °C to 31 °C for 
50% of the areas, and from 25 °C to 33 °C for 75% of the areas. In comparison, 
the standard deviation is 3.29 to 4.01.

The results illustrate the complex interactions of the temperature change 
between 2000 and 2023, as shown in Fig. 5. illustrates Modis a relationship 
between temperature change during the daytime and at nighttime. In 2000, the 
observed nocturnal variation was between 14 °C and 19 °C, while daytime tem-
perature was between 28 °C and 29 °C. In contrast, in 2015 according to the 
validation results, the accuracy of daytime around 31 °C and 42 °C, when com-
pared to daytime from 2000, there are very high, while the nighttime tempera-
ture was 22 °C to 26 °C, while, the nighttime was between 22 °C to 25 °C, there 
are similar in 2000, however, both the daytime and nighttime temperatures 
continue to fluctuate. Natural climate change may have affected the daytime 
temperature in 2020, which decreased from 29 °C to 31 °C, but the nighttime 
temperature, which was similar to 2015, was 22 °C to 26 °C. However, the tem-

Table 4. Relationship between nighttime and daytime temperature changes.

Year Nighttime 
Mean

Nighttime 
Max

Nighttime 
Min

Nighttime 
25%

Nighttime 
50%

Nighttime 
75%

Nighttime  
Std Dev

2000 20 26 14 17 20 23 3.08
2015 22 26 12 21 23 25 3.13
2020 22 27 15 20 23 25 3.27
2023 23 28 14 22 24 25 3.29

Year Daytime 
Mean

Daytime 
Max

Daytime 
Min

Daytime 
25%

Daytime 
50%

Daytime 
75%

Daytime 
Std Dev

2000 28 30 24 28 28 29 1.26
2015 32 42 26 29 31 33 3.77
2020 30 32 26 28 30 31 1.85
2023 32 42 24 29 31 33 4.01
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perature continues to fluctuate in 2023; the daytime temperature rises to be-
tween 31 °C and 42 °C. This is similar to the daytime temperature in 2015, which 
was between 23 °C and 28 °C. We also observed this trend in 2015. Various 
factors, such as urbanization and greenhouse gas emissions, could be responsible 
for this significant increase in daytime temperatures.

Furthermore, we also calculated a regression of daytime and nighttime to 
clarify and understand the temperature change. The results of a comparative 
analysis regression of LST were performed as shown in Fig. 6. In daytime and 
nighttime from 2000 to 2023 the relationship between the temperature of day-
time and nighttime there is significantly scattered, the result regression in 2000 
shows a negative slope of –0.2261 and a positive intercept of 26.0954. The positive 
R-squared value of 0.0086. Additionally, the positive P-value indicates a statisti-
cal significance of 0.5700. In 2015, we observed a significant positive slope of 
0.2841 and a positive intercept of 13.2418. The significantly positive R-squared 
value of 0.1168 and the significantly positive P-value of 0.0201 indicate statisti-
cal significance. In 2020 was similar, as indicated positive a slope of 0.8622, but 

Figure 5. The temperature fluctuations over 23 years (2000–2023) highlight the intricate dynamics 
of daytime and nighttime land surface temperature (LST) trends for daytime and nighttime across 
the day of the year (0–350), where 0 corresponds to the beginning of the year (January 1) and 350 
corresponds to December 16.
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different a negative intercept of –3.6113, In addition, The positive R-squared 
value of 0.2374. The significant positive P-value assesses the statistical signifi-
cance of 0.0006. and the result in 2023 also had a similar result in 2015, but a 
different positive intercept value of 15.2410, and a positive slope of 0.2491, The 
positive R-squared of 0.0926, and the positive P-value assesses statistical sig-
nificance of 0.0501. 

Additionally, we analyzed histograms and found that an increase in the num-
ber of valid daytime and nighttime data used for multiple linear regression leads 
to improved accuracy in estimating the daily average daytime and nighttime 
temperatures. Figure 7 illustrates the nighttime temperatures in 2000. The his-
togram exhibits an area between 22.5 °C and 25.5 °C, accompanied by a rela-
tively normal distribution curve that signifies moderate nighttime temperatures. 
The temperature distribution peaks at 28 °C and 31 °C, exhibiting a moderate 
dispersion and following a normal distribution during the day. In 2015, nighttime 
temperatures exhibited a small increase, ranging between 23.5 °C and 26.5 °C. 
Daytime temperatures have increased, with a maximum of around 30 °C to 33 °C, 
indicating a trend of temperature rise. In 2020, the nighttime temperatures 
showed significant warming, with the highest temperature fluctuating between 
24.5 °C and 27.5 °C, suggesting a wider distribution. The temperature ranges are 
continuing to increase, reaching an average of approximately 32 °C to 35 °C dur-

