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Abstract 

Existing bioarchaeological studies have not fully explored the analytical characterization of dentine's chemical structure. 

Accordingly, this study used ATR-FTIR to analyze the dentine of 30 human teeth from six archaeological sites in Jordan dating 

from the Early Roman to the Early Byzantine periods. In addition to collagen cross-linking, we analyzed the factors (ratios) of 

phosphate/amide I, carbonate/phosphate, and A-type carbonate/B-type carbonate that may influence dentine strength. The 

results of the study point to statistically insignificant differences in the factors affecting the tensile strength of dentine and 

thus tooth loading at the site level, while a statistically significant one is found among sites. The differences in these ratios 

are found to be attributed to tooth loading and age at death. 
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Introduction 
Teeth are the most surviving human remains at 
archaeological sites, and fortunately, they lock 
inside tremendous amounts of information that 
bioarchaeologists have utilized to reconstruct the 
people’s past. Dental tissues have been 
extensively examined, especially dentine, where, 
unlike enamel, it holds data pertaining to an 
individual’s entire life. Recently, researchers 
have been looking at archaeological dentine to 
reconstruct diet and physiologic stress (1-6), to 
determine age (7-9), to find out dentine 
metabolites (10, 11), to date skeletal remains 
(12), and to find out how cortisol levels indicate 
stress (13, 14). However, non-bioarchaeologists 
have done a lot of research on dentine (15-26). 
No bioarchaeologists have investigated its 
chemical structure and characterization. 
There was a need for more knowledge on the 
dentine matrix and its structural changes in 
response to intrinsic (physiological and 
pathological) and extrinsic (masticatory forces). 
The chemical structure of dentine is not static but 
continuously changes in response to diet, tooth 
loading, and age (27). Precise knowledge of 
these chemical changes advances our 
understanding and interpretation of past people's 
lifeways and environments. In this regard, the 
less destructive analytical technique is ATR-FTIR 
(28, 29), where bioarchaeologists have used this 
technique mainly to assess diagenetic 
contamination due to the loss of crystalline 
structure (30, 31). 
Dentine is secreted by odontoblasts and consists 
of mineral hydroxyapatite (70%), collagen (20%), 
and water (10%) (32). The collagen forms a 
densely mineralized collagenous matrix, 
enclosing the detal pulp and providing 
attachment for the enamel and cementum (33). It 
has three major types: primary dentine, which 
forms during tooth formation and represents the 
bulk of the tooth; secondary dentine, which starts 
forming after crown completion; and tertiary 
dentine, which lines up the pulp and has a 
defensive role in pulp protection (27). The tertiary 
dentine is formed in response to external trauma, 
attrition, abrasion, erosion, and caries (34, 35). 
Masticatory forces and/or tooth loading affect the 
collagen structure of all dentine types over time, 
but collagen cross-linking prevents degradation 
(36, 37). Collagen cross-linking occurs in dentine 
to provide tensile strength and viscoelasticity in 
response to mechanical, physiological, and 
pathological stresses (38-40). In addition, 
collagen cross-linking may occur as a response 
to aging (41), with the formation of sclerotic 

dentine (more mineralized dentine) and dead 
tracts (42). Dental sclerosis starts at a late teen 
age near the apex of the root, which appears 
transparent under a microscope (43). 
Collagen cross-linking varies by tooth type, which 
is greater in molars (44). The collagen cross-
linking that has been investigated 
spectroscopically are pyridinoline and divalent 
cross-links (18, 45), which is determined through 
the quantification of the amide I peak at ~1,650 
cm-1 (46). The ratio of the amid I sub bands of 
~1,660 cm-1 (nonreducible collagen: pyridinoline) 
to ~1,690 cm-1 (reducible collagen: 
dehydrodihydroxylysinonorleucine [DHLNL]) is 
usually calculated to quantify collagen 
denaturation (18). In denaturized or younger 
collagen, the relative intensity ~1,660 cm-1 
decreases while ~1,690 cm-1 increases (41, 47). 
The other changes that may take place in 
collagen (caused by either intrinsic or extrinsic 
factors) include the incorporation of carbonates in 
the mineral phosphate, leading to a less stable or 
deformed crystal lattice within the collagen (21). 
The incorporated carbonates are either A-type or 
B-type, located at 879 and 872 cm-1 respectively 
(48). In addition, the phosphate to amide I ratio 
may also be altered due to the above factors and 
can be evaluated as the ratio between 1,035 and 
1,655 cm-1 (49). To understand the collagen 
cross-linking of pyridinoline and DHLNL, the 
mineral matrix ratio, and the carbonate mineral 
ratio in archaeological dentine, this study uses 
ATR-FTIR spectroscopic analyses on the dentine 
of 30 teeth from six archaeological sites in 
Jordan: Abila, Natfeh, Sa’ad, Udhruh, Ya’mun, 
and Yasieleh. Based on the previous literature, 
the study seeks to test two null hypotheses: 
H01: The means of the ratios [A1,035/A1,655, 
A872/A1,035, I1,660/I1,690, and I897/I872] grouped by a 
site are the same. In other words, each site 
displays no differences in the mean values of 
these ratios among its individuals (no. = 5 for 
each site). 
H02: There are no interactions among the sites. In 
other words, any ratio remains the same despite 
which site it belongs to (no. = 30). 
 
