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This paper proposes a lightweight convolutional neural network model 
to identify the types of earthquake and blasting events quickly and accu-
rately. Since an event is generally recorded by several stations, it is necessary 
to preprocess and classify the data based on the event beforehand. This  ensures 
that different station waveforms of the same event do not appear in any two 
of the training sets, validation sets, and test sets. With the three-component 
waveforms recorded by stations after preprocessing as the input, the network 
model and hyperparameters are optimized by analyzing the average and vari-
ance in the accuracy and loss values of the verification set in the fivefold cross-
validation, and the accuracy and loss curves in the training process. Finally, 
the classification results of all stations that achieve a certain signal-to-noise 
ratio for each event are taken as the output of this event type based on the 
principle that the majority prevails over the minority. This study uses 2,190 
natural and blasting events recorded by the Hainan Seismic Network before 
August 2022, which includes 53,067 waveforms, to train and test the effective-
ness of the model. Twenty percent of those events are selected randomly as 
the test set. The results showed that out of 438 randomly selected events, 427 
were correctly identified, resulting in an accuracy rate of 97.48%. Specifically, 
the accuracy rate for seismic events was 95.59%, with a recall rate of 89.04%, 
while the accuracy rate for blasting events was 97.84%, with a recall rate of 
99.18%. In conclusion, the convolutional neural network model proposed in 
this paper can rapidly and accurately identify natural and blasting types in 
Hainan.
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1. Introduction

With the rapid development of digital seismic observation system technol-
ogy in China, the density of stations has gradually increased, and the seismic 
monitoring capacity has significantly improved. At present, in addition to mon-
itoring various natural earthquake events, the number of various non-natural 
events that can be monitored by the seismic network has also increased expo-
nentially (Feng et al., 2017). Additionally, compared with natural earthquakes 
of the same magnitude, the source of nonnatural events is shallow, and strong 
tremors are often felt. In addition, most of them occur in densely populated areas, 
which are characterized by high intensity (Qian Qihu, 2014; Zhou Shaohui, et 
al. 2021; Li, et al. 2023a, 2023b). For example, the most influential non-natural 
earthquake event determined by experts in the world in recent years is the Po-
hang Mw5.4 earthquake in South Korea, which was caused by a local geothermal 
power station injecting water into the ground (Grigoli et al., 2018; Kim et al., 
2018). After the official investigation results were released, the geothermal pow-
er plant and the Korean government faced enormous claims, and some people 
directly requested to deal with relevant personnel as man-made disasters.

Therefore, it is extremely important to determine the event type quickly and 
accurately after the seismic network has monitored various vibration events. In 
recent years, deep learning methods in artificial intelligence have developed 
rapidly, and a many researchers have introduced them into the seismology field, 
including automatic seismic phase identification (Perol et al., 2018; Sujun et al., 
2021; Guo Huili et al., 2022), omission earthquake inspection and improvement 
of earthquake catalog (Yang et al., 2020; Zhao Ming et al., 2021; Zhu Jingbao et 
al., 2022), and earthquake prediction (Devries et al., 2018; Plaza et al., 2019; 
Asim et al., 2020). Additionally, some researchers have introduced deep learning 
algorithms into the vibration event type identification. For example, Linville et 
al. (2019) used the time-frequency maps of blast and earthquake recorded wave-
forms as input and used Convolutional Neural Network (CNN) and Recurrent 
Neural Network (RNN) to train event type determination for blast and earth-
quakes in the last five years in Utah, USA, with a final recognition accuracy of 
98%. Zhou Shaohui et al. (2021) used the original 3-D waveforms recorded at the 
earliest five stations for earthquakes, blasting events, and collapse events as 
input. Four CNN structures were used for training, and the results showed that 
the recognition accuracy of all types of structures reached over 93% for both the 
training sets and test sets. Kong et al. (2022) proposed a method that combines 
deep learning with physics-based features to enhance the discrimination between 
earthquakes and explosions. The combination of these two approaches improved 
the generalization performance of the model, especially when applied to new 
regions. Koper et al. (2024) applied a spectral modeling workflow to classify small 
seismic events into earthquakes, explosions and collapses. The study found that 
models developed with a few physics-based waveform features can classify small 
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seismic events with performance comparable to high-dimensional deep-learning 
models. Saad et al.(2024) proposed a capsule neural network guided by a compact 
convolutional transformer to discriminate between earthquakes and quarry 
blasts. The model first transforms the seismic waveforms into a time-frequency 
representation (scalogram) using the Continuous Wavelet Transform (CWT), 
which is then used as the input for the Capsule Neural Network, thereby achiev-
ing robust classification accuracy. The model achieved a testing accuracy of 
97.31%, outperforming traditional deep learning models and demonstrating high 
generalization ability.

