
 
Nicotinic acetylcholine receptors: Diversity  
and physiological importance for neurodegenerative 
disorders and development of organophosphate  
antidotes 

Abstract

The communication between the nervous and other systems in the organ-
ism is carried out by the transmission of nerve impulses. Diverse neurotrans-
mitters are released into the synaptic cleft and bind to the specific receptors 
at the neighbouring cell to transmit the signal further. One of such receptors 
are nicotinic acetylcholine receptors (nAChR), integrated membrane proteins 
(ligand-gated ion channels) activated by the binding of a neurotransmitter 
acetylcholine. nAChR’s main characteristic is their diversity, as they consist 
of five of the same or mutually different subunits, which contribute to the 
specific receptors properties and biological activity. During the assembly of 
a pentameric protein structure, various combinations of subunits are linked 
together. After the discovery of nAChR’s involvement in various diseases, 
they became an important therapeutic target, for example in the treatment 
of neurodegenerative diseases (Alzheimer’s and Parkinson’s) and in the treat-
ment of organophosphorus compound poisoning. This paper presents an 
overview of current knowledge on nicotinic receptors and an accompanying 
discussion on diseases, poisonings, potential drugs and treatments is given.

INTRODUCTION

By studying nicotine at the turn of the 20th century, the concept of 
receptive substance was set up, from which the idea of a receptor was 

developed (1). A crucial event in nicotinic receptor studies was the 
chemical identification of the first neurotransmitter receptor. Successful 
identification allowed for further metabolic, pharmacological and bio-
chemical research (2). Nicotinic acetylcholine receptors (nAChRs) are 
proteins integrated into membranes and belong to the superfamily of 
ligand-gated ion-channels (3, 4). Since they are formed by a specific 
combination of five subunits, there are different subtypes of nAChRs 
that mediate different physiological functions (5). Nicotinic receptors 
are expressed in the peripheral nervous system (PNS), where they medi-
ate the transmission of impulses between nerve and muscle cells; in the 
central nervous system (CNS) and in other types of cells (keratinocytes, 
epithelial cells, macrophages, etc.; (5)). After understanding that the 
subtypes of nAChR contributed to the neuropathology of many dis-
eases, there arose an interest in the development of therapeutic nicotine 
agonists and other drugs for specific subtypes and the use of cloned 
nAChR subunits as possible therapeutic agents (1). nAChRs have be-

ANTONIO ZANDONA 
MAJA KATALINIĆ 

Institute for Medical Research and Occupational 
Health, POB 291, HR-10001 Zagreb, Croatia

*Corresponding author: 
Antonio Zandona 
azandona@imi.hr

Keywords: cholinergic; subunits; nAChR; nicotine; 
AChE, Alzheimer’s; Parkinson’s

Abbreviations: 
ACh 	 – acetylcholine 
AChE 	 – acetylcholinesterase 
AChR	 – acetylcholine receptor  
CHRN	 – nicotinic acetylcholine receptor gene 
COMT	 – catechol-O-methyltransferase 
DA	 – dopamine 
GABA	 – gamma-aminobutyric acid 
IP3/DAG	– inositol trisphosphate/diacylglycerol 
L-DOPA	 – L-3,4-dihydroxyphenylalanin (levodopa) 
mAChR	 – muscarinic acetylcholine receptor 
MAO-B	 – monoamine oxidase B 
NA	 – noradrenaline 
nAChR	 – nicotinic acetylcholine receptor 
NMDA	 – N-methyl-D-aspartate 
OP	 – organophosphorus compound 
VTA	 – ventral tegmental area

 
 

Received March 20, 2020 
Revised June 30, 2020 
Accepted July 7, 2020

Review Article

PERIODICUM BIOLOGORUM	 UDC 57:61 
VOL. 121–122, No 3–4, 115–128, 2020	 CODEN PDBIAD 
DOI: 10.18054/pb.v121-122i3-4.10547	 ISSN 0031-5362



Antonio Zandona and Maja Katalinić	 Diversity and Importance of nAChR

116	 Period biol, Vol 121–122, No 3–4, 2020.

come an important therapeutic targets for the treatment 
of neurodegenerative diseases, primarily Alzheimer’s and 
Parkinson’s (5), but also in the treatment of poisoning 
with highly toxic organophosphorus compounds (6). 