Materials and methods 
The study comprises 30 teeth from six 
archaeological sites in Jordan (5 teeth each) 
dated to the periods of Early Roman (BC 63 – AD 
135), Late Roman (135 - AD 324), and Early 
Byzantine (324 – AD 491). The sites are Abila, 
Natfeh, Sa’ad, Udhruh, Ya’mun, and Yasieleh. All 
of them are located in northern Jordan, except for 
Udhruh in the south (Fig. 1). All the sampled teeth 
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are permanent, loose (not in occlusion), and in 
good preservation conditions. The sampling 
procedure ensured that each tooth belonged to a 
different individual based on side identification 
(left and right) and locus number. All of the 
sampled teeth were free of carious lesions, and 
of minimal dental wear (dentine is not exposed). 
Sexing and aging of the teeth could not be 
established as the teeth were not in occlusion. 
Third molars were excluded during sampling 
because they are the last to erupt and the least 
affected by tooth loading. The descriptions of the 
samples are shown in Table 1 and include site 
name, sample no., tomb no., date, and tooth type. 
Sample preparation and analysis were performed 
at the Departments of Anthropology and 
Chemistry at East Carolina University. The 
samples were cleaned manually to remove the 
surface dirt using a surgical blade, then 
ultrasonically in a water bath, and let dry 
overnight. Each tooth was embedded in epoxy 
overnight and cut vertically using a diamond saw 
at a low speed. The surface of the section was 
polished to a smooth and even surface. The ATR-
FTIR spectra were collected using the Nicolet 
iS50FT-IR unit equipped with ATR diamond 

crabapple of scanning an area of less than 10 
microns. The scanning used an absorbance 
mode of 16 scans at a resolution of 4 cm-1 and a 
range of 400-400 cm-1. An atmospheric 
correction was applied to remove the contribution 
of the atmospheric background. The spectrum of 
each tooth (from 800 - 1750 cm -1) was analyzed 
separately after baseline and ATR corrections. 
Fourier self-deconvolution was then performed to 
enhance the resolution and extract more 
information from overlapping peaks in a spectrum 
(50). 
The mineral-to-matrix ratio is calculated by the 
band ratio of A₁,₀₃₅/A₁,₆₅₅ (49). This ratio 
corresponds to the vibrations of the 
hydroxyapatite phosphate ion (ν₃) and the 
collagen amide I (C=O stretching) (20). The band 
ratio of I1,660/I1,690 was also calculated to measure 
the amount of nonreducible to reducible cross-
links in collagen (19). The distribution of 
carbonate within the mineral matrix of collagen 
was calculated by the band ratio of A 872/A 1,035 
(20). The relative content of A-type and B-type 
carbonate was calculated by the band ratio of I 

879 /I 872 (51). The calculations of the length of the 
peaks and the area under the peaks were 

Figure  1. The location of the sampled archaeological sites. 
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performed using Omnic 9.2 software. The 
resulting values were analyzed using two-factor 
analysis of variance with replication (ANOVA) in 
the Excel program. 
 