Each of the above studies has its own characteristics and has achieved good 
results by employing traditional machine learning or deep learning approaches. 
With various waveforms monitored by the station as input and relevant tags as 
output, they generate recognizers after training and learning a large quantity of 
data and finally achieve high accuracy recognition on the test set. However, most 
of the studies have performed artificial feature extraction on the input waveforms 
or calculated time-frequency spectra, resulting in the loss of some original wave-
form information, and due to the complexity of the recognition problem, the 
generalization ability of the classification model needs to be improved. As stud-
ies show that although the accuracy rate of a given group of data randomly di-
vided into training sets and test sets after training can reach more than 93%, 
once the classification model is actually applied to the determination of the type 
of follow-up events in the same region, the recognition accuracy rate will drop 
significantly to 80.9% (Zhou et al., 2021). The reason for this kind of problem 
may be that the waveform data in the station unit are used as input during the 
training and testing of event waveforms, which easily leads to different station 
waveforms recorded in the same event. Some station waveforms are used as 
training sets, and some are used as test sets. That is, the recorded waveform of 
the same event is used as both training data and test data. In practical work, all 
recorded station waveforms of a new event are judged as the classifier input. 
This leads to the fact that the data selection in model training is not exactly the 
same as that in actual application, leading to the high accuracy of many research-
ers' models in training sets and test sets, and the accuracy will drop signifi-
cantly once applied to actual work. For example, Gao et al. (2022) used a total 
dataset of 5000 waveforms composed of earthquake and blasting waveforms for 
deep learning training. The first 4,500 waveforms were used as training sets, 
while the remaining 500 waveforms were used as test sets. However, this can 
easily lead to different station waveforms recorded in the same event, with some 
station waveforms used as training sets and others as test sets. This setup po-
tentially raises concerns about data leakage.

Therefore, to be closer to the earthquake rapid reports of actual event type 
determination and identification, realize the fast and efficient identification of 
natural and blasting events, and put them into practice, based on previous stud-
ies, this paper focuses on analyzing time-domain features of seismic waveforms 



120  S. ZHOU ET AL.: RESEARCH ON APPLYING DEEP LEARNING TECHNOLOGY TO CLASSIFY ...

of both earthquake and blasting recorded by the Hainan Seismic Network until 
August 2022. The dataset used for this research was recorded by the Hainan 
Seismograph Network. Hainan Island situated in the northwest of the South 
China Sea, covering an area of 33920 square kilometers. The Hainan island is 
abundant in blast, with quarries, iron mines, gold mines and other industrial 
activities serving as the main sources of blast (Fig. 1). 

Based on previous studies, an elaborately designed lightweight convolution-
al neural network (CNN) model is constructed for analysis. For each event, all 
three-component signals recorded by various stations with a sufficient signal-to-
noise ratio are used as inputs to the model, while the event type serves as the 
output. During the training process, the generalization ability of the model is 
enhanced by employing dynamic data loading and random data augmentation 
techniques. A 5-fold cross-validation is employed to assess the accuracy and loss 
curve variations between the validation and training sets. This iterative process 
involves fine-tuning the network architecture and hyperparameters to achieve 
the optimal classification model. Model recognition performance is evaluated 
both on a station waveform basis and an event basis. It is worth noting that to 
avoid having the same event's station waveform appear in the training, valida-
tion, and test sets, a data preprocessing step is performed in advance, categoriz-
ing the data on an event basis.

Figure 1. Basic overview of the study area.
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2. Method and principle

2.1. Data preprocessing

When evaluating the accuracy of a model using deep learning, it is common 
to shuffle the data and split it into training, validation, and test sets. However, 
this approach is not applicable to earthquake data. Evaluating the model using 
the conventional deep learning approach would lead to a "cheating" issue. This 
is because, in general, an earthquake event is recorded by multiple seismic sta-
tions, and each recording can be considered a sample. Waveforms recorded from 
the same event by different seismic stations exhibit a certain level of similarity. 
The closer the two stations are in proximity, the higher the waveform similarity. 
This implies that if waveforms from the same event recorded by different stations 
are included in either the training set, validation set, or both the training and 
test sets, it will introduce certain errors.

If there is a scenario where multiple waveforms from the same event are 
concurrently included in both the training and test sets, it implies that the net-
work has been exposed to the waveforms present in the test set during the learn-
ing process. As a consequence, this exposure may overestimate the accuracy, 
thereby yielding misleading outcomes. If multiple waveforms from the same 
event are present simultaneously in both the training and validation sets, it can 
result in the accuracy-epoch curve and loss-epoch curve of the training set being 
closely aligned. However, during the testing phase, the test set accuracy may be 
notably low. This discrepancy indicates a clear case of overfitting.

Such outcomes would not align with the principles and rigor expected in 
scientific research and should be avoided to maintain experimental design in-
tegrity and result validity. The data undergo preprocessing classification based 
on events prior to the preprocessing stage to avoid accuracy rate distortion in 
the model results caused by waveforms from the same event being recorded by 
different stations in the training set, verification set, or test set.