Historical overview

After studying nerve-muscle preparations, John New-
port Langley found that muscle tissue possesses some-
thing that mixed with nicotine and curare (reversible in-
hibitor of nAChR) receives stimulus and transfers it to 
other cells (7). In the 1960s, David Nachmansohn and 
other scientists identified the receptor for acetylcholine 
(ACh) in the electric eel (Electrophus electricus) electric 
organ by radioactive ligands, which was unusually rich in 
nicotinic synapses (8). In addition, Chen-Yuan Lee with 
snake venom, a-bungarotoxin (a-Bgt), specifically inhib-
ited in vivo nerve-muscle transmission without interaction 
with acetylcholinesterase (AChE, EC 3.1.1.7, an enzyme 
that hydrolyses the ACh neurotransmitter in synapses). It 
has been shown that nAChR is a hydrophobic protein of 
high molecular weight and can be physically separated 
from AChE, and studies then confirmed that AChE and 
nAChR are different protein entities (9). In 1972, signifi-
cant influence on the investigation of nicotinic acetylcho-
line receptors was the isolation of the new generation of 
nAChR from homogenates of marbled electric ray (Tor-
pedo marmorata) (10). In 1973, the purified protein 
nAChR was observed under a microscope and rings-like 
structures (with a hydrophilic core linked to compact 
clusters) were detected. Such a compact cluster was made 
up of several subunits (11). A group of scientists in 1988 
was able to generate 3D crystals of Torpedo nAChR for 
the first time (12, 13). Soon thereafter, the physiology and 
a variety of nicotinic receptors expression in the verte-
brates was determined, including five different subunits 
that could be assembled in different ratios (14). Also, in 
the 1990s, nicotinic receptors and nicotine were associ-
ated with various diseases, such as schizophrenia (15), 
Alzheimer’s (16), Parkinson’s disease (17) and Tourette’s 
syndrome (18) and research took a turn toward finding 
drugs and effective therapies for nAChR-related states. In 
association with various diseases, the effect of organo-
phosphorus compounds (OP) on the cholinergic system 
was also observed (6, 19). More precisely, the symptoms 
of OP poisoning are caused by the irreversible inhibition 
of the enzyme AChE, which leads to the accumulation of 

ACh and extensive receptor stimulation (20, 21). In addi-
tion to the inhibition of AChE, several organophosphorus 
compounds directly affect the receptors of the cholinergic 
system and modulate the level of their receptor expression 
(22, 23). OPs thus also affect nicotine receptors, block the 
opening of the ion channel and desensitize the receptors 
(24–27).

Acetylcholine receptors and nerve 
effects 

In general, acetylcholine receptors (AChR) are inte-
grated membrane proteins, which are activated by neu-
rotransmitter ACh binding. There are two types of such 
receptors: ionotropic nicotinic receptors (nAChRs), which 
exist in two forms (nervous and muscular), and five types 
of metabotropic muscarinic receptors (mAChR) M1 to 
M5, which can be classified into two traditional pharma-
cological groups: M1 and M2 receptors. The M1 group 
receptors (M1 and M3) interact via the IP3/DAG system 
(by activating phospholipase C), inactivate K+ channels, 
while M2 (M2, M4 and M5) receptors regulate adenylyl 
cyclase (intracellular cAMP concentration) and activate 
K+ channels (28, 29). Like other transmembrane recep-
tors, AChRs are classified according to their pharmacol-
ogy or affinity and sensitivity to different compounds 
(Figure 1). Although all acetylcholine receptors, by defini-
tion, are sensitive to acetylcholine, they also react to 
other xenobiotics. For example, mAChRs are sensitive to 
muscarine (30, 31).

nAChRs are ionic channels for Na+, K+ and Ca2+ and 
are particularly sensitive to nicotine. They are found in 
the central and peripheral nervous system, muscle and 
many other tissues (32). In the nerve-muscle synapse, they 
are the primary receptors for communication with the 
muscles and controlling muscle contraction. In this way, 
the peripheral nervous system transmits outgoing signals 
from presynaptic to postsynaptic cells within the sympa-
thetic and parasympathetic nervous system. In the im-
mune system, nAChRs regulate inflammatory processes 
and participate in signalling different intracellular path-
ways (1, 33, 34). 

Full activation of a postsynaptic nAChR occurs when 
two molecules of the neurotransmitter ACh are bound to 
it. The cationic channel of the receptor is opened because 
of the electrochemical gradients through which Na+ and 

Fig. 1. Structures: (A) acetylcholine, (B) nicotine and (C) muscarine
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K+ flow. Every second a nerve vesicle releases neurotrans-
mitters into the synapse. In addition to the acetylcholine 
receptors, there are many AChEs in the synapses, whose 
task is to hydrolyse the ACh, thus terminating the signal-
ling (35). The long-term binding of ACh to the receptor 
results in desensitization and thus inactivation of the ion 
channel. For example, irreversible AChE inhibitors lead 
to the accumulation of ACh in a synapse (36, 37), and 
one molecule of ACh can stimulate a few additional open-
ings of ion channels. This may also have its advantages; 
like in diseases where the number of nAChR is reduced 
and causes muscular weakness, AChE-inhibiting drugs 
enable signal reactivation with the same neurotransmitter 
molecule, thereby improving signalling and replacing the 
lack of receptors (38, 39).

