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Vehicle mobility across different terrains depends on a multitude of geo-
graphical and meteorological variables. Traditional approaches rely on labor-
intensive manual field measurements to assess soil conditions for military or 
humanitarian vehicle passage.

In this study, we aimed to explore novel methods for parameterizing the 
Cone Index, a fundamental metric for assessing passage feasibility, leveraging 
meteorological data from the global numerical model The Global Forecast Sys-
tem. Focusing specifically on chernosols, primarily agricultural soils found in 
flat, open regions conducive to military operations, we utilized machine learning 
methods to assess how soil conditions affect vehicle mobility. 

Through rigorous exploratory analysis, we investigated correlations, mod-
el performance metrics, and the relative importance of predictors in Cone Index 
modeling. Our findings highlight the comparative efficacy of different modeling 
approaches, particularly emphasizing the utility of the Random Forest method. 
We identified key environmental conditions under which the model reliably 
predicts the Cone Index. This sets the baseline for spatial modelling in GIS.

Despite these insights, our study is constrained by data limitations and 
the inherent resolution constraints of The Global Forecast System model. The 
obtained solution lays the initial groundwork for implementing the model in a 
GIS environment to predict the trafficability of chernosols across the broader 
European region. Future research will aim to expand the dataset, spatial rela-
tionships, and employ models with higher resolution for more robust and ac-
curate predictions.
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1. Introduction

The soil as a top layer of terrain has a major impact on the mobility of ve-
hicles off the roads. However, soil mobility properties are not constant over time 
and are mainly influenced by the physical properties and the amount of water 
contained in soils (Rybanský, 2009; US Army, 1993; Stevens et al., 2016; Ragha-
van et al., 1978; Mosaddeghi et al., 2000; Earl, 1997; Heštera and Pahernik, 2018; 
Shukla, 2014; Lapen et al., 2004). The soil properties mainly affect agricultural 
and forestry activities (Šušnjar et al., 2006; Sedara, 2019; Affleck et al., 2009; 
Uusitalo et al., 2019; Abbaspour-Gilandeh and Abbaspour-Gilandeh, 2019), and 
also has a significant impact on the movement of military equipment during 
combat operations. Unlike agricultural activities, which can usually be adapted 
to the current soil state, military units are forced to implement vehicle movement 
in any situation. For this reason, the issue of terrain clearance assessment has 
received much attention within all armies (Rybanský, 2009; Heštera and Pa-
hernik, 2018; DoA USA, 1994; Hubaček et al., 2014; Cibulová and Sobotková, 
2006; Jayakumar and Dash, 2016; Lessem et al., 1996; Heštera, 2020; Pimpa et 
al., 2014; Pokonieczny, 2017; Rosca and Ticusor, 2017; Suvinen et al., 2009). In 
particular, GIS tools have been used for many years to address this complex 
problem (Pimpa et al., 2014; Pokonieczny, 2017; Rosca and Ticusor, 2017; Hohm-
ann et al., 2013; Hofmann et al., 2015; Dawid and Pokonieczny, 2021; Rybanský 
et al., 2015; Talhofer et al., 2015). Achieving the correct results in terrain pass-
ability modeling that commanders and staffs can use for their decision-making 
depends mainly on the quality of geographic data, the capabilities of the used 
GIS tools, and last but not least, appropriate procedures for modeling the influ-
ence of individual landscape components on mobility and linking the individual 
influences into a comprehensive result. 

When assessing terrain passability, a number of authors have focused on 
evaluating the influence of single landscape components such as relief, roads, 
vegetation, water and built elements (Rybanský, 2009; Heštera and Pahernik, 
2018; Pokonieczny, 2017; Suvinen et al., 2009; Rybanský et al., 2015). Parameter-
ization of these phenomena for the implementation of GIS modeling is not easy 
but not impossible. In principle, two basic approaches are addressed. 

The first principle is based on modelling the movement of the equipment on 
the surface in terms of the technical parameters of the vehicle and their relation-
ship to the site and its characteristics (slope, obstacles, etc.). The chassis relation-
ships are examined in detail, including the system of transmission of the drive 
force of the vehicle to the surface by wheels or tracks. These problems are main-
ly dealt with in terra-mechanics. An example of such a model is the NATO Ref-
erence Mobility Model (NRMM) (Heštera and Pahernik, 2018; Jayakumar and 
Dash, 2017; McCullough et al., 2017; Wong et al., 2020).

The second principle involves utilizing data from a multitude of vehicle move-
ment measurements on the surface, which are then evaluated using geostatisti-
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cal methods. This approach is adopted by the research team at the University of 
Defence, Brno (Rybanský, 2009; Hubáček et al., 2014; Hofmann et al., 2015; 
Rybanský et al., 2015; Talhofer et al., 2015; Rybanský, 2014; Rybanský et al., 
2017; Hošková-Mayerová et al., 2020; Rada et al., 2021), and a similar method-
ology is proposed by authors from the Military University of Technology in War-
saw (Pokonieczny, 2017; Pokonieczny and Mościcka, 2018; Dawid and Pokoniec-
zny, 2021; Pokonieczny and Dawid, 2023; Pokonieczny et al., 2023). However, it 
is essential to consider the content and quality of the underlying spatial data 
within GIS data models in both cases. The accuracy of model outcomes is sig-
nificantly influenced by the quality of the underlying data, thereby affecting the 
consequent decision-making (Sanderson et al., 2007; Van Oort, 2006; Talhofer 
et al., 2012; Hošková-Mayerová et al., 2013).