The data are divided into training, verification, and test sets based on events. 
Then, the set comprising the training set and verification set is randomly split 
into 5 subsets. To ensure valid signals as input for the CNN, the waveforms from 
triggered seismic and blasting event stations undergo the following preprocess-
ing steps:

(1) Waveform truncation: Based on the arrival time of different seismic 
phases in the event waveform, the waveform signal is truncated at the station 
level, with a length of 9,000 points, starting 30 seconds before the arrival time 
of the seismic phase.

(2)  Detrend: The detrend operation is applied to the truncated waveforms.
(3)  Filtering: A fourth-order Butterworth high-pass filter was applied to the 

signal with a cutoff frequency of 2 Hz. 
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(4)  Normalization: the waveform data are uniformly scaled and mapped to 
the range of –1 to 1.

(5) Initial machine automatic filtering: calculate the signal-to-noise ratio of 
various waveforms and apply a threshold to filter out waveforms.

(6)  Manual final confirmation: after filtering, the waveforms of all stations 
shall be separately plotted in batches and checked manually to remove the wave-
forms of stations with abnormal waveforms.

2.2. Convolution neural network model
Figure 2 shows the CNN model for waveform recognition. The model consists 

of three parts: the input, feature extraction, and output layers. Three-component 
seismic data with 9,000 sampling points in length, after normalization process-
ing, are input into the network structure through the input layer. The feature 
extraction layer consists of three convolution layers, three maximum pooling 
layers, one dropout layer, and two fully connected layers. The activation function 
used in all convolution layers of the feature extraction layer is ReLU. The first 
fully connected layer uses the ReLU activation function, while the second fully 
connected layer uses the softmax activation function. To prevent overfitting, this 
model includes a dropout layer that randomly "discards" certain nodes, thereby 

Figure 2. Convolutional neural network model.
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enhancing the model's generalization ability. Finally, the CNN model produces 
18,562 trainable parameters. The output layer is a sequence with a length of 2. 
Following the input layer and the feature extraction layer, the output layer 
produces a vector of length 2. A value of 1 in the first bit indicates blasting, while 
a value of 1 in the second bit indicates an earthquake.

2.3. Model training and parameter adjustment
The CNN model is trained to accurately classify real event types in earth-

quake quick report tasks. After data preprocessing, the waveform is divided into 
training, validation, and test sets based on event units. The combined training 
and validation set is trained using fivefold cross-validation, which involves ran-
domly dividing the set into five subsets and performing five iterations of training. 
One subset is chosen as the validation set in each iteration, while the remaining 
four subsets are used as the training set. The average accuracy and loss values 
from the five iterations are used to optimize the network structure and hyper-
parameters, considering the training process's loss and accuracy curves. Once 
the hyperparameters are tuned to their optimal values, the test set is used to 
objectively evaluate the network's performance.

Figure 3 presents the primary data processing framework of this study, with 
the preprocessing process omitted due to space constraints. It comprises the 
processing flow for the training set, verification set, and test set. These three 
components employ a consistent input method involving the labeling of wave-
forms corresponding to each event, shuffling the order of labeled waveforms, 

Figure 3. Flow chart of algorithm data in this paper.
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grouping 128 waveforms as input to the network, performing forward propaga-
tion to generate predicted labels, and computing the cross-entropy loss value and 
accuracy using the predicted and actual labels.

An important aspect of the training set processing is that it includes back-
propagation and parameter updates, involving the use of all input waveforms 
for one training epoch. After each epoch, the verification set waveforms are input 
into the network following the same procedure. Once all verification sets are 
processed, the cross-entropy loss value and accuracy can be calculated using the 
predicted labels and corresponding input waveform labels. Contrasting the ver-
ification set, the test set selects the final trained model. The predicted labels for 
each event in the test set are organized as a new set based on the event, integrat-
ing the prediction results from each station waveform to obtain the final predic-
tion value. Subsequently, the accuracy, precision, recall, and F1 score are com-
puted based on the predicted values and ground truth labels for each event in 
the test set. Notably, hot encoding is applied to convert the ground truth labels 
into a unique representation, while the prediction labels are in the form of a 2-bit 
array generated through the softmax layer.

During each training epoch, the data are randomly truncated into waveforms 
with a length of 9,000 points. There is a 30% probability of data augmentation. 
Data augmentation encompasses randomly translating specific areas of the data 
and introducing Gaussian noise with a fixed signal-to-noise ratio. This technique 
allows for the augmentation of seismic data, mitigates overfitting, and enhances 
the model's generalization capability.