Types, localization and receptor 
structure

It has already been mentioned that nAChRs are li-
gand-gated ion channels forming pores on a cell plasma 
membrane mediating fast signal transmission through 
synapses. They are involved in a wide range of physiolog-
ical processes and are divided into two groups: nerve and 
muscle (40). Muscle nAChRs are localized in the nerve-
muscle synapses, where the electrical nerve impulse sig-
nals contraction to the muscle cells and is responsible for 
muscle activity. Many different types of nerve nAChR are 
localized in synapses on postsynaptic nerve cells, as in the 
CNS, where they are involved in cognitive functions, 
learning, memory, etc. nAChR activation causes cation 
movement through the ion channel pore with the calcium 
ions which affect the release of neurotransmitters (1, 41). 

Studies revealed the existence of 5 different types of 
nAChR subunits with small molecular weight differences. 
Thus, nAChR consists of five subunit types: alpha (a1-
a10), beta (b2-b5), gama (g) delta (d) and epsilon (e); 
found in various combinations. The nAChR subunits 
have been grouped into 4 subfamilies (I-IV) based on 
similarities in protein sequence, and subfamily III has 
been further divided into 3 subtypes (Table 1) (42). The 
most widely expressed nAChR subtypes are a4, a7 and 
b2 (43). Nerve nAChRs are assembled just from alpha 
and beta units, while muscle nAChR from all five subunit 
types (41, 44). 

Nicotinic receptors are always pentamers (Figure 2), 
with subunits disposed symmetrically in a circle around 
the central receptor channel pore. The receptors always 
contain two or more a-subunits, which are crucial for 
ACh binding (45, 46). The ACh binding site is formed 

Table 1. nAChR subunits subfamilies based on similarities in protein 
sequence (42)

Subfamily Subtype Type Subunits

I Neuronal a9, a10

II Neuronal a7, a8

III 1 Neuronal a2, a3, a4, a6

2 Neuronal b2, b4

3 Neuronal b3, a5

IV Muscle a1, b1, d, g, e

Figure 2. The basic structure of nicotinic acetylcholine receptors. (A) Torpedo marmorata nAChR structure (model from PDB code 2BG9; 49) 
with extracellular (1), transmembrane (2) and intracellular (3) domains, (B) the receptor is formed from 5 subunits around the central pore 
with Cys-loop (4) in a subunit.
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when dimers of a-subunits and adjacent subunits associ-
ate (47, 48). 

Nerve nAChRs are divided into two main groups 
based on their sensitivity to the snake venom a-bungaro-
toxin. a-Bungarotoxin-sensitive receptors are homomers 
(a7 and a9), while a-bungarotoxin-non-susceptible 
receptors are heteromeric (other subunits types). Most 
nAChRs are asymmetric heteromers in which neither 
ACh binding sites nor subunit-subunit interactions are 
identical (48, 49). 

After years of experiments, the nicotinic receptor local-
ization and structure, which contains the extracellular 
synaptic domain, four transmembrane a-helix and the 
intracellular cytoplasmic domain, have been proposed 
(Figure 2). Further analysis revealed the existence of so-
called Cys-loops in nAChR structure (2, 47). nAChR is 
also a glycosylated protein and has N-linked glycosylation 
sites which vary depending on the subunits. A cys-cys pair 
is required for agonist binding and its presence denotes the 
existence of an a-subunit (41, 47). A Cys-loop is charac-
teristic for this type of receptor and in mammals these 
cysteines are most often separated with 13 conserved ami-
no acids. Other receptors that belong to the same receptor 
superfamily as nAChR include: 5-hydroxytryptamine (5-
HT3), g-aminobutyric acid type A (GABAA) and GABAC, 
glycine receptors, glutamate and histidine receptors (50).

The variety of nicotine subunits

The diversity of nAChR subunits is the main feature 
of the specific properties and functions of mature recep-
tors. Receptor pentamers can be assembled from various 

combinations of a, b and other structural subunits (38, 
41). Nowadays, 16 genes encoding for nAChR subunits 
are known, named CHRNA1–10 for a subunits, 
CHRNB1–4 for b subunits, CHRNG, CHRND and 
CHRNE for g, δ and ε, respectively (1, 52, 53). Different 
nAChR gene details are presented in Table 1. Mutations 
in CHRN genes (causing loss or gain of nAChR function, 
increased or decreased sensitivity to ACh or desensibilisa-
tion of the nAChR) can cause phenotypes with different 
manifestations such as congenital myasthenic syndrome, 
nocturnal frontal lobe epilepsy and multiple pterygiums 
(54–56 ). The genes CHRNA3/CHRNA5/CHRNB4 or 
CHRNB3/CHRNA6 are in gene clusters on chromosomes 
15q25 or 8p11, respectively; while other CHRN genes are 
separately located on chromosomes 1, 2, 4, 8, 11, 15, 17 
or 20 as shown in Table 2.