Although the outputs described in the preceding paragraph can substan-
tially aid the decision-making process, without considering the influence of soil, 
it remains a partial solution. Assessing and modeling the impact of soil on mobil-
ity pose the most complex challenges in the process, yet they are crucial for 
achieving accurate results. Typically, evaluating the influence of soil on military 
vehicle mobility involves assessing soil penetrometric resistance through on-site 
penetrometric measurements. These procedures are widely employed in military 
practice and form the basis for modeling soil passability in GIS. To assess intrin-
sic soil bearing capacity concerning specific vehicles, several authors (Rybanský, 
2009; Heštera, 2020; Rosca and Ticusor, 2017; Mason et al., 2015; Li et al., 2007; 
Vennik et al., 2019; Vennik et al., 2017; Hubáček, 2018) have compared the Rat-
ing Cone Index (RCI) value with the Vehicle Cone Index (VCI) established by 
the US Army (US Army, 1993; DoA USA, 1994).

RCI, derived from terrain surveys, integrates two crucial parameters: the 
Cone Index (CI) for soil compaction and the Remolding Index (RI) for soil defor-
mation after repeated passages (DoA USA, 1994). Multiple studies emphasize 
soil moisture's importance, particularly its impact on fine-grained soil compac-
tion and vehicle load-bearing capacity (Hubáček, 2018; Priddy and Willoughby, 
2006; Sirén et al., 2019; Uusitalo et al., 2016; Ayers and Perumpral, 1982). How-
ever, there is a lack of methods to quantify soil moisture's influence on vehicle 
load-bearing capacity in existing literature. Instead, more measurable meteoro-
logical factors, such as precipitation, are commonly used to assess soil passabil-
ity and its impact on vehicle mobility (Heštera and Pahernik, 2018; Heštera, 
2020; Bosbach, 2024; Frankenstein and Koenig, 2004; Frankenstein, 2008; Re-
intam et al., 2016; Vennik, 2023). Numerous researchers have investigated the 
relationship between soil properties and military vehicle performance, examin-
ing various aspects of this issue (Rybanský, 2009; Hubáček et al., 2014; Cibu-
lová and Sobotková, 2006; Hofmann et al., 2015; Rybanský et al., 2015; Talhofer 
et al., 2015; Rybanský, 2014; Rybanský et al., 2017; Hošková-Mayerová et al., 
2020; Rada et al., 2021; Hubáček, 2018; Hubáček et al., 2017; Hubáček et al., 
2016).
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Hubáček's research (Hubáček, 2018; Hubáček et al., 2017; Hubáček et al., 
2016) advances understanding of meteorological factors' influence on passability 
limits. He notes the absence of suitable soil moisture data for modeling soil load-
bearing capacity in the Czechia. Consequently, his models rely on parameters 
like precipitation, air temperature, soil moisture and snow cover. Additionally, 
model (Hubáček, 2018) categorizes soils into several types based on soil type and 
texture, applying different meteorological parameters to these categories, which 
enables more accurate modeling of passability. For example, chernosols are di-
vided into fine-grained and coarse-grained categories, with different meteoro-
logical parameters applied to each of them. This approach enhances the accu-
racy of passability predictions based on the specific soil conditions. However, 
these models are limited to using national meteorological and soil data, restrict-
ing their application to Czechia. Therefore, our research explores the potential 
of using selected meteorological events from The Global Forecast System (GFS) 
(National Centers for Environmental Prediction et al., 2015) and European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) (National Centers for En-
vironmental Prediction et al., 2015) models for parameterization. If correlations 
between weather parameters and CI index values, which exhibit more variabil-
ity than RI index values, are identified, existing national solutions could be ap-
plied to model soil passability at least in the neighboring countries. Identifying 
relationships between CI values and weather parameters in global models pres-
ents a promising avenue for developing a new soil passability assessment meth-
od within GIS tools.

For addressing this pilot verification of the feasibility of utilizing a global 
meteorological model, only one soil group was selected. This group comprises 
chernosols, which are agriculturally cultivated and typically found at lower el-
evations (Shukla, 2014). Their distribution corresponds to areas where intensive 
military activities usually occur during armed conflicts (Caldwell et al., 2004). 
Notably, such regions include areas of chernozem soils found, among other loca-
tions, in Ukraine, where military conflict is currently ongoing (Lebed, 2024). 

The key insights from the study dealing with the modelling soil compaction 
in agricultural applications (Abbaspour-Gilandeh and Abbaspour-Gilandeh, 
2019) show that reliable predictions of the relationship of CI to soil moisture and 
other soil parameters can be obtained by appropriately chosen machine-learning 
techniques based on field-measured data. This assumption was also used in the 
case of this work, based on the assumptions obtained during field measurements. 
During these measurements, the relative soil moisture was measured, which 
shows relatively strong correlations with the passability indices. This encour-
ages the use of statistical and machine learning methods that are able to inter-
pret and quantify complex relationships between predictors and predicted val-
ues. The integration with meteorological models represents a promising initial 
step towards future advancements in predicting soil passability based on nu-
merical weather forecasts. The authors acknowledge the inherent limitations 
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associated with the utilization of global models, and thus, the paper does not 
seek to perfectly predict CI values from such models with absolute accuracy. 
Instead, its objective is to lay the groundwork for procedures and methods that 
could be later implemented when utilizing local models within the GIS. This 
includes several components, such as comparing machine learning models, se-
lecting predictors, interpreting results, and evaluating the potential for locations 
classification based on the predictability of individual models. 

The aim of the present study is to investigate the possibilities of parameter-
ization of the Cone Index based on measured soil bearing capacity and meteoro-
logical data from global meteorological models. This is done on the basis of se-
lected meteorological variables through machine learning methods. The study 
aims to develop procedures for parameterizing the bearing capacity of chernosols 
concerning military vehicle passability. Finally, the research endeavours to set 
the benchmark for spatial modelling of the soil passability using GIS tools.