The model training process is illustrated in Fig 4, where the solid black line 
represents the training set, and the red line represents the validation set. As the 
number of training iterations increases, the trends in accuracy and cost function 
(loss) for both the training and validation sets closely align. Accuracy gradually 

Figure 4. The process of model training.
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rises with increasing training iterations, approaching 90%, ultimately stabilizing 
around a certain value. Simultaneously, the loss curve rapidly descends and 
eventually stabilizes at a relatively low value, ceasing to fluctuate further. 
Throughout the training process, this study employs 5-fold cross-validation based 
on accuracy and loss curves to assess the model's performance. This approach 
allows for the evaluation of different network architectures and hyperparame-
ters, ultimately determining the optimal network model.

3. Data

This paper utilizes all natural earthquake and blasting events recorded by 
the Hainan Seismic Network Center prior to August 2022 as training and testing 
samples. A total of 438 events, proportionally representing the earthquake and 
blasting in the dataset, are randomly selected as the test set, while the remain-
ing events constitute the training and validation sets. The training set undergoes 
evaluation using a fivefold cross-validation method.

These events were observed by 24 stations. The sampling rate of the wave-
form recorded by each station is 100. The waveforms recorded include three 
components: vertical, east–west, and north–south. Typical waveforms for earth-
quakes and blasting are shown in Fig. 5. It is evident that there are significant 
differences in waveform characteristics between the two types of events. For 
instance: ① Natural earthquakes exhibit well-developed S-waves, while blasting 
events show less pronounced S-wave development. ② The vertical component 
P-wave amplitudes for natural earthquakes are significantly smaller than those 
for blasting events. Therefore, it is possible to differentiate between event types 
by training a CNN model to learn the differences in waveform characteristics 
between natural earthquakes and blasting events.

Figure 5. The waveform recording of blasting and earthquake. (a) The waveform recording of earth-
quake. (b) The waveform recording of blasting.
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The training dataset consists of a total of 1,752 events, including 292 earth-
quakes and 1,460 blasting events. For each event, a matrix composed of three-
component data from each station is used as a training sample, resulting in a 
total of 14,155 training samples, with 4,068 being earthquake samples and 
10,087 being blasting samples. The test dataset includes a total of 438 events, 
consisting of 73 earthquakes and 365 blasting events. Similarly, for each event 
in the test dataset, a matrix of three-component data from each station is used 
as a test sample, resulting in a total of 3,534 test samples, with 976 being earth-
quake samples and 2,558 being blasting samples.

4. Training results and model evaluation

To assess the discriminative performance of the deep learning CNN proposed 
in this study during real-time operations in a digital seismic network, a test set 
comprising 3,534 station waveforms from 438 events was randomly selected for 
evaluation. The model's identification effectiveness was assessed separately at 
the waveform and event levels. Specifically, the evaluation metrics employed 
include the confusion matrix, precision rate, recall rate, and F1 score to deter-
mine the model's accuracy. In our study, earthquakes or blasts are labeled as 
"positive" events, while others are "negative". Precision tells us how many of the 
events predicted as earthquakes/blasts are actually earthquakes/blasts. It mea-
sures the model's ability to avoid false alarms. Recall indicates how many of the 
real earthquakes/blasts the model successfully detects. It reflects the model's 
ability to miss as few true events as possible. Accuracy is the overall proportion 
of correct predictions (both positives and negatives) made by the model. F1 Score 
combines Precision and Recall into a single metric by calculating their har-
monic mean. It helps balance the trade-off between avoiding false alarms (Preci-
sion) and capturing all true events (Recall). A higher F1 Score means the model 
performs well in both aspects.

The test set consisted of 3,534 waveforms, with 976 representing natural 
earthquake events and 2,558 corresponding to blasting events. Table 1 shows 
the confusion matrix for waveform-level identification of earthquakes and blasts, 
with each row indicating the actual event count. Table 2 shows the precision 
rate, recall rate and F1 score of the model recognition in the waveform unit. 
Based on the data from Tabs. 1 and 2. Overall 819 seismic waveforms and 2552 
blasting waveforms were correctly identified in the test set. Among them, 36 
blasting waveforms are identified as earthquakes, and 157 seismic waveforms 
are identified as explosions. The accuracy rate for the blasting waveform is 
94.14%, with a recall rate of 98.59%. For seismic waveforms, the accuracy rate 
is 95.79%, while the recall rate is 83.91%. The overall comprehensive recognition 
accuracy is 94.54% (Tab. 2). These results indicate that the CNN model developed 
in this study can rapidly and accurately classify the waveform type—whether it 
is a natural earthquake or a blast—at an individual station level.
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Table 1. Confusion matrix of earthquake and blasting identification results of the model in waveform.

Blasting (predicted) Earthquake (predicted)
Blasting (true) 2,522 36
Earthquake (true) 157 819

 
Table 2. Precision, recall rate, and F1-score of earthquake and blasting identification results of the 
model in waveform.