In some brain areas, diverse specific subtype subunits 
participate in order to form an nAChR of high affinity 
for substrates. In the basal ganglia, including the ventral 
tegmental area (VTA) and substantia nigra, the a6 and b3 
nAChR subunits were included in a4b2 nAChR com-
plexes to create a high affinity receptor for ACh (Table 3). 
Currently, these are the only areas in the brain where a6 
and b3 subunits are co-expressed alongside the a4 sub-
unit, which is very important for the appearance and 
therapy of Parkinson’s disease (57). The autonomic ner-
vous system is characterized by an abundant expression 
of a3 and b4 nAChR, while expression of a4 and b2 
subunits dominates the central nervous system. In ex-
ample, coordinated expression of essential subunits is 
strongly regulated in the brain during the development of 
the organism and during various injuries (58).

Table 2. nAChR genes: subunit receptor name, gene names, chromosomal location, gene length (kb), gene cluster (if applicable), and number of 
aminoacids (AA) in expressed protein (1, 52)

Subunit receptor Gene name Chromosome Gene (kb) Gene cluster Protein (AA)

a1 CHRNA1 2q31.1 16.64 482

a2 CHRNA2 8p21.2 18.51 529

a3 CHRNA3 15q25.1 28.24 CHRA3-A5-B4 622
a4 CHRNA4 20q13.33 14.75 627
a5 CHRNA5 15q25.1 29.71 CHRA3-A5-B4 515

a6 CHRNA6 8p11.21 15.93 CHRNB3-A6 494

a7 CHRNA7 15q13.2 142.25 534

a9 CHRNA9 4p14 19.63 479
a10 CHRNA10 11p15.4 5.8 450

b1 CHRNB1 17p13.1 12.65 501

b2 CHRNB2 1q21.3 12.25 502

b3 CHRNB3 8p11.21 39.99 CHRNB3-A6 458

b4 CHRNB4 15q25.1 17.48 CHRA3-A5-B4 498
d CHRND 2q37.1 10.48 517
g CHRNG 2q37.1 6.6 517
e CHRNE 17p13.2 5.3 496
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a7 are the most researched subunits of all known 
nicotinic subunits types. Receptors assembled of a7 sub-
units have a high Ca2+:Na+ bandwidth ratio (59). As a 
result, the opening of the a7 nAChR channel may cause 
several Ca2+-dependent mechanisms, including the acti-
vation of secondary signal pathways (60). Co-expression 
and assembly, i.e. binding of the a7 nAChR subunit to 
other subunits, affects receptor ionic permeability, so 
nAChR consisting of a7 and b2 subunits has pharmaco-
logical properties different from those homozygous a7 
nAChR (61). 

Pentameric structures, unlike those with pair subunits 
structures (e.g., tetramers), require multiple mechanisms 
for overcoming problems related to receptor assembly. 
Coordination of regulatory mechanisms between tran-
scription and receptors assembly, which respond to exter-
nal changes, are a common biological feature of nico-
tinic receptors. The first level of regulation of the 
region-specific expression of nAChR is transcriptional 
control of subunit expression. 

Posttranslational modifications are crucial for the 
regulation of mature receptor functions, their expression 
and localization. There are several checkpoints in the cell 
to ensure proper assembly. Experiments with the chimeric 
recombinant subunits showed that the 23-amino acid 
region (from G23 to D46) contains the residues needed 
for proper a7 subunit assembly to the homopentamer 
receptors and a Cys-loop is needed for proper domain 
folding (63). Another significant control point for nAChR 
is the endoplasmic reticulum where degradation of pro-
teins is an important part of regulating receptor concen-
tration. In total, 80% of the synthesized subunits are 
mproperly assembled and never leave the endoplasmic 