2. Materials and methods

To address identified challenge, obtaining necessary data and selecting suit-
able data collection sites was crucial. As previously outlined, the focus of this 
study narrowed down to modeling soil passability within the chernosols group. 
Of the soil types that are significantly influenced by weather, chernosols are the 
most prevalent in area of Czech Republic, found mainly in extensive lowland 
regions. Selection of sites for periodic field measurements of CI values involved 
several considerations. These were the prevalence of chernosols soil type, site 
accessibility, and terrain diversity, which influences rainwater runoff from the 
measurement sites.

Meteorological data were sourced mainly from the GFS (grid resolution 0.25 
degrees) model. Due to its global availability and open continuous archive con-
taining runs from 0 up to more than 380 hours, it provided potential for further 
improvement in predictions.

The European ECMWF model has also been considered and tested, but it 
did not provide a sufficient time archive within the available database. It has a 
higher resolution and is overall a suitable tool to be included in further research.

2.1. Penetrometry and the soil data
To obtain the CI parameter, the E-960 Soil Trafficability Kit, designed and 

manufactured by Geotest Instrument Corporation for the U.S. Army Corps of 
Engineers, was used. The kit consists of a cone penetrometer, soil sampler, re-
molding equipment and hand tools (Fig. 1). The measurement procedure corre-
sponds to the field manual (DoA USA, 1994). Simultaneously, during the pene-
trometric measurements, the volumetric soil moisture content at the surface was 
measured using a ThetaProbe ML3 soil moisture sensor.
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The sites were chosen based on soil classification from various soil data-
bases, ensuring that the soil type at each measurement site corresponded to the 
black soils group according to the Czech taxonomic soil classification system 
(Němeček and Kozák, 2024). Based on the classification from the Special-Purpose 
Soil Database (SPSD) (MoD CZ, 2000), all measurement sites were fine-grained, 
which was subsequently confirmed by soil analyses indicating that all soils con-
tained a higher clay content (Bajer, 2024). According to the soil analyses, the 
soils at the measurement sites exhibit comparable physical properties (Bajer, 
2024).

 Despite differences in the Czech classification scale, these soil areas align 
with international classifications such as the WRB (World Reference Base) 
(Němeček, 2002) and Soil Taxonomy (Němeček, 2002), encompassing soils clas-
sified as chernozems and phaeozems. Chernosols' properties are significantly 
influenced by soil moisture and associated precipitation, particularly during the 
cold season.  Therefore, field measurements were conducted in two stages during 
the 2023–2024 period: the first stage from March to April 2023 and the second 
stage from October 2023 to January 2024. Measurements were repeated every 
2–4 days during both stages, resulting in a comprehensive dataset of CI values 
at each site. A total of 21 measurements from Stage 1 and 18 measurements 
from Stage 2 were utilized for subsequent analysis. CI values were measured at 
four layers – 0, 6, 12, and 18 inches (0, 15, 30, 45 cm) - denoted as CI0, CI6, CI12, 
and CI18 respectively.

The CI values were measured at five sites in the South Moravian Region of 
Czechia, specifically within the Dyje-Svratka valley east of Brno (Figure 2). 
These sites are situated near the villages of Velešovice (sites 1 to 3), Zbýšov (site 
4), and Těšany (site 5). Sites 2, 3, and 5 are characterized as wetter sites. They 
often experience rainwater accumulation and slow infiltration. Consequently, 
lower CI values were consistently observed at these sites, with prolonged rainfall 
resulting to waterlogging and the formation of shallow surface water pooling. In 
contrast, sites 1 and 4 can be categorized as drier sites, exhibiting efficient run-
off of rainwater without surface retention. As a result, higher CI values were 

Figure 1. The original E-960 Soil Trafficability Kit, including attachments designed by the research 
team for easier handling and the ThetaProbe ML3 portable soil moisture sensor.
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generally recorded at these sites, and the disparity in CI rankings between wet 
and dry seasons was more pronounced.

Figure 2 shows that sites 1, 2, and 3 are relatively close, sites 4 and 5 are 
more remote. This may be particularly evident in the meteorological model data, 
which we have assigned from the closest point.

2.2. Meteorological model predictors

Accessing the National Center for Atmospheric Research's (NCAR's) GFS 
model archive (National Centers for Environmental Prediction et al., 2015) for 
training machine learning models was crucial for our study. We opted for a 24h 
forecast interval to meet operational and planning requirements, especially for 
larger vehicles. Based on the literature review and preliminary testing, the fol-
lowing predictors were extracted relative to the closest point from the measure-
ment:

1. snow depth,
2. soil temperature (0–10 cm),
3. soil temperature (10–30 cm),  
4. volumetric soil water (0–10 cm),

Figure 2. Measurements locations and GFS grid points. 
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5. volumetric soil water (10–30 cm),
6. accumulated precipitation for 24 hours, and
7. accumulated precipitation for 48 hours.
We intentionally opted to utilize forecast values instead of analysis or re-

analysis data, acknowledging the potential inaccuracies this decision may intro-
duce into the model. However, these inaccuracies will also be present in subse-
quent experiments examining lead times and their impact on passability. 
Therefore, these predictions are primarily regarded as proxy values rather than 
direct determinants of passability.

2.3. Preprocessing
When testing a set of methods, a standard scaler expressed by the equation 

1 was used for the linear regression and Bayes ridge regression models (Pe-
dregosa et al., 2011):

 z
x u
s

=
−

where u is the mean of the training samples and s is the standard deviation of 
the training samples. 

Presumably, linear models can benefit from feature scaling, as they assume 
a linear relationship between the features and the target. However, nonlinear 
models are less sensitive, and scaling might not have such, if any, influence. 

Since all the features are ordinal, the use of encoding was not necessary.

