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Tools and databases for solving problems in detection 
and identification of repetitive DNA sequences

Abstract

Genome compartments known to carry out very important biological 
functions (e.g. centromeres and telomeres) are mostly constituted of repetitive 
sequences. At the same time, regions of the genomes enriched in repetitive 
sequences have always presented great technical challenges for sequence align-
ments and genome assemblies. Fast evolving sequencing technologies and the 
increasing accessibility of genomic datasets have opened the opportunity to 
gain new insights into poorly explored genome fractions, built of repetitive 
DNA. Comprehensive and accurate annotation and characterization of 
these sequences is therefore an important contribution to the understanding 
of genomic architecture and function as a whole. In order to attend the 
emerging needs in repeat analysis and characterization, many bioinformat-
ics tools, databases and pipelines have been generated. This review is in-
tended to draw attention to the problems encountered in the genomic stud-
ies of repetitive sequences and to provide an overview of a spectrum of most 
prominent bioinformatics tools used for gaining better insight into these 
important genomic components. Some of the described assets are focused on 
detection of a wide range of repeats while the others are focused on a spe-
cific type of repetitive DNA sequences, generated as an answer to specific 
research interests and needs of the scientific community. 

REPETITIVE SEQUENCES IN EUKARYOTIC 
GENOMES

Two classes of highly abundant repeats present in eukaryotic ge-
nomes are sequences repeated in tandem and interspersed sequenc-

es (Figure 1). Tandem repeats can be divided into satellite, minisatellite, 
microsatellite and telomeric DNA sequences, differing in repeat unit 
length, the mechanisms of their origin, and the length of the arrays they 
build. The most prominent among them, satellite DNAs (satDNAs) are 
abundant genomic sequences commonly localized in heterochromatic 
genome compartments near centromeres and telomeres, as well as at 
interstitial chromosomal positions, reviewed in (1–4). SatDNA repeats 
typically form long arrays, although short ones or individual monomers 
can also be found dispersed in euchromatic genome compartments. 
Many different satDNAs usually interlace in the genome, distinct in 
sequence and length of their monomers, abundance, and chromosomal 
distribution. Because of the random non-reciprocal exchanges between 
sequences in arrays, satDNA monomers evolve in concert, maintaining 
low sequence variability of satDNA within the genome (usually 2–3%), 
and promoting rapid alterations in the copy number of satDNA mono-
mers (3, 5, 6). Concerning structural and/or functional roles, satDNAs 
are, for example, considered to be important in centromeres (7, 8), and 
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in raising reproductive barriers between species (9), while 
their transcripts trigger heterochromatin formation or can 
be involved in processes leading to tumor transformation 
(4, 10–12).

Transposable elements (TEs) are sequences capable of 
moving to the new genomic locations and forming inter-
spersed repeats. They are grouped into two main classes, 
based on mechanisms of transposition. Class I elements 
transpose by RNA-mediated mechanisms, while class II 
elements propagate through DNA-mediated processes 
(13–15). In each class, there are autonomous copies, cod-