reticulum, where they are degraded (64). Reduction of the 
degradation of precursor subunits in the endoplasmic re-
ticulum results in increased concentration of nAChR on 
the cell membrane (65). Also, continuous nicotine expo-
sure increases the concentration of nAChR on the surface 
of the cell by reduction of the degradation of the intracel-
lular pool of receptors (66). Another important posttrans-
lational regulation is the modification achieved by N-
glycosylation, where more sites in the NH2-terminal 
domain of the nAChR subunit are glycosylated. It has 
been found that muscular nAChR glycosylation is not 
required for receptor assembly or the formation and func-
tioning of Cys-loops (67). Still, proper glycosylation is 
necessary for their subsequent incorporation into the 
plasma membrane (68, 69). In addition, palmitoylation 
and phosphorylation are also mechanisms that regulate 
the expression, receptor function and binding efficacy of 
different nAChR subunits. Palmitoylation is a reversible 
posttranslational modification where the palmitate cova-
lently binds to Cys residues in the endoplasmic reticulum 
(70, 71). As opposed to that, in phosphorylation, phos-
phate binds to specific residues within the cytoplasmic 
domain (72). Besides, as mentioned nicotinic receptors 
also possess the ability of increasing upregulation when 
exposed to high nicotine concentrations; still, some sub-
types have a lower level of expression (73).

Insight into the function of nAChR 

Activation of mammalian nerve nAChR promotes the 
opening of an unselected cationic channel leading to Na+ 
flow, depolarization of the membrane and activation of 
Ca2+ channels (49). Ca2+ flow through nAChR or voltage-
gated channels is essential for nicotine modulation, syn-
aptic plasticity, nerve viability, differentiation and migra-

Table 3. The presence of different a and b subunits in certain parts of the brain (*specific subtype; - not determined) (62).

Localization Type nAChR Involved in specific neurotransmitter release

Amygdala a4b2, a7 –

Cerebellum a4b2, a7, a3b3*, a3b4* Glu

Cortex a4b2, a4a5b2, a7 Glu, ACh, DA
Hedial habenula a4b2, a3b2*, a7, a3b3b4, a3b4* –
Hippocampus a4b2, a4a5b2, a3b4, a7 Glu, ACh, DA

Hypothalamus a4b2, a7 NA

Interpeduncular nucleus a4b2*, a7, a3b3b4, a3b4, a2b2* ACh, GABA, NA

Locus coeruleus a3b4, a6b2b3* –
Olfactor bulb a4b2, a7 Glu, DA

Pineal gland a3b4, a7 –

Rapche nuclei a4b2 –

Spinal cord a4b2, a7, a3b2* –

Striatum a4b2, a4a5b2, a6b2b3, a6a4b2b3 Glu, DA

Substantia nigra, VTA a4b2, a4a5b2, a7, a3b4*, a6b2b3 –

Thalamus a4b2, a4a5b2 DA, GABA
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tion. In the nervous system expressing specific nAChR 
subtypes, nicotine mediates activation of several Ca2+ 
independent kinases including PI3K, protein kinase C 
(PKC), protein kinase A (PKA) and extracellular signal-
regulatory kinase (ERK) (74, 75). Also these kinases ac-
tivate a large number of transcription factors by down-
stream regulation, such as cAMP-binding protein 
(CREB) that further activates transcription factor 2 
(ATF-2) (76) and the ETS-like transcription factor (Elk-
1), and transcript signal transducer (STAT3) (77). 

nAChR are present at essential regulatory sites and 
lead to multiple outcomes in sensitivity to exogenous 
stimuli or participation in neurodegeneration and inflam-
mation. The presence of expressed nAChR in adipose tis-
sue has provided additional research into the effects of 
nicotine on the body. It has shown that average smokers 
are skinnier and more likely to develop metabolic syn-
drome such as type II diabetes. 

Also, patients with ulcerative colitis who stopped con-
suming tobacco developed more serious progression of the 
disease, i.e. nicotine had a protective effect. By contrast, 
patients with Crohn’s disease improve disease severity if 
they smoke (78). 

However, small concentrations of nicotine protect cells 
from damage induced by b-amyloids, inflammation, al-
cohol, hypoxia, but mechanism of action is unknown (40, 
79, 80). High nicotine concentrations increase the num-
ber of nAChRs, due to desensitization instead of en-
hanced receptor function. Nicotine effects on nAChR are 
complex at molecular level and it is difficult to separate 
their consequences at system level (81). 

Neurodegenerative disorders

The involvement of nicotinic receptors in many dis-
eases, autoimmune responses and epilepsy, stimulated the 
development of nAChR subtypes of specific ligands as 
possible drugs (80). Reduced function and/or nAChR 

expression in the brain is associated with the pathophysi-
ology of for example Alzheimer’s disease (AD) or Parkin-
son’s disease (PD), severe, incurable, degenerative brain 
disorders (40). Since the expression of the receptors can-
not be induced easily, drug design for the treatment of 
neurodegenerative disorders is based on improving exist-
ing receptors’ stimulation. One of the approaches is the 
use of nicotinic agonists or AChE inhibitors that are in-
vestigated to prevent present neurotransmitter acetylcho-
line from being degraded rapidly, which in turns enables 
activation of nAChR and the signal transmission to the 
next postsynaptic cell (82). 

AD progression (Figure 3) leads to dementia, memory 
loss, thinking impairment, and changes in behaviour and 
personality. AD and other forms of dementia affect about 
47 million people worldwide, in Croatia about 86,000 
(83). The histopathology of the disease is well-known and 
is accompanied by a loss of cholinergic transmission, de-
position of extracellular amyloid b-peptides (Ab) in 
plaques, and hyperphosphorylation of t-protein leading 
to excessive formation of neurofibrillary tangles (84, 85). 
Also, receptor loss in Alzheimer’s disease is much higher 
than in a normal aging brain (86, 87). Specifically, the 
degree of loss of a4b2 nAChR and a7-expressed expres-
sion are well correlated with the progressive range of cog-
nitive decline in patients with mild to moderate AD (88). 
Two effects are important for cognitive improvement of 
AD, improvement of synaptic transfer and reduction of 
neurodegeneration (89). Interestingly, a4 nAChR expres-
sion decreases by 80% in AD (90). 

The simplest therapy to nAChR loss is the long-term 
use of nicotine (91) and in human clinical trials; nicotine 
alleviated AD symptoms (92). Additionally, nicotine has 
shown beneficial effects on learning, memory, attention, 
and cognitive functions in patients with AD. Now, the 
focus of the development of AD therapy is on specific 
nAChR agonists (Table 4), which should have low affin-
ity for muscle nAChR to reduce unwanted muscle stimu-

Figure 3. A sketch of the difference in the brain structure of the healthy brain and in patients with Alzheimer’s disease (mild or severe) accompa-
nied by severe cortical shrinkage (according to (99) and (100)).
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lation. Two types of receptors, a7 and a4b2, have be-
come a target for AD treatment, since these receptors are 
expressed in the brain regions for memory and informa-
tion processing. A crucial step in AD treatment could be 
the introduction of positive allosteric modulators (PAMs) 
to ensure multiple modulation of receptors to suppress 
disease (93), as well as a combination of drugs based on 
synergistic mechanisms. For example, a combination of 
galantamine that would inhibit AChE and modulate 
nAChRs, curcumine that would inhibit b-secretase and 
t-phosphorilation and rivastigmine to reversibly inhibit 
AChE; or a combination of tacrine, curcumine and hu-
perzine A for the same reason (94). Five medications are 
currently used to treat the cognitive problems of AD: four 
are acetylcholinesterase inhibitors (tacrine (withdrawn 
due to toxicity (95)), rivastigmine, galantamine and do-
nepezil) and the other (memantine) is an NMDA receptor 
antagonist. The way to increase the function of nAChR 
in the brain without nicotine is to sensitize receptors using 
allosteric potentiating ligands (APLs) that include drugs 
such as physostigmine and galantamine, one of the ap-
proved drugs for the treatment of AD (89). Second, non-
competitive agonists (NCAs) have agonistic activity and 
bind to a site close but still further than the ACh binding 
site on a-subunits of nAChR (96). Although NCA en-
courages the opening of nAChR channels in many nerve 
and non-nerve cells, the likelihood of opening channels 
with such compounds is very low. Namely, galantamine 
acts as a nicotine NCA but not as a nicotine APL (97). 
Subunit a7 is the only nAChR subunit in mammals with 
positively charged residues within the a118-140 segment 
that is assumed to be an APL binding site (98).

Along with AD, Parkinson’s disease (PD) is one of the 
most common neurodegenerative diseases in the world. 
It appears in all ethnic groups, in both sexes, although 
men are affected twice as much than women. The occur-
rence of illness increases with age and affects 1% of the 
population over 60. Symptoms usually begin to appear 
for the first time between the age of 50 and 65, but the 
disease may occur early in life, childhood or adolescence, 
albeit rarely. There are around 7-10 million people in the 
world suffering from Parkinson’s disease, while in Croatia 
the number of registered people with the disease is 20,000 
(122). Disease is caused by the degeneration of dopami-
nergic nerves of substantia nigra with symptoms of muscle 
stiffness, bradykinesia and blocking movement, loss of 
reflexes and tremors. Movement disorders are caused by 
a lack of dopamine-producing nerve cells, since dopamine 
is important in movement control. Current treatment for 
PD includes therapy with dopamine precursor L-DOPA 
(Figure 4), but neither does it stop the progression of the 
disease nor does its effectiveness last for a long time (123). 
nAChR-specific nicotine-based agonists are another di-
rection in the development of therapy. One of the synthe-
sized agonists, SIB-1765F, showed high affinity for a4b2, 
and was as equally effective as nicotine in stimulating 

dopamine release. This agonist in combination with var-
enicline can attenuate brain overstimulation (124). 