2.4. Correlations
Because our data are a relatively small statistical set (about 60 measure-

ments), do not have a normal distribution and are likely to contain outliers, it is 
appropriate to consider two types of non-parametric correlation (Croux and De-
hon, 2010), whose essential properties for our research are: 

1. Spearman Correlation: 
a. Suitable for monotonic relationships (not necessarily linear). 
b. Less sensitive to outliers than Pearson. 
c. Appropriate for ordinal or ranked data. 

2. Kendall Correlation: 
a. Suitable for detecting any type of dependence between variables. 
b. Focuses on concordant and discordant pairs of data points. 
c. Robust against outliers. 

These two correlation coefficients were computed for all considered predic-
tors and based on them, assumptions for the success of machine learning models 
were formulated.
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2.5. ML model training and validation

We used the Leave-One-Out Cross-Validation (LOOCV) (Sammut and Webb, 
2011) method to split the training and test datasets, where every data point 
except one is used for prediction iteratively (Fig. 3).

Figure 3. Schematic illustration of the training process employing the Leave-One-Out Cross-Vali-
dation (LOOCV) technique.

This method is ideal for smaller datasets as it utilizes all available data for 
training and testing. Additionally, it provides results for each measurement 
outcome separately, allowing us to identify any outlier points that may not be 
immediately apparent.

2.6. Tested ML methods
Following the exclusion of other algorithms due to inadequate accuracy with 

smaller datasets (e.g., Lasso, Polynomial, and Principal Component Regression 
– PCR), seven regression methods were chosen for further analysis. These methods 
provide diverse mechanisms or regularization approaches for predicting CI, ensur-
ing the avoidance of outliers in the initial predictions as outlined in Tab. 1.

Table 1. Overview of tested ML regression methods (Pedregosa et al., 2011).

Method Anticipated value
Linear regression Simplicity and interpretability
Bayesian Ridge Probabilistic, handles multicollinearity well and prevents overfitting

K-nearest neighbors Can capture nonlinear relationships, understandable to human based 
decision-making

Elastic Net Variable feature selection, shrinking low value predictors to 0 weight 
and variable regularization

Random Forest Robustness to outliers and complex interactions among predictors
Gradient Boosting Sequential, based on weak learners sets
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Each method underwent rigorous testing and evaluation across all locations 
through cross-validation using a predefined grid of hyperparameters. While the 
authors acknowledge the limitations inherent to each method, it is assumed that 
any inaccuracies in the results are primarily attributed to the limited extent of 
the dataset, low resolution of the meteorological model, or insufficient geograph-
ic information. Consequently, among well-trained methods, the specific type of 
method may not always be the determining factor.

2.7. Cross-validation metrics
To maintain the interpretability of the results, two straightforward accu-

racy metrics were employed (Pedregosa et al., 2011). For a clear depiction of the 
ML prediction residual, the mean absolute error for n samples is defined as:

( ) −

=
= −∑ 1

0

1,  ˆ   ˆ
n

i ii
MAE y y y y

n
where ŷ is predicted value corresponding to the y measured value of i-th sample 
in the set of n measurements.

Additionally, for practical applications, it is important to understand the 
maximum error that may be encountered. This can be defined similarly as:

( ) ( )= −,  .ˆ ˆi iMaxE y y y y

These errors were the major accuracy metrics for the machine learning mod-
el accuracy estimations. 

3. Exploratory findings

In this chapter, we present a summary of the exploratory analysis results, 
which either support or challenge our understanding and interpretation of the 
measured values and trends across various sites.

3.1. Soil water content and measured soil relative humidity
Since moisture conditions can be critical in terms of passability, the soil 

moisture values measured in the field and the predicted soil moisture were com-
pared separately.

The aim was to estimate the relationship between these values at each site 
and based on this, to determine whether the moisture predictors are of sufficient 
quality, how they vary from site to site and how to treat each site. The following 
conclusions can be drawn from the results:

•  The situation varies depending on the type of location. Except for partial 
extremes caused mainly by cases of soil freezing, a tendency towards a 
possible correlation between moisture contents can be observed in the 
standard sites (1 and 4).
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•  On the other hand, in waterlogged sites where rainfall accumulation oc-
curs, it seems that no direct dependence can be observed and the search 
for dependencies is likely to be more complicated and influenced by longer-
term phenomena.  

Both assumptions confirming our perceptions obtained on site are shown in 
the graphs in Fig. 4, which shows the situation for Site 1 and Site 2. These sites 
are less than 500 m apart, both have the same soil properties and differ only in 
the long-term waterlogging at Site 2.  

Figure 4. Comparison of measured soil humidity and GFS volumetric soil moisture content in the 
top layer (0–10 cm) at two nearby locations with similar soil characteristics. Location 2 experienced 
higher rainfall accumulation. (a) Location 1; (b) Location 2; (c) Location 1 photo; (d) Location 2 
photo.
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Figure 4 indicates higher soil moisture values and reduced variance at the 
wetter site. As expected, the global model fails to capture this variation. While this 
discrepancy may pose challenges for machine learning models, they can redirect 
their focus towards other predictors relevant to perpetually waterlogged areas. 
Consequently, we can infer the presence of two distinct types of areas within our 
sites - one consistent with the weather-related moisture patterns and another 
exhibiting limited response to short-term changes. Due to accumulated water, it 
reflects rather seasonal variations and long-term trends. This assumption is con-
firmed by further comparisons, where the shapes of the cluster of points at location 
4 correspond to the drier location 1 and the wet location 3 exhibits the same shape 
as location 2. Site 5 presents a special case. While the situation remains consistent 
at high measured humidities, at lower humidities it shows characteristics remi-
niscent of a dry environment. This suggests an increased prone to sudden accu-
mulation of water along with a pronounced response during drier periods. The 
thick layer of soil horizon accumulation may contribute to the observed water 
accumulation, resulting in the site's wet behavior during periods of rainfall and 
its standard behavior during drier periods, encompassing both defined types.