Precision Recall F1-score
Blasting 0.9414 0.9859 0.9631
Earthquake 0.9579 0.8391 0.8946

In the process of determining event types, collective observations from mul-
tiple stations rather than individual station waveforms are used. Thus, the model 
developed in this study is evaluated for its effectiveness in event-based type iden-
tification. During the event-based assessment, the waveforms from all correspond-
ing stations that meet a certain signal-to-noise ratio for the event are individually 
identified. The principle of majority agreement is then utilized to determine the 
event type. Among the 438 events, there were 73 natural earthquakes and 365 
blasting events. Table 3 shows the confusion matrix of the identification results of 
natural earthquakes and blasting in the event-based test set, while Tab. 4 displays 
the identification accuracy, recall and F1 score of the model in the same test set. 
The results indicate that out of the 365 blasting events, 362 were correctly identi-
fied, and among the 73 natural earthquakes, 65 were correctly identified. Eight 
natural earthquakes were misclassified as blasts, and three blasting events were 
mistakenly identified as earthquakes. The accuracy rate for blasting events was 
97.84%, with a recall rate of 99.18%. For natural earthquakes, the accuracy rate 
was 95.59%, with a recall rate of 89.04%. Overall, the comprehensive recognition 
accuracy reached 97.49%. These findings demonstrate that the CNN model con-

Table 3. Confusion matrix of earthquake and blasting identification results of the model in event.

Blasting  
(predicted)

Earthquake  
(predicted)

Blasting (true) 362 3
Earthquake (true) 8 65

 
Table 4. Precision, recall rate, and F1-score of earthquake and blasting identification results of the 
model in events. 

Precision Recall F1-score
Blasting 0.9784 0.9918 0.9850
Earthquake 0.9559 0.8904 0.9220
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structed in this study can rapidly and accurately identify the types of natural 
earthquakes and blasting events in an event-based context.

It is worth noting that the misidentification of events occurred primarily in 
cases where waveform features were ambiguous, particularly during events char-
acterized by waveform superposition, such as multiple events occurring within 
an extremely short time frame. Such instances of multiple event superposition 
are relatively rare. When multiple events occur within an extremely short time 
span, the waveforms recorded at observation stations overlap, leading to varying 
degrees of distortion in their original waveform characteristics. As a result, the 
waveforms lose their distinctive features. Figure 6 illustrates waveform record-
ings from observation stations during an event on August 29, 2021, where a 
blasting event overlapped with a seismic event. In cases of waveform overlap, it 
is challenging to discern two distinct events from the perspective of a single sta-
tion, and the overall waveform closely resembles that of an earthquake. Figure 
7 shows waveform recordings from observation stations during a double blasting 
event on August 10, 2021, where again, the overall waveform closely resembles 
that of an earthquake. For such events, relying solely on theoretical waveform 
characteristics is insufficient for determining the event type. In practice, a com-
bination of on-site investigation and manual verification is often necessary. Ad-

Figure 6. Waveform recordings of superimposed seismic events following a blast on August 29, 
2021.



GEOFIZIKA, VOL. 42, NO. 1, 2025, 117–133 129

ditionally, it is possible that the reason for misidentification in such cases may 
also be due to the rarity of these situations, resulting in an insufficient number 
of samples available for model training.

Compared to recognition network models constructed by other researchers 
(Tab. 5), the CNN model built in this study exhibits an overall accuracy that is 
only 0.51% lower than that of the model by L. Linville (2019). However, due to 
cases of misidentification caused by the presence of superimposed multiple 
events in the events identified in this study, when excluding such events, the 
recognition rate of our model surpasses the other three models (achieving an 
overall accuracy of up to 98.4%). Moreover, the blasting event recognition ac-
curacy in our model is the highest, while the recognition accuracy for natural 

Figure 7. Waveform recordings of double blast events on August 10, 2021.

Table 5.  Model accuracy comparison.

Model Accuracy 
(earthquake) Accuracy (blasting) Overall accuracy

L Linville (2019 CNN) 99% 95% 98%
REN T (2019 bagging) 80% 91.3% 86.62%
Yue et al. (2023 7-layer CNN) 97.50%, 91.35% 94.438%
This paper 97.84% 95.59% 97.49%
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earthquakes is not significantly different from the CNN models constructed by 
other researchers. This is primarily attributed to preprocessing the data based 
on events rather than having the same event's station waveform records appear 
in both the training, validation, and test sets. In this preprocessing approach, 
the input consists of three-component signals from preprocessed event station 
records. This method, to some extent, improves the network model precision by 
leveraging the mutual feature constraints from multiple stations, enabling the 
model to learn more accurate event characteristics during training.