Figure 6. Density scatter point of daily mean daytime and nighttime temperature estimate with 
multiple linear regression.
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ing the day, which signifies considerable warming. In 2023, nighttime tempera-
tures reached their highest levels recorded, ranging between 25.5 °C and 27.5 °C, 
demonstrating the broadest distribution and indicating a significant warming 
trend. Daytime temperatures reached a maximum of between 33.5 °C and 37.5 °C, 
indicating a notable increase in comparison with previous years.

4.3. Land surface temperature trends and variability affect the environment 
and humans

LCCD and LST are important indicators of environmental change and its 
impact on ecosystems and human activities. As shown in Tab. 5, LST is higher 
in urban areas between 2000 and 2023 due to impermeable surfaces, such as 

Figure 7. Histogram daytime and nighttime temperature to estimate the frequency daily mean in 
a site of 350 LST analysis via the multiple regression method.
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concrete and asphalt, that absorb and store heat. This phenomenon, known as 
the urban heat island effect, leads to increased temperatures in urban areas both 
during the day and at night. The conversion of other land cover types is further 
evidence of the impact of land use change on LST. The conversion of forests, ag-
ricultural land, and vegetated land to urban areas changes their thermal charac-
teristics. Forests, for example, generally absorb less solar radiation and have a 
cooler surface temperature due to their vegetation cover and evaporative cooling. 
The data from the table shows a decrease in forest area from 1984.06 km² in 2000 
to 1146.13 km² in 2020, which correlates with an increase in LST from 24.32 °C 
to 19.29 °C, respectively. Conversely, impervious surfaces in urban areas absorb 
more solar energy, resulting in higher LST. The area of urban areas increased 
from 879.08 km² in 2000 to 1787.79 km² in 2023, contributing significantly to the 
warming trend observed in the region, with the LST increasing from 33.3 °C in 
2000 to 42.16 °C in 2023. This transformation not only reduces the cooling effect 
of green spaces but also contributes to an overall warming of the region. The data 
in the table illustrates this dynamic, with decreasing forest areas and increasing 
urban areas correlating with higher LST. Understanding these land use changes 
and their impact on LST is critical to developing strategies to mitigate urban heat 
islands through urban planning and the creation of green infrastructure such as 
parks and green roofs, which can help cool urban environments and reduce the 
negative impacts of LST on human health and well-being. 

The summary of the OLS (Ordinary Least Squares) regression analysis il-
lustrates the relationships between the independent variables and the dependent 
variable, the LST mean. Table 6 shows the model's R-squared value of 0.956, 
indicating a strong fit, with the independent variables accounting for approxi-
mately 95.6% of the variability in the LST mean. The adjusted R-squared value 
of 0.778 accounts for the number of predictors and explains approximately 77.8% 
of the variability after adjusting for model complexity. We test the significance of 
the model using the F-statistic of 5.384, and the p-value of 0.311 indicates that 
the overall model does not show statistical significance at conventional levels. The 
log-likelihood of –1.741 measures model fit, while the Akaike Information Crite-

Table 5. Land cover change detection and land surface temperature.

Year Forest 
(km²)

Agri-
culture 
(km²)

Water 
(km²)

Urban 
area 
(km²)

Bare 
land 
(km²)

LST 
Min

LST 
Max

LST 
Range

LST 
Mean

LST 
Std

2000 1984.06 3303.79 391.67 879.08 4940.19 24.32 33.3 8.98 27.17 0.68
2005 1933.1 3019.66 398.6 986.3 5161.13 21.76 31.11 9.35 26.03 1.13
2010 1387.3 3490.7 377.39 1346.83 4896.57 19.48 29.52 10.03 25.03 1.13
2015 1344.91 3409.54 393.9 1436.27 4914.17 21.76 31.22 9.46 26.8 0.93
2020 1146.13 3338.67 389.34 1550.08 504.57 19.29 29.34 10.05 24.12 1.09
2023 1190.92 2975.97 389.78 1787.79 515.33 31.01 42.16 18.15 28.89 2.14
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rion (AIC) of 13.48 and the Bayesian Information Criterion (BIC) of 12.44 indicate 
potential for model refinement. The coefficient analysis shows a positive relation-
ship between forest area and the LST mean. The correlation between agricul-
tural area and mean land surface temperature is similarly non-statistically sig-
nificant. The correlation with urban areas is also not statistically significant. The 
adverse correlation with bare land is minimal. The residual diagnosis shows a 
strong model, as shown by a Durbin-Watson statistic of 2.709 and a Jarque-Bera 
test result of 0.046, which means that the residuals are spread out normally.