3.2. Predictors – CI correlations

Spearman and Kendall correlations were computed for all locations, layers, 
and predictors (Fig. 5). As there were no indications of significant differences 

Figure 5. Comparison of Kendall correlation coefficients between predictors and measured Cone 
Indexes across different soil layers at two locations. (a) Location 1; (b) Location 2. Cone Index values 
(CI0-18) represent soil compaction measurements at various depths. Measured RH indicates relative 
humidity measured during penetrometry. VSW refers to Volumetric Soil Water content and Soil 
Temp. to temperature in layers of 0–10 cm and 10–30 cm, while PCPN represents precipitation sums 
for 24 and 48 hours.
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between these two types of correlations, which might suggest, for instance, a 
stronger monotonic relationship in the data, we opted to present the Kendall 
correlations specifically for locations 1 and 2.  

Focusing on the predictors of CI, there are relatively low correlations in the 
topmost layer in each layer in the first (dry) location. Here, accurate modelling 
of the loose layer cannot be expected. In the second layer of measurements, 
however, the situation is more stable and not so dependent on soil conditions and 
soil loosening. Thus, Site 1 shows a stronger correlation in the second measure-
ment layer CI6 (about 15 cm), –0.14 and –0.23 for the second layer of the GFS 
model. The highest correlation for predictors in the driest layers is for 24-hour 
precipitation, –0.34, indicating that subsoil softening occurs at high rainfall. This 
is probably also related to the higher correlation with soil temperature in gen-
eral, with both layers showing a positive correlation, i.e. that hardness increas-
es with higher temperature. The effect of 48-hour precipitation is reduced and 
is only noticeable on the uppermost layer.

For location 2, quite significant values can be observed, such as –0.53 for 
Volumetric Soil Water and CI6 (15 cm). Partially higher (although only  
–0.11) correlation values can then also be observed on 24 h precipitation, whose 
significance decreases with depth. The opposite effect of modelled soil tempera-
ture is also evident for this site. That is, hardness increases at higher tempera-
tures. This is mainly related to the drying of the wet area. 

Although it has an unquestionable theoretical overlap, the influence of the 
snow cover must be tempered as it has not been detected many times and the 
inaccuracy in its modelling by the GFS model may be significant. Therefore, no 
broad conclusions can be drawn from the correlations on a limited dataset.

From the calculated correlations and by the comparison with other sites, we 
make the following assumptions: 

•  For drier sites, it will depend on more predictors whose importance may 
be more evenly distributed.  

•  For wetter sites, it will depend more on long-term drying trends, i.e. more 
on one or two predictors, and the influence of the others will be suppressed. 

From these assumptions, we can draw two expectations for modelling with 
machine learning methods: 

•  At drier locations (with more predictors), models can provide more robust 
predictions due to the diversity of input variables. However, the ability of 
models to capture outliers or high variance may be limited. 

•  At wet locations (with one significant predictor), models may be simpler 
because they rely on a single variable. However, the effectiveness of these 
models depends largely on the quality and relevance of this single predic-
tor. If the predictor accurately represents the target variable and is of high 
quality, the models may indeed be stable. However, they may have diffi-
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culty capturing the complex relationships present in the data if the qual-
ity of the predictor is lower. 

In summary, while the first dataset may offer greater diversity but poten-
tially less ability to capture outliers, the second dataset may provide stability 
but may lack the complexity needed to accurately represent the variability in 
the data.

From a geographic modeling perspective, it becomes apparent that more 
precise delineation and downscaling of large land areas with the same soil type 
is necessary. While we primarily consider these areas homogeneous at our cur-
rent resolution, our analysis reveals significant variations even between geo-
graphically proximate locations.

For further research, it is recommended to develop procedures for their ac-
curate delineation. In this context, leveraging accurate digital elevation models 
obtained through techniques such as laser scanning, in combination with remote 
sensing data, will be crucial. These resources will help us to capture the nu-
ances of long-term waterlogged sites throughout the year.

4. Results

We divide the results of the paper into several subsections according to our 
experiments. 

•  Analysis of the most successful ML models for each location and layer; 
•  Random Forest accuracy analysis;
•  Analysis of the most important predictors for each domain and the Random 

Forest method; 
•  The ability of the RF model to predict CI at a location that was not in-

cluded in the training set.

4.1. Models comparison
To select the most effective models, several regression techniques were eval-

uated. The outcomes may reveal insights into the critical factors influencing CI 
modeling. We hypothesized that model performance would vary depending on 
location complexity and type, as sites with higher predictor and measured value 
variances might yield superior results with certain methods.

For each target variable in the six regions, a model was trained and cali-
brated through searching best hyperparameters tuning using GridSearchCV 
(Pedregosa et al., 2011). Predicted values were compared to actual measure-
ments, and the average MAE was recorded. The model with the lowest MAE was 
selected as the best performing (Fig. 6), although we acknowledge that employ-
ing different calibration or accuracy metrics could identify a different optimal 
method.
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Figure 6 illustrates that as depth increases, the soil hardness also increases, 
resulting in higher MAE values for predictions. This trend is not necessarily 
indicative of poor performance but rather reflects the dependency of prediction 
errors on the measured values. We acknowledge that the differences between 
the best and second-best methods may not be substantial. Initial expectation 
was not necessarily for any one method to outperform the others. Additionally, 
inaccuracies observed are likely attributable to lower data quality or limited 
training samples for certain boundary conditions. Therefore, any method is ex-
pected to fail in the most extreme, unique or inaccurately predicted soil condi-
tions.

Figure 6. Comparison of MAE of different models for all the target locations and variables. Over 
each bar, the abbreviation of the most successful model is displayed (KNN: K-nearest Neighbors, 
RF: Random Forest, DT: Decision Tree, GB: Gradient Boosting, EN: Elastic Net, BR: Bayes Ridge).