5. Discussion and conclusion
(1) Earthquakes and blasting exhibit certain differences in waveform char-

acteristics. This study designed a lightweight convolutional neural network 
(CNN) model that accounts for seismic signal features to address the event type 
recognition problem. We employed a dynamic data loading approach for prepro-
cessing and input, which allows data to be loaded as needed during the training 
process. In addition, by incorporating random data augmentation through dy-
namic loading, we can enhance the generalization ability of the model, while also 
reducing the computational memory requirements of deep learning models. Fur-
thermore, we performed event-based data preprocessing in advance using pre-
processed three-component signals from event station records as input. This 
method, to some extent, enhances the accuracy of the network model by leverag-
ing the mutual feature constraints from multiple stations. It enables the model 
to learn more precise event characteristics during training, thereby aligning 
more closely with the practical work of event type recognition in routine seismic 
network monitoring. This forms the basis for a practical technical system.

(2) We selected all earthquake waveforms recorded by the Hainan Seismic 
Network until August 2022, encompassing both natural earthquakes and blast-
ing events, as the subjects of our study. For each event, three-component signals 
from all stations with a sufficient signal-to-noise ratio were used as input, with 
event type as the output for model training. During the training process, we 
continually optimized the network model and hyperparameters by analyzing 
metrics such as accuracy and loss curve variations between the validation and 
training sets in a 5-fold cross-validation setup. This iterative process aimed to 
obtain the optimal classification model. Subsequently, a test set comprising 976 
earthquake samples and 2558 blasting samples was randomly selected for eval-
uation. The model's recognition performance was assessed both on a station 
waveform basis and an event basis. The results indicated that, compared to 
recognition network models constructed by other researchers, our model achieved 
the highest recognition accuracy.

(3) Our method cannot provide accurate event type determination in cases 
where waveforms from multiple types of events are superimposed, especially 
when multiple events occur within an extremely short time frame. This limita-
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tion primarily arises from the fact that when multiple events occur within such 
a brief time period, the waveforms recorded at observation stations overlap, 
leading to varying degrees of distortion in their original waveform characteris-
tics. Consequently, the waveforms lose their original distinctive features. Fur-
thermore, our model cannot accurately identify such cases, which may also be 
attributed to the rarity of these situations, resulting in an insufficient number 
of samples for training. Consequently, the model cannot learn the accurate wave-
form characteristics of such events. Therefore, for rare events where certain 
waveform features are disrupted, our model faces certain difficulties in event 
type determination. Combining traditional event feature recognition methods, 
such as P-wave initial direction and waveform duration, may offer the potential 
for improved recognition performance in such cases.

In conclusion, the natural earthquake and blasting classification model 
based on convolutional neural networks proposed in this study has shown prom-
ising results on the dataset from Hainan. The next steps involve not only increas-
ing the training data volume from other regions while maintaining label accu-
racy but also devising more intelligent waveform selection procedures to enhance 
the model's generalization performance, enlarging the pool of available training 
waveforms and employing other methods. These measures improve the model's 
recognition accuracy. Additionally, it may be beneficial to explore combining 
traditional event feature recognition methods during model training to achieve 
better event type recognition results.

Funding statement – This study was funded by National Natural Science Foundation of 
China (42474189), and the Science and Technology InnovationTeam of Shandong Earthquake 
Agency (TD202404, TD202405). Additionally, this research was supported by the Hainan 
 Provincial Natural Science Foundation of China (Project No: 422QN429) for the project 'Crustal 
Shear Wave Attenuation Tomography in North Hainan Island and Offshore Areas.

References
Asim, K. M., Moustafa, S. S. R., Niaz, I. A., Elawadi, E. A., Iqbal, T. and Martínez-Álvarez, F. (2020): 

Seismicity analysis and machine learning models for short-term low magnitude seismic activity 
predictions in Cyprus, Soil Dyn. Earthq. Eng., 130, 105932,   
https://doi.org/10.1016/j.soildyn.2019.105932.

DeVries. P. M. R., Viégas, F., Wattenberg, M. and Meade, B. J. (2018): Deep learning of aftershock 
patterns following large earthquakes, Nature, 560(7720), 632–634,   
https://doi.org/10.1038/s41586-018-0438-y.

Feng, L. and Xiang, L. (2017): Challenges and research prospects of induced earthquakes, Recent 
Developments in World Seismology, 47(5), 11–15.

Gao, Y., Yin, X. and Li, S. (2022): Automatic recognition of earthquake and blasting events based on 
deep learning, J. Geodesy Geodyn., 42(4), 426–430.

Grigoli, F., Cesca, S., Rinaldi, A. P., Manconi, A., Lópezt-Comino, J. A., Clinton, J. F., Westaway, R., 
Cauzzi, C., Dahm, T. and Wiemer, S. (2018): The November 2017 Mw 5.5 Pohang earthquake: A 
possible case of induced seismicity in South Korea, Science, 360(6392), 1003–1006,   
https://doi.org/10.1126/science.aat2010.

https://doi.org/10.1016/j.soildyn.2019.105932
https://doi.org/10.1038/s41586-018-0438-y
https://doi.org/10.1126/science.aat2010


132  S. ZHOU ET AL.: RESEARCH ON APPLYING DEEP LEARNING TECHNOLOGY TO CLASSIFY ...

Guo, H. L., Chang, L. J., Lu, L. Y., Wu, P. P., Lü, M. M. and Ding, Z. F. (2022): High-resolution earth-
quake catalog for the focal area of the Qinghai Madoi MS7.4 earthquake based on deep-learning 
phase picker and dense array, Chinese J. Geophys.-Ch., 65(5), 1628–1643 (in Chinese),   
https://doi.org/10.6038/cjg2022P0863. 