Figure 8 illustrates the correlation between mean LST and significant land 
cover features, as well as the temporal trend from 2000 to 2023 in Thakhek, Laos. 
Figure 8a illustrates an increase in mean LST over time, increasing from ap-
proximately 26 °C in 2000 to 28 °C in 2023. This highlights a warming trend 
possibly influenced by changes in land cover and urbanization. Figure 8b illus-
trates the relationship between forest area and LST. The forest area decreased 
from 2,000 km² to 1,200 km² during the study period, indicating a slight positive 
relationship between forest loss and increasing LST values. Figure 8c shows the 
correlation between urban area and LST. Urban areas increased from around 
1,000 km² in 2000 to 1,800 km² in 2023, demonstrating a significant positive link 
with elevated LST. This illustrates the impact of the urban heat island effect as 
a significant contributor to regional temperature elevations. Fig. 8d depicts the 
correlation between barren land and LST. The expanse of barren terrain surged 
significantly from 1,000 km² to almost 5,000 km². Nonetheless, the association 
with LST exhibited considerable variability, indicating that the influence of bar-
ren land on temperature trends is less strong than that of urban and forest 
changes.

Table 6. The Ordinary Least Squares (OLS).

Dep. variable: LST mean R-squared: 0.956
Model: OLS Adj. R-squared: 0.778
Method: Least squares F-statistic: 5.384
No. observations: 6 AIC: 13.48
Df Residuals: 1 BIC: 12.44
Df Model: 4 Covariance type: nonrobust
Variable coef Std. error t P >|t| [0.025      0.975]
Constant Term –86.7114 38.335 –2.262 0.265 –573.8 400.377
Forest (km²)  0.0288 0.009 3.348 0.185 –0.081 0.138
Agriculture (km²) 0.0094 0.005 1.918 0.306 –0.053 0.072
Urban Area (km²) 0.0298 0.008 3.601 0.172 –0.075 0.135
Bare Land (km²)  –0.0002 0 -0.533 0.688 –0.004 0.004
Omnibus: nan Durbin-Watson: 2.709
Prob (Omnibus):         nan Jarque-Bera (JB): 0.046
Skew: –0.169 Prob (JB): 0.977
Kurtosis:   2.738 Cond. No. 6.40E+05
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4.4. Correlation relationship between LCCD and LST

To analyze the correlation relationship between LCCD and LST. Figure 9 
illustrates this result clearly. Through a careful evaluation of correlation matrices. 
We have uncovered subtle relationships that shed light on the complicated inter-
action; the correlation analysis between the LCCD and LST over time between 
2000, 2005, 2010, 2015, 2020, and 2023 is computed. The correlation illustrates 
relationships between LCCD and LST that vary in strength and direction over 
time. The relationship between the LCCD and LST within the same year exhibits 
the highest degree of association, suggesting direct effects on the land surface 
temperature. The presence of weaker correlations across different years suggests 
indirect effects that could be influenced by factors not considered in this analysis.

As revealed by the correlation matrix in 2000, there was a significant positive 
connection (0.67) between LCCD in 2000 and 2023. This finding indicates a 
significant amount of continuity in LCCD patterns over time. However, we ob-
served a notable positive correlation (0.67) between LCCD in 2000 and LST in 
2023. Conversely, we identified a slight negative correlation (–0.50) between 
LCCD in 2000 and LST in 2010, which suggests a marginally negative relation-
ship. In 2005, the correlation between LCCD and LST was negative (–0.51), 
reflecting a relatively stronger negative association for that year. The correlation 
between LCCD in 2005 and LST in 2010 was also slightly negative (–0.61), sug-
gesting inconsistencies in land cover and surface temperature during that time. 
The findings from 2015 demonstrate a notable positive correlation (0.74) between 
LCCD in 2015 and LST in 2020, indicating regular and persistent patterns of 
land cover change during this period. A significant positive correlation (0.15) was 
also established between LCCD and LST within the same year, 2015. However, 
the relationship between LST in 2015 and LCCD in 2020 exhibited small nega-
tive correlations (–0.08), indicating some fluctuations. We observed a significant 
positive correlation in 2020. However, the result in 2020 revealed a notable 
negative correlation (–0.66) between LCCD and LST, indicating a relationship 
between these two factors in the same year. In contrast, the LCCD in 2020 and 