Other drugs that cause symptomatic relief and act by 
raising dopamine levels (L-DOPA, MAO-BI, COMT in-
hibitors), stimulating dopamine receptors (DA agonists), 
inhibiting cholinergic effects (anticholinergics) or inhibit-

Table 4. Various known nicotinic agonists, antagonists and allosteric 
modulators

Name Action Specific target Refs.

18-Methoxycoronaridine 
(18-MC) antagonist a3b4 (101)

A-582941 agonist a7 (102)

ABBF agonist a7 (103)

ABT-089a agonist a4b2 (104)

ABT126a agonist a7 (104)

ABT-418a agonist a4b2, a3b4 (104)

AR-R 17779 agonist a7 (105)

Atropineb antagonist – (106 )

AVL-3288a allosteric 
modulator a7 (107)

Benthiactzineb antagonist a7, a4b4, a4b2 (108)

CCMI allosteric 
modulator a7 (104)

Dihydro-b-erythroidine 
(DhbE) antagonist a7, a3b4, a4b2 (109)

Dizocilpine (MK-801) antagonist a7 (110)

DMPP agonist – (111)

d-Tubocurarine (dTC) antagonist a4b2, a7 (112)

Enceniclinea (EVP-6124) agonist a7 (113)

GTS-21 agonist a7 (104)

Ibogaine antagonist a3b4 (114)

Ispronicline agonist a4b2 (104)

MB266b antagonist – (106 )

Memantine antagonist a7 (115)

Metyllycaconitine (MLA) antagonist a7 (116 )

NS-1738 allosteric 
modulator a7 (111)

PNU-120596 allosteric 
modulator a7 (111)

PNU-282987 agonist a7 (117)

QNBb antagonist – (106 )

Sazetidine agonist a4b2 (110)

SEN123333 agonist a7 (118)

SSR-180711 agonist a7 (119)

Tropisetron agonist a7 (120)

Vinblastine antagonist a3b4 (114)

a-bungarotoxin antagonist a7 (121)

 ain clinical trail phases (104, 107, 113), bfor organophosphorus poison-
ing treatment (106, 108)
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ing glutaminergic NMDA receptors (amantadines). Thus, 
in such a system, L-DOPA replaces dopamine; COMT 
inhibitors maintain L-DOPA, which will metabolize and 
synthesize dopamine within the nerves, which can then 
be released into the synapse, MAO-B inhibitors serve to 
preserve existing dopamine and DA agonists mimic do-
pamine and bind to dopamine binding sites, as it is neces-
sary to increase the dopamine concentration in PD pa-
tients. Interestingly, the a6 subtype was discovered in the 
substantia nigra and has become attractive as a pharma-
cological target for Parkinson’s disease therapy (125). 
Epidemiological studies have shown that heavy smokers 
are less likely to have PD but also a whole spectrum of 
physiological changes are present in the function and ex-
pression of nAChR and desensitization (126). However, 
improvement of dopamine release was observed on ro-
dents exposed to nicotine and degeneration of DA nerves 
was prevented (57, 127). The assumption is that nicotine 
mediates nerve protection because it prevents cell death, 
reduces symptoms, binds to nAChR and promotes ex-
pression of dopamine receptors in substantia nigra (128). 
The exact mechanism is not known yet, although nicotine 
effects are well explored. 

Along with physiological changes, some studies sug-
gest that DA and cholinergic systems operate in a dy-
namic balance, whose disturbance causes a variety of 
neurological disorders such as Parkinson’s disease. DA-
deficiency triggers a reduction in the efficacy of AChR, 
which result in increase in ACh release (129).

On the other side, an increased kinurenic acid 
(KYNA), the metabolite of tryptophan that is primarily 
produced in the brain and releases by astrocytes, follows 
neurodegenerative disorders and decreased activity/ex-
pression of nAChR. Acting as an endogenous activity 
regulator of a7 nAChR, KYNA can modulate synaptic 
transmission, synaptic plasticity, nerve endurance, and 
nervous connectivity in various brain regions (130). 

Organophosphorus compounds 
poisonings and nAChRs

Organophosphorus compounds (OP) are a group of 
highly toxic xenobiotics used as pesticides, lubricants and 
oils for engines in the industry and as warfare nerve 
agents. The mechanism of their toxicity is the irreversible 

inhibition of the AChE, which participates in the regula-
tion of nerve impulse transfer by hydrolising ACh (Figure 
5). By chemical structure, OP compounds are esters, an-
hydrides or halides obtained by complete substitution of 
phosphorous, phosphonic and phosphinic acids. The base 
consists of a five-valent phosphorus atom coordinated by 
covalently bound oxygen or sulfur, and two different sub-
stituents (alkyl, aryl, alkoxy, alkylthio, aryloxy, mono- or 
dialkylamino) and the leaving group (fluorine, cyanide, 
etc.) (131).