Results 
The hypotheses of the study were tested using a 
two-factor ANOVA with replication. There is 
evidence that the first null hypothesis (H01) is 
true because the means of the ratios [A1,035/A1,655, 
A872/A1,035, I1,660/I1,690, and I897/I872] grouped by site 
are the same. The P-value of 0.11 is higher than 
the expected value of α = 0.05, and the value of 
F (1.83) is lower than the value of F critical (2.30) 
(Table 3). These results indicate higher 
homogeneity of samples at the site level. 
The second null hypothesis (H02: There are no 
interactions among the sites. In other words, any 
ratio that remains the same despite which site it 
belongs to) is rejected as the P value (0.004) is 
less than α = 0.05 and F (2.47) > F critical (1.77). 
In other words, there are interactions among the 
six sites. 
The phosphate to amide I ratios (A1,035/A1,655) are 
higher in Abila and Ya'mun, implying a relatively 
higher mineralization of dentine, while the values 
of phosphate in the other sites did not exceed the 
values of amide I. The sites of Udhruh showed 
the highest incorporation of carbonate in the 
crystal lattice of apatite, as indicated by the ratio 
of A872/A1,035 followed by Sa’ad, Yasieleh, 
Ya’mun, Natfeh, and Abila. The ratio of 
nonreducible to reducible collagen cross-links 
indicated by I1,660/I1,690 also varied among the six 
sites, where the highest mean value was 
recorded for Ya’mun and Abila. Carbonate 
incorporation may occur at the PO4 site (B-type 

carbonate: I872) or the OH site (A-type carbonate: 
I879) (48). In the samples of Ya’mun, Sa’ad, and 
Yasieleh, the substitution occurred more at the 
site of OH in hydroxyapatite, while in Abila, 
Udhruh, and Natfeh, the substitution occurred 
more at the PO4 site in hydroxyapatite. 
 
Discussion 
The ANOVA statistics failed to reject the first null 
hypothesis that the means of the ratios 
[A1,035/A1,655, A872/A1,035, I1,660/I1,690, and I897/I872] 
grouped by a site are the same. This implies the 
presence of inter site consistency or a 
homogenous sample at each site. The 
differences appeared when comparing the sites 
with their ratios among each other's, which 
proved the rejection of the second null 
hypothesis, which states that there are no 
interactions among the sites. These differences 
were attributed to different factors, as explained 
below, however, the attributed factors varied 
across time as the samples span a period of 
about 550 years. 
The higher phosphate-to-amide I ratio 
(A1,035/A1,655) in Abila and Ya’mun is best 
explained as an artefact of tooth maturation. The 
sampled teeth from these sites probably belong 
to relatively older individuals. Previous studies 
showed that the higher ratio of A1,035/A1,655 in 
dentine is attributed to carious lesions and aging 
(52, 53). However, the sampled teeth in this study 
were caries-free, so aging stands as a proper 
explanation. In this regard, many previous 
studies estimated the average age at death in 

Figure  2. Dentine spectra in blue with Fourier Self-Deconvolution in red: a sample from Abila. 
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Table 1. The samples of the study. 

 
Site No. Sample no. Tomb Date Tooth type 

Sa’ad 

1 2956 Cave 2B LR RM1 

2 1000 1 EB RM3 

3 1001 1 EB RM2 

4 1002 1 EB RM1 

5 1003 1 EB RM1 

Ya’mun 

6 200 198 LR RM2 

7 202 198 LR RM2 

8 205 45 LR RM1 

9 206 45 LR RM1 

10 359 45 LR RM1 

Yasieleh 

11 50 361 LB LM1 

12 57 361 LB LM1 

13 76 361 LB LM1 

14 77 361 LB LM1 

15 78 361 LB LM1 

Natfeh 

16 400 21 ER LM1 

17 402 21 ER LM2 

18 403 21 ER LM2 

19 404 21 ER LM2 

20 405 21 ER LM2 

Abila 

21 300 82 EB RCu 

22 301 82 EB RCu 

23 302 82 EB LCu 

24 303 82 EB RCu 

25 304 82 EB LCu 

Udhruh 

26 103 Square 6 LR RM2 

27 104 Square 6 LR RM2 

28 105 Square 6 LR RM2 

29 108 Square 6 LR RM2 

30 110 Square 6 LR RM2 

 
 
 

Table 2. The average ratios of A1,035/A1,655, A872/A1,035, and I1,660/I1,690 of the six sites. 