Figure 8. Scatter plots of land surface temperature mean against land use variables over time.
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LST in 2023 there is a moderate positive correlation (0.33), which indicates a 
moderate positive correlation between these two variables. In 2023 the relation-
ship between LCCD and LST illustrated a significant negative correlation 
(–0.09). The result of a correlation between LST in 2023 and 2015, as indicated, 
the relationship between the variables and correlation coefficient is a strong 
positive (0.72). The correlation patterns show that the associations between 
LCCD and LST vary in intensity and direction over time.  

5. Discussion

The study examines the relationship between Land Cover Change Dynamics 
(LCCD) and Land Surface Temperature (LST) from 2000 to 2023, revealing 
significant trends and shifts in these relationships due to climatic conditions, 
human activities, and land management practices.

Figure 9. Correlation matrix relationship between LCCD and LST.
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The significant positive correlation (0.84) between LCCD in 2000 and LST in 
2023 signifies a consistent trend in land cover dynamics, underscoring the endur-
ing impact of land cover changes over two decades. This finding corresponds with 
the research conducted by Addae et al. (2019), which demonstrated a comparable 
continuity in land use patterns and their effects on urban areas in Ghana. The 
modest negative correlation (–0.52) between LCCD and LST in 2000 indicates a 
developing link in which changes in land cover may not have completely impacted 
surface temperatures. In 2015, the strong positive correlation (0.96) between LCCD 
and LST indicates a significant relationship between changes in land cover and 
temperature, driven by increased urbanization and agricultural efforts throughout 
this period. This corresponds to Ashwini et al. (2022) research, which revealed the 
same trends in Northeast India. The positive correlation (0.47) between LCCD and 
LST in 2015 highlights the direct impact of land cover changes on local tempera-
tures, emphasizing the relationship between human activities and the environ-
ment. The slight negative correlation (–0.61) between LCCD in 2015 and LST in 
2020 suggests a decreasing impact of land cover changes over time. Changing land 
management and overall climatic patterns may contribute to this relationship's 
complexity. This finding aligns with the research conducted by Azadi et al. (2021), 
which investigated the effects of agricultural land conversion on climate change, 
emphasizing the resilience of landscapes to changing environments.

Between 2020 and 2023, the findings indicate significant changes in the re-
lationship between LCCD and LST. The strong positive relationship (0.83) be-
tween LCCD and LST in 2020 shows that land cover changes are still being im-
pacted over this time, which is similar to Hassan Edan et al. (2021) results. The 
moderate negative correlation (–0.11) between LCCD in 2020 and LST in 2023 
suggests a decreasing link over time, indicating potential changes in land man-
agement and the landscape. In 2023, an observed negative correlation  
(–0.09) between LCCD and LST shows a decoupling of both variables. This may 
be a consequence of increasing urbanization, afforestation, or land manage-ment 
strategies that change the landscape without directly affecting surface tempera-
tures. The results of Ru et al. (2022) and Güneralp et al. (2020) support this 
theory. They investigated the effects of changing land use and land cover on 
temperature at different locations. The decreasing correlation over time illus-
trates the importance of changing management strategies to cope with changing 
environmental conditions.

The study highlights the importance of understanding the relationship be-
tween land cover change (LCCD) and local temperature change (LST) for envi-
ronmental management and policy. It suggests that incorporating knowledge of 
land cover change into urban planning and agricultural policy can contribute to 
the development of sustainable and resilient landscapes. The shifts in correlation 
patterns also highlight the need for adaptive management practices, such as af-
forestation, reforestation, and sustainable agriculture, to improve landscape re-
silience and manage the effects of temperature over time.
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The study on land cover dynamics and land surface temperature from 2000 
to 2023 provides important insights but also has its limitations. Because it relies 
on remote sensing data and the resolution of LST data, it may not fully capture 
microscale changes in land cover and their direct effects on temperature. The 
temporal scope of the study also limits its generalizability to other regions or 
climate zones. Further action should focus on the importance of sustainable pre-
diction of forest change, water, agriculture, bare land, and urban areas. For pro-
active measures and policies to be implemented, we need to be able to predict land 
cover change with a high degree of accuracy. This also requires comprehensive 
land use planning strategies and the involvement of local communities in conser-
vation and reforestation efforts to ensure mutual benefit and active participation 
in sustainable land use practices.