Huang, R., Zhu, L., Encarnacion, J., Xu, Y., Tang, C.-C., Luo, S. and Jiang, X. (2018): Seismic and 
geologic evidence of water-induced earthquakes in the Three Gorges Reservoir region of China, 
Geophys. Res. Lett., 45, 5929–5936, https://doi.org/10.1029/2018GL077639.

Kim, K. H., Ree, J. H., Kim, Y., Kim, S., Kang, S. Y. and Seo, W. (2018): Assessing whether the 
2017 Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, 360, 1007–1009, 
https://doi.org/10.1126/science.aat6081.

Kong, Q., Wang, R., Walter, W. R., Pyle, M., Koper, K. and Schmandt, B. (2022): Combining deep 
learning with physics based features in explosion - Earthquake discrimination, Geophys. Res. Lett., 
49(13), e2022GL098645, https://doi.org/10.1029/2022GL098645.

Koper, K. D., Burlacu, R., Armstrong, A. D. and Hermann, R. B. (2024): Classifying small earthquakes, 
explosions and collapses in the western United States using physics-based features and machine 
learning, Geophys. J. Int., 239(2), 1257–1270, https://doi.org/10.1093/gji/ggae316.

Linville, L., Pankow, K. and Draelos, T. (2019): Deep learning models augment analyst decisions for 
event discrimination, Geophys. Res. Lett., 46(7), 3643–3651, https://doi.org/10.1029/2018GL081119.

Li, J., Jiang, H. and Wang, Q. (2023): Crustal attenuation structure of the Tianshan tectonic belt and 
its spatiotemporal variations, Front. Earth Sci., 11, 1094151,   
https://doi.org/10.3389/feart.2023.1094151.

Li, J., Gao, Y. and Zhou, S. (2023): Upper crust anisotropy of the 2020 Jiashi MS 6.4 earth-
quake, Front. Earth Sci., 11, 1160676, https://doi.org/10.3389/feart.2023.1160676.

Perol, T., Gharbi, M. and Denolle, M. (2018): Convolutional neural network for earthquake detection 
and location, Science Advances, 4(2), e1700578, https://doi.org/10.1126/sciadv.1700578.

Plaza, F., Salas, R. and Nicolis, O. (2019): Assessing seismic hazard in Chile using deep neural net-
works, in: Natural Hazards – Risk, Exposure, Response, and Resilience, edited by  Tiefenbacher, 
J. P. IntechOpen Limited, London, https://doi.org/10.5772/intechopen.83403. 

Qian, Q. (2014): Definition, mechanism, classification and quantitative forecast model for rockburst 
and pressure bump, Rock and Soil Mechanics, 35(1), 1–6.

Ren, T., Lin, M. N., Chen, H. F., Wang, R. R., Li, S. W., Liu, X. Y. and Liu, J. (2019): Seismic event 
classification based on bagging ensemble learning algorithm, Chinese J. Geophys.-Ch., 62(1), 
383–392 (in Chinese), https://doi.org/10.6038/cjg2019M0380. 

Saad, O. M., Soliman, M. S., Chen, Y., Amin, A. A. and Abdelhafiez, H. E. (2024): Capsule neural 
network guided by compact convolutional transformer for discriminating earthquakes from quar-
ry blasts, Seismol. Res. Lett., 95, 320–328, https://doi.org/10.1785/0220230101.

Su, J., Wang, W., Zhang, L. and Chen, M. (2021): Automatic seismic phase analysis and earthquake 
location using Yinchuan array datasets based on a machine learning algorithm, Earthquake, 41(1), 
153–165, https://doi.org/10.12196/j.issn.1000-3274.2021.01.012.

Tian, X., Wang, M., Zhang, X., Wang, X., Sheng, S. and Lü, J. (2022): Discrimination of earthquake 
and quarry blast based on multi-input convolutional neural network, Chinese J. Geophys.-Ch., 
65(5), 1802–1812 (in Chinese), 1802–1812. 

Yang, S., Hu, J., Zhang, H. and Liu, G. (2021): Simultaneous earthquake detectionon multiple stations 
via a convolutional neural network, Seismol. Res. Lett., 92(1),  246–260,   
https://doi.org/10.1785/0220200137.

Yue, L., Qu, J., Zhou, S., Qu, B., Zhang, Y. and Xu, Q. (2023): Seismic event classification based on a 
two-step convolutional neural network, J. Seismol., 27(3), 527–535,   
https://doi.org/10.1007/s10950-023-10153-9.