Given the success of decision-tree-based methods, including Random Forest 
(RF), Gradient Boosting (GB), and Decision Trees (DT), along with their advan-
tages such as interpretability, non-linearity handling, feature importance anal-
ysis, scalability, and robustness to outliers, we selected Random Forest for fur-
ther analysis.

4.2. Comparison of measurements vs. model
After conducting predictions using the Random Forest method, the results 

were visualized (Fig. 7).  From four measured depths at each of the five sites, 
resulting in a total of 20 predicted target values, we focused on specific sites for 
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analysis. These selected sites are in close proximity (sites 1 and 2), facilitating 
a comparison between drier and wetter types of locations. Additionally, we spe-
cifically chose CI6 for examination due to its higher correlations with predictors. 
Since soil conditions exert a predominant influence at this depth and are more 
predictable than in the uppermost layer, CI6 was deemed particularly relevant 
for analysis.

Figure 7. Predicted vs. actual values of Cone Index at the location 1 and 2, both in the second level 
of approximately 15 cm. (a) Location 1, Layer 15 cm; (b) Location 2, Layer 15 cm.

At none of the locations did the results tightly cluster around the red curve 
representing perfect predictions (Fig. 7). However, certain situations indicated 
that the RF model captured the conditions reasonably well, although there were 
outliers for both. These outliers often occurred in situations with more extreme 
effects or highest values in the measurements. It is evident that the method tends 
to align more closely with the mean values rather than accurately predicting 
outliers, which is inherent to the nature of the method.

In terms of operational deployment, the results suggest that for a single pass, 
with lighter off-road vehicles, most of the predictions would be suitable, particu-
larly at location 1. However, a drawback is that the method tends to avoid pre-
dicting the lowest values. This could lead to overestimation of the subgrade 
hardness in critical situations, potentially causing vehicle sinking. The trained 
and calibrated model tends to overestimate the low values for both dry and wet 
sites. Comparison of the individual measured and predicted values shows that 
this tendency is not absolute, although it is prevalent - the cause may be due to 
insufficient detail in the meteorological data or a small time series of measure-
ments. For the prediction of the determination of the passage of vehicles through 
the area, the question arises how reliable the predicted values are.

To address this issue, one approach could involve using multiple methods 
with different calibrations and designing various scenarios. Alternatively, cali-
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brating the RF method using special cross-validation could be considered, biasing 
it towards false alarms rather than overestimating the Cone Index. The second 
part of the approach will entail a rigorous analysis of the predictors and their 
values, estimation of factors that lead to bias, and mapping of factors contribut-
ing to lower confidence in modelling lower CI values.

4.3. Predictors importance
Permutation importance quantifies the reduction in model (here RF) perfor-

mance when randomly shuffling the values of a specific feature (predictor). The 
actual importance of features for predicting the Cone Index across all five loca-
tions is illustrated in the Fig. 8. We used this metric to estimate what are the 
most important predictors for the Cone Index estimation and how they differ 
within the locations.

Figure 8. Feature importance and its standard deviation (std) for calibrated Random Forest model 
tested on locations of measurements.

The findings presented in Fig. 8 highlight several key observations. The 
model exhibits a strong importance of Volumetric Soil Water in layer 2 (10–30 
cm), particularly evident at the drier location 4. This reliance suggests that this 
characteristic, influenced by longer-term soil water transport models, serves as 
a reliable indicator for determining Cone Index (CI). This corresponds to the 
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Kendall's correlation coefficients that suggested strong associations between 
VSW L1 and CI6 (–0.63) and CI12 (–0.58), further establishing the relationships 
between the waterlogged sites (location 2 and 3) and the dry sites (location 1 and 
4). In addition, location 1 shows higher contributions of the precipitation predic-
tor (PCPN 24) compared to location 4. This may be due to increased runoff and 
faster drying, thus suppressing the effect of long-term soil water accumulation.

Overall, the selection of predictors for Random Forest (RF) aligns well with 
the properties of the Kendall correlation coefficients. This scatter of correlations 
leads to a constant reliance on Volumetric soil water in the second layer, which 
is offset by the varying support of the other predictors. This means that the 
model uses a different set of predictors for each layer, which primarily indicates 
high inconsistency between layers. 

However, it is important to note that this analysis may underestimate the 
importance of predictors if they are highly correlated.

4.4. Cross-location model testing

For final testing of the RF model capability, 18 measurements were predicted 
and evaluated at the Tovačov site (Fig. 9). This location 40 km northeast of the 
five sites where measurements were carried out, was selected for its similar soil 
classification. At the same time, independent penetrometric measurements were 
available from 2014 to 2018, especially in the winter period of the year (October 
to April). However, the 2014–2018 period was considered exceptionally dry in the 
spatial context of Central Europe, where the Tovačov site is located.

Related soil moisture drought had been evaluated as exceptional in the con-
text of past 253 years (Moravec et al., 2021). Conversely, 2023–2024 measure-
ments correspond to normal long-term soil moisture conditions. Thus, both da-
tasets represent different background environments. CI was modelled based on 

Figure 9. Tovačov site: (a) Spatial relationship with area of interest; (b) Location photo.
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a training set of our five sites, each separately. Each model was then separately 
evaluated for absolute error (Fig. 10) and compared graphically using a scatter 
plot (Fig. 11).

The highest absolute error among the 18 measurements (indexed from 0) 
was observed for measurements 6 and 15. These instances occurred when the 
soil was frozen, resulting in maximum measured hardness. Consequently, the 
high error can be categorized as a false alarm. In these cases, the model pre-
dicted a lower value, while the actual hardness was higher, leading to the high 
error magnitude. It is evident that the model did not account for such scenarios, 
indicating potential inadequacies in expressing the meteorological conditions 
predicted by the model.