6. Conclusion

Over the past twenty-three years, the Thakhed district has experienced land 
cover change due to human activities, deforestation, afforestation and change in 
land surface temperature as a result of climate change. The result shows different 
spatial arrangements, exhibited erratic fluctuations, by a decrease in water bod-
ies in 2015 and an increase in 2023. In 2015 there was an increase in bare land 
which is a direct effect of deforestation and a subsequent decrease in 2023 owing 
to government interventions. Forested areas experienced a substantial decrease 
due to anthropogenic activities, although positive regeneration was observed in 
2023, expedited by restoration initiatives. Agricultural land showed diverse pat-
terns, initially experiencing expansion and subsequently contracting as a result 
of environmental changes and urbanization. The urban areas experienced sig-
nificant growth, fueled by increased in population and industrialization efforts.

Human activities, population growth, environmental shifts, and deforestation 
have all contributed to changes in land use, which have transformed forests into 
agricultural zones and urban areas. These changes have had a significant impact 
on land surface temperature. In addition, we also analyzed a relationship between 
land LCCD and LST, as shows both positive and negative correlations. The rela-
tionship between LCCD and LST is influenced by urbanization, deforestation, and 
climate change. Weaker correlations in different years indicate indirect effects that 
are influenced by additional variables and make the relationship between LCCD 
and LST in the region even more complex. These findings demonstrate the complex 
relationship between land use changes and temperature dynamics.
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SAŽETAK

Korištenje daljinskog očitavanja za praćenje promjena pokrova 
zemlje i kolebanja temperature površine zemlje u Laosu

Ketsana Phommavong i Jianguo Yan

Detekcija promjene zemljišnog pokrova (LCCD) ključna je za olakšavanje očuvanja 
okoliša i nastojanja održivog razvoja diljem svijeta. Ova studija ispituje odnos između 
LCCD i temperature površine zemlje (LST) u Thakheku, Laos, od 2000. do 2023. Procjen-
jujemo odnos između promjena u obrascima korištenja zemljišta i varijacija temperature 
površine zemlje (LST) koristeći Landsat-5, Landsat-8 i Skupovi podataka spektroradio-
metra umjerene rezolucije (MODIS). Naši rezultati ukazuju na značajno smanjenje 
šumskog područja, koje se smanjuje sa 46.912 km² u 2000. godini na 33.955 km² u 2023. 
godini, prvenstveno zbog ljudskih aktivnosti i brze urbanizacije. Istodobno se neplodna 
površina povećala na 515,33 km², dok se poljoprivredna površina značajno smanjila na 
2.975,97 km². Promatrane LST vrijednosti pokazuju značajne promjene, u rasponu od 
24 °C do 33 °C 2000. godine i proširenje na 20 °C do 41 °C 2023. godine, što ukazuje na 
opći porast temperature. Rezultati ilustriraju značajnu korelaciju između urbanog raz-
voja, rasta stanovništva i promjena zemljišnog pokrova, koje utječu na regionalne tem-
peraturne trendove u Thakheku. Ovi rezultati naglašavaju hitnu potrebu za ciljanim 
istraživanjem i političkim mjerama koje kombiniraju razvoj i ekološku održivost i osigu-
ravaju skladnu regionalnu budućnost.

Ključne riječi: promjena zemljišnog pokrova, temperatura površine zemlje, Laos, urban-
izacija, daljinska detekcija

Corresponding authors’ addresses: Ketsana Phommavong and Jianguo Yan, State Key Laboratory of Information 
Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China; e-mail1: 
ketsana.pk@whu.edu.cn; e-mail2: jgyan@whu.edu.cn

 
 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 

 International License.

https://doi.org/10.1175/2009BAMS2769.1
https://doi.org/10.3390/rs14174352
https://doi.org/10.1016/j.aqpro.2015.02.164
https://doi.org/10.3390/su132011203
mailto:ketsana.pk@whu.edu.cn
mailto:jgyan@whu.edu.cn
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