Moshnin and Clermont synthesized the first OP com-
pound, tetraethylpyrophosphate (TEPP). After some 
years, the potential of TEPP was recognized and it began 
being used as a pesticide. However, OP compounds 
showed to not be selective to species. During the Second 
World War, the toxic effects of OP compounds encour-
aged research and their use as chemical nerve agents. 
Soon, two series of nerve agents were developed: the G-
series (tabun, sarin, soman and cyclosarin), and V-series 
(like VX, from Venom, Victory or Viscous) (37, 132). In the 
1990s, the production, stockpiling and use of chemical 
weapons was prohibited by Organisation for the Prohibi-
tion of Chemical Weapons (OPCW), and existing stocks 
were ordered to be destroyed. Since then, the use of nerve 
agents for research purposes has been strictly regulated. 
Still, the use of nerve agents has been recorded several 
times in recent years by terroristic groups attacking civil-
ians (133). 

As mentioned before in the text, when OP inhibits 
AChE in the nervous system, the neurotransmitter ace-
tylcholine (ACh) accumulates in the synaptic cleft and 
over-stimulates cholinergic receptors, affecting the ap-
pearance of some specific symptoms. The effects of exces-
sive activation of receptors are muscular weakness, cramps 
and tremor, hypertension and tachycardia, with addi-
tional effects such as headaches, memory disorders, wake-
fulness, confusion, loss of reflexes, anxiety, insomnia and 
respiratory depression and paralysis (134, 135). The main 
cause of the death of poisoned patients is the failure of the 
respiratory system. It is caused by paralysis of respiratory 
muscle, bronchoconstriction in combination with in-
creased secretion and depression of the respiratory centre 
(136). Moreover, death can occur within minutes of ex-
posure to nerve agents. Since OPs pass through the blood-
brain barrier, they also cause a number of other undesir-

Figure 4. L-DOPA precursor structure and decarboxylation in dopamine in the organism (123).
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able effects due to the action on receptors involved in the 
transmission of the impulse. Therapy for acute exposure 
to organophosphorus compounds is a combination of 
several different antidotes. Atropin is used as an antimus-
carinic, ACh antagonist, which reduces the effects of ACh 
on muscarinic receptors. Compounds known as oximes 
are used as reactivators of inhibited AChE, which after 
reactivation reduces the concentration of accumulated 
acetylcholine in synaptic cleft. The third part of the ther-
apy is administration of benzodiazepine to reduce convul-
sions and thus prevent brain damage (137). However, 
none of these drugs is effective enough and the effects of 
accumulated ACh overstimulating nAChRs persist.

There is ongoing research for selective nAChR inhibi-
tors that could serve in therapy of OP poisonings. Scien-
tists have tried different already available nicotinic an-
tagonist drugs and ligands like d-tubocurarine (138). 
Furthermore, ketamine and similar drugs also have spe-
cific anticholinergic inhibitory activity on a7-nicotinic 
receptors and potentiated testing of a new group of com-
pounds as drug candidates for clinical trials (139). In ad-
dition, procyclidine (an anticholinergic drug principally 
used for the treatment of drug-induced parkinsonism) has 
been shown to be an antimuscarin, antinicotinic and 
anti-NMDA receptor drug (140). Although many drugs 
are available to test from, the research in this field of 
nicotine antagonists application is still ongoing and none 
of the candidates has been introduced into medical prac-
tice of treating OP poisoning yet.

Perspectives for future

nAChR isolation paved the way for the design of new 
pharmacologically active compounds. As they co-operate 
with other receptors during different physiological pro-
cesses, it is important to consider them in a wider picture 
as well. More specifically, the relationship, linkage and 
communication between different nAChR subtypes and 
other receptors should be investigated in the future re-
search. In addition, we need to consider that understand-
ing the role that nAChR plays in regulating immune re-
sponses inside and outside the central nervous system 
under normal physiological conditions. Furthermore, the 
development of ligands that selectively enhance the activ-
ity of a particular nAChR subtype is crucial for the future 
design of drugs for the treatment of, for example, neuro-
degenerative diseases and OP poisonings. At the same 
time, the application of such drugs should be as simple, 
effective and fast as possible to improve existing therapies. 
In this search, novel in silico, in vitro and in vivo models 
available for studies of potential agonists and antagonist 
of nicotinic receptors, could provide an essential platform. 
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