The increased error can also be attributed to measurements 2, 12, and 13, 
which were conducted during the dry summer period (June to September), when 
the soil was exceptionally dry (Moravec et al., 2021), and the model was not 
trained for such conditions. This discrepancy is particularly noticeable in relation 
to site 4, where the soil's behavior was most in line with expectations for cher-
nosols. In comparison to site 1, which experienced similar dryness, the dry pe-
riod did not lead to significantly greater differences.

The Tovačov site demonstrated the best prediction accuracy when trained 
on data from sites 1 and 4, which share similar moisture characteristics. How-
ever, site 4 exhibited a higher variance in predictions, suggesting its potential 

Figure 10. Absolute errors for each prediction, with each color representing the site used as the 
training dataset.
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to respond to changing conditions. Conversely, site 1 consistently produced re-
sults within the range of approximately 70–100, indicating a more stable predic-
tive outcome.

5. Discussion

Our study contextualizes the modeling of the Cone Index against the back-
ground of cited sources, which have delved into various aspects of modeling 
(Heštera and Pahernik, 2018), (DoA USA, 1994), (Cibulová and Sobotková, 2006), 
(Jayakumar and Dash, 2016). We introduce newly considered variables discov-
ered during our analysis as predictors for machine learning-based terrain pass-
ability prediction.

Our results revealed some favorable properties of machine learning methods, 
although they must be well-supported by a comprehensive and extensive data-
set of reliable measurements and accurate geographical and meteorological mod-
els (Van Oort, 2006), (Talhofer et al., 2012). We selected soil moisture and tem-
peratures in the first two layers of the GFS model, along with precipitation over 
24 and 48 hours, as the main predictors.

The study successfully achieved its objective of mapping the capabilities of 
machine learning methods for modeling passability based on meteorological vari-

Figure 11. Comparison of the real and predicted Cone Index based on data from the five sites, 
predicting the Cone Index at the Tovačov site.
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ables (Hubáček et al., 2016). As anticipated, the model demonstrated strong 
performance in typical scenarios, but in extreme conditions like frozen ground 
or severe droughts, profound human interpretation of the results was necessary. 
These challenges were primarily attributed to factors such as the lower resolu-
tion of the meteorological data, the limited extent of manual measurements, or 
the absence of spatial relations or advanced geographical and soil attributes at 
the measurement sites.

The correlations of predictors suggest that soil characteristics and a model 
with very low resolution can be suitable features for machine learning models. 
This offers hope for research using higher-resolution models and more sophisti-
cated soil behavior schemes (Rybanský et al., 2017).

The comparison of models across all sites did not demonstrate one model 
significantly outperforming all others. While Random Forest was selected as the 
most successful, performance may vary for different locations and under different 
conditions (e.g., summer-only or winter-only measurements, different regions of 
the world, etc.).

Generally, machine learning methods provide a solid foundation for model-
ing static site properties and their passability. They effectively capture long-term 
characteristics and aid in site and condition comparisons. Unlike previous stud-
ies, we explore the possibilities of utilizing numerical weather prediction models, 
which could form the basis for passability prediction with accurate geographical 
models in the future.

However, it is evident from the results and exploratory analysis that sig-
nificant portions of predictors and target values are missing in the models - either 
measurements on-site or a method to determine CI comprehensively and con-
tinuously. This is also reflected in outliers in the results, where machine learning 
methods struggle to estimate influences such as soil freezing or extreme drought 
accurately. This may be attributed to the limited number of measurements for 
these states, as measurements were minimized during these stages of the year 
compared to earlier data handling methods. Nevertheless, this is in light of re-
curring results confirming favorable passability conditions.

One solution to these limitations may involve more precise modeling of spa-
tial relationships, where we can accurately estimate and cluster individual sites 
and soil conditions directly in relation to passability using correlations in static 
site properties. However, such advanced data processing will require signifi-
cantly higher levels of spatial relationship modeling, which are provided by geo-
graphic information systems.

Our point-based model primarily failed in measurements with insufficient 
training data, especially in snow cover or frozen ground conditions (where soil 
hardness was high, even though other variables did not suggest it). The model 
would also theoretically fail in situations immediately after sudden and short-
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term precipitation events or when the soil has already been churned by other 
vehicles (e.g., agricultural machinery).

Given the limitations identified, we suggest future research directions. These 
may be mostly related to four factors:

1. geographical conditions and models,
2. meteorological conditions and models,
3. measurement method limitations, and
4. ML modeling methods limitations.
Given that this approach relies heavily on data-driven methods and no ma-

chine learning algorithm showed significant superiority over others, it is likely 
that most limitations stem from the quality of the input data.

Due to geographic inaccuracies, we suggest that further research concentrate 
on a more precise classification of sites. This entails refining the characteristics 
of individual locations. If meteorological data pertains to a homogeneous area, 
we can enhance our analysis by subdividing this locality using more detailed 
geographical data. Our aim is not only to confine ourselves to soil classification 
and making general statements about dry or waterlogged sites, but also to in-
corporate additional information such as slope gradient, soil horizon depth, car-
dinal orientation, and the size of the watershed feeding into the site.

In the realm of meteorological data analysis, the research scope is expansive. 
Considering rainfall analysis, it is imperative to incorporate a wider range of 
rainfall intervals based on geographical data, including longer durations of rain-
fall observation. While these additional intervals may seem redundant in broad-
er contexts, they are crucial for specific location classes characterized by slow 
runoff and deep soil horizons. Similarly, parameters such as temperature and 
sunshine should be approached with comparable granularity.

While our method has prioritized developing a global model that could in 
future serve rather as a reference forecast, the future direction lies in the utiliza-
tion of local models with significantly higher resolutions and more detailed soil 
characteristics. These local models will provide more accurate predictions tai-
lored to specific geographical regions. 