 

Site A1,035/A 1,655 A872/A1,035 I1,660/I1,690 I879/I872 

Abila 1.29 2.47 2.30 0.81 

Natfeh 0.35 4.05 0.55 0.63 

Sa'ad 0.60 8.95 0.86 1.00 

Udhruh 0.34 19.53 0.96 0.73 

Ya'mun 1.09 4.99 2.47 3.84 

Yasieleh 0.37 6.96 0.91 1.83 

 
 
 
Table 3. Results of ANOVA. 

 

Source of Variation SS df MS F P-value F crit 

Sample 200.47 5 40.09 1.83 0.11 2.30 

Interaction 809.17 15 53.94 2.47 0.004 1.77 

Within 2096.06 96 21.83    

Total 4116.10 119     
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Abila and Ya’mun to be between 22 and 35 years, 
owing to several environmental factors including 
infectious diseases, earthquakes, and maternal 
complications (54-59). 
The incorporation of carbonate into the mineral 
matrix of collagen changes both the physical 
structure and chemical stability of the apatite 
crystals (21). Udhruh showed the highest 
incorporation of carbonate in the crystal lattice of 
apatite (A872/A1,035), followed by Sa’ad, Yasieleh, 
Ya’mun, Natfeh, and Abila. However, less 
carbonate is usually deposited in sclerotized or 
aged dentine (20). This relationship is seen 
clearly in the data, where the correlation 
coefficient between A872/A1,035 and A1,035/A1,655 
among all sites is -0.38. The correlation 
coefficient increases within a site; for example, 
the correlation coefficients for Abila, Natfeh, 
Sa’ad, Udhruh, Ya'mun, and Yasieleh are -0.95, 
-0.74, -0.6, -0.55, and -0.33, respectively. These 
results are indirect indications of age variations 
among the selected samples. 
The carbonate is added through A- or B-type 
substitutions, which cause the a-axis in the 
apatite lattice to grow or shrink (60). The B-type 
carbonate increases with age (61-63), leading to 
a smaller ratio of I897/I872 as in Natfeh and Udhruh, 
which is in congruency with the deducted age 
from the ratio of A1,035/A1,655 for Ya’mun as being 
older. 
The differences in the ratio of I1,660/I1,690 among 
the sites imply that they had different tooth 
loadings during life (41, 47). The ratios of 
I1,660/I1,690 in Abila and Ya’mun are 2.3 and 2.47, 
which are higher than the reported ratios from the 
other sites, which indicates more tooth loading. 
According to Sandias and Müldner (64), the 
human diet at Ya’mun was predominately based 
on terrestrial resources, mostly legumes, with 
little dietary variability. Such food consumption 
requires higher masticatory forces (65). The 
excavated teeth from Abila showed heavy wear 
and consequently hard food consumption, as well 
as higher masticatory forces (66). 
The dental loadings across the six sites are 
notably uneven, likely attributed to the diverse 
dietary practices prevalent at each one (67-71). 
The period spanning from BC 63 to AD 491 
witnessed the presence of a flourishing 
population characterized by a wide spectrum of 
food qualities and probably mobility, leading to 
wider tooth loadings (72). It's substantial that not 
all sites had equal access to technological 
innovations that facilitated food acquisition and 
processing (73). An example on tooth loading 
was represented by the depth of the 

temporomandibular joints among the inhabitants 
of the Late Roman site of QAIA and the Early 
Byzantine site of Wadi Faynan (74). Their 
findings pointed out that the Wadi Faynan site 
exhibited harder food consumption, resulting in a 
higher degree of tooth loading compared to the 
Late Roman site of QAIA. This variation in tooth 
loading emphasizes the nuanced influence of 
food accessibility and technological 
advancements on oral health within these 
archaeological contexts. 
 
Conclusions 
The detailed structure of collagen in human 
dentine from archaeological teeth and how 
collagen cross-linking changes in response to 
tooth loading and aging have remained barely 
touched on in the bioarchaeological lexicon. The 
use of ATR-FTIR on the archaeological dentine 
demonstrates the ability to unravel these 
changes and pinpoint the cause of change in 
collagen cross-linking. The study tracked the 
collagen structure in dentine over a period 
spanning about 550 years. The results indicate 
considerable changes, which were attributed to 
the varied tooth loadings of the sampled 
individuals.  
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