Zhao, M., Tang, L., Chen, S., Su, J. and Zhang, M. (2021): Machine learning based automatic foreshock 
catalog building for the 2019 MS6.0 Changning, Sichuan earthquake, Chinese J. Geophys.-Ch., 
64(1), 54–66 (in Chinese), https://doi.org/10.6038/cjg2021O0271.

Zhou, S., Jıang, H., Li, J., Qu, J., Zheng, C., Li, Y., Zhang, Z.. and Guo, Z. (2021): Research on identi-
fication of seismic events based on deep learning: Taking the records of Shandong seismic network 

https://doi.org/10.6038/cjg2022P0863
https://doi.org/10.1029/2018GL077639
https://doi.org/10.1126/science.aat6081
https://doi.org/10.1029/2022GL098645
https://doi.org/10.1093/gji/ggae316
https://doi.org/10.1029/2018GL081119
https://doi.org/10.3389/feart.2023.1094151
https://doi.org/10.3389/feart.2023.1160676
https://doi.org/10.1126/sciadv.1700578
https://doi.org/10.5772/intechopen.83403
https://doi.org/10.6038/cjg2019M0380
https://doi.org/10.1785/0220230101
https://doi.org/10.12196/j.issn.1000-3274.2021.01.012
https://doi.org/10.1785/0220200137
https://doi.org/10.1007/s10950-023-10153-9
https://doi.org/10.6038/cjg2021O0271


GEOFIZIKA, VOL. 42, NO. 1, 2025, 117–133 133

as an example, Seismology and Geology, 43(3), 663–676 (in Chinese),   
https://doi.org/10.3969/j.issn.0253-4967.2021.03.012.

Zhou, S., Jiang, H. K., Qu, J. H., Li, J., Guo, Z. B. and Zheng, X. (2021): A review on research progress 
in recognition of blasting, collapse, Earthquake Research in China, 37(2), 508–522 (in Chinese)

Zhu, J., Song, J. and Li, S. (2022): Magnitude estimation of Yunnan Yangbi earthquake and Qinghai 
Madoi earthquake on May 21–22, 2021 based on deep convolutional neural network, Chinese J. 
Geophys.-Ch., 65(2), 594–603 (in Chinese), https://doi.org/10.6038/cjg2022P0584.

SAŽETAK

Istraživanje primjene tehnologije dubokog učenja za klasificiranje 
potresa i eksplozija pomoću lagane konvolucijske neuronske mreže

Shaohui Zhou, Jian Li, Qijie Zhou, Yang Liu, Huilin Wang, Yu Wang,  
Chong Wang, Bing Lin, Han Zhang, Limei Peng i Dongya Li

U ovom radu se predlaže lagani model konvolucijske neuronske mreže za brzo i toč-
no prepoznavanje vrsta potresa i eksplozija. Budući da događaj u pravilu bilježi više 
postaja, potrebno je podatke prethodno obraditi i klasificirati prema događaju. Time se 
osigurava da se različiti valni oblici istog događaja ne pojavljuju u bilo koja dva skupa za 
obuku, skupa za provjeru valjanosti i skupa za testiranje. S trokomponentnim valnim 
oblicima koje su stanice zabilježile nakon predprocesiranja kao ulazom, mrežni model i 
hiperparametri optimizirani su analizom prosjeka i varijance u vrijednostima točnosti i 
gubitaka verifikacijskog skupa u peterostrukoj unakrsnoj provjeri te krivulja točnosti i 
gubitaka u procesu obuke. Na kraju, rezultati klasifikacije svih postaja koje postižu od-
ređeni omjer signala i šuma za svaki događaj uzimaju se kao izlaz ove vrste događaja na 
temelju načela da većina prevladava nad manjinom. Ova studija koristi 2.190 prirodnih 
događaja i događaja eksplozija koje je zabilježila Hainan Seismic Network prije kolovoza 
2022., što uključuje 53.067 valnih oblika, za obuku i testiranje učinkovitosti modela. 
Dvadeset posto tih događaja odabrano je nasumično kao testni skup. Rezultati su poka-
zali da je od 438 nasumično odabranih događaja 427 točno identificirano, što je rezultira-
lo stopom točnosti od 97,48%. Točnije, stopa točnosti za seizmičke događaje bila je 95,59%, 
sa stopom prisjećanja od 89,04%, dok je stopa točnosti za događaje miniranja bila 97,84%, 
uz stopu prisjećanja od 99,18%. U zaključku, model konvolucijske neuronske mreže pred-
ložen u ovom radu može brzo i točno identificirati prirodne i eksplozivne vrste u Hainanu.

Ključne riječi: duboko učenje, klasifikacija, potres, miniranje, CNN-konvolucijska 
neuronska mreža
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