From the perspective of the measurement itself, limitations arise primarily 
in the extent of the dataset. The measurement process remains manual, so com-
paring the data volume, measured locations, or the entire range of conditions to 
continuous measurement methods is not feasible. However, any changes to the 
measurement method would disrupt the process of calculating passability char-
acteristics. What can certainly be improved, though, is the extent of the mea-
sured dataset and its expansion, particularly regarding boundary conditions of 
passability.

Despite encountering some challenges, particularly in wetter regions and 
scenarios not covered by the training set, the developed Random Forest (RF) 
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model demonstrates potential in estimating the impact of chernosols on the Cone 
Index (CI) by incorporating meteorological data from the global GFS model. 
Although the reliability of these estimates is limited, they can still be integrated 
into computational models of chernosols within geographical frameworks that 
model the area's trafficability. Consequently, these models, supported by addi-
tional geographic data, offer a more comprehensive foundation for decision sup-
port compared to throughput models that neglect soil influences. This research 
has thus yielded an initial approximation model that can be further refined in 
future endeavors. Notably, the significance of this model is amplified in regions 
lacking a functional station network providing detailed meteorological data or 
more refined national meteorological models.

While we have not pursued this variant extensively, some noteworthy find-
ings have emerged. The selected features (predictors) can be enhanced through 
further refinement, incorporating not only additional soil characteristics but also 
aggregated values. For instance, the Haines index, commonly utilized in fire 
prediction and predominantly reflecting long-term drought conditions, exhibited 
high correlation values (about 0.4–0.5). Therefore, the development of aggre-
gated values for forecasting purposes seems to hold promise.

In conclusion, although our research represents initial step in already devel-
oped area, there is ample opportunity for future research to build on our findings 
and develop more robust models for predicting soil permeability under different 
meteorological conditions. In particular, ML modelling of spatial patterns of 
predictors in GIS and classification of the problem or results based on static 
properties of areas. The final evaluation of the results marks the beginning of 
the next challenge: developing and refining prediction models. Assessing the 
quality of input data, understanding its impact, and evaluating the performance 
of the model itself will be crucial steps in this process. Moreover, considering the 
diverse needs of end-users and stakeholders, including both military and civilian 
sectors, adds another layer of complexity to model development. Therefore, col-
laboration within the research community will be essential to tackle these chal-
lenges effectively. By collectively addressing these tasks with careful consider-
ation, we can advance the field and develop more robust and reliable prediction 
models for practical applications.

6. Conclusions

Our study highlights the potential of machine learning methods, particu-
larly Random Forest, for predicting terrain passability using meteorological 
variables, with soil moisture, temperature, and precipitation identified as key 
predictors. While the models performed well under typical conditions, extreme 
scenarios like frozen ground or severe droughts revealed limitations stemming 
from low-resolution meteorological data, sparse manual measurements, and in-
sufficient spatial modeling. These findings emphasize the need for higher-reso-
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lution geographical and meteorological models, expanded datasets, and refined 
site-specific features such as slope gradient and soil horizon depth.

Despite these challenges, the developed model offers a foundational frame-
work for predicting soil passability, particularly in regions with limited meteo-
rological data, and has applications across military and civilian sectors. Future 
research should focus on improving data quality, namely satellite-based soil-
moisture measurements (Fan et al., 2025) and its verification through field mea-
surements, enhancing spatial relationships through GIS, and addressing model 
limitations to develop more robust and reliable prediction systems tailored to 
diverse conditions and user needs.
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SAŽETAK

Pristup modeliranju prohodnosti tla u GIS-u temeljenom na 
meteorološkim podacima korištenjem strojnog učenja 

Lucie Marková, David Sládek, Martin Hubáček, Václav Talhofer i Petr Kolář

Mobilnost vozila po različitim terenima ovisi o mnoštvu geografskih i meteoroloških 
varijabli. Tradicionalni pristupi oslanjaju se na radno intenzivna ručna terenska mjeren-
ja za procjenu uvjeta tla za prolazak vojnih ili humanitarnih vozila.

U ovoj studiji, cilj nam je bio istražiti nove metode za parametrizaciju indeksa stošca, 
temeljne metrike za procjenu izvedivosti prolaska, koristeći meteorološke podatke iz glo-
balnog numeričkog modela The Global Forecast System. Usredotočujući se posebno na 
černosole, prvenstveno poljoprivredna tla koja se nalaze u ravnim, otvorenim regijama 
pogodnim za vojne operacije, upotrijebili smo metode strojnog učenja kako bismo procije-
nili kako uvjeti tla utječu na mobilnost vozila. 

Kroz rigoroznu istraživačku analizu, istražili smo korelacije, metriku izvedbe mo dela 
i relativnu važnost prediktora u modeliranju stožastog indeksa. Naši nalazi naglašavaju 
komparativnu učinkovitost različitih pristupa modeliranju, posebno naglašavajući koris-
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nost metode slučajnih šuma. Identificirali smo ključne uvjete okoline pod kojima model 
pouzdano predviđa indeks štošca. Ovo postavlja osnovu za prostorno modeliranje u GIS-u.

Unatoč ovim uvidima, naša je studija ograničena podacima i inherentnim ograniče-
nji ma rezolucije modela Globalnog sustava prognoze. Dobiveno rješenje postavlja početne 
temelje za implementaciju modela u GIS okruženju za predviđanje prometnosti černosola 
u široj europskoj regiji. Buduća istraživanja imat će za cilj proširiti skup podataka, pro-
storne odnose i koristiti modele s višom rezolucijom za robusnija i točnija predviđanja.

Ključne riječi: indeks stošca, prohodnost tla, strojno učenje, slučajna šuma, černosol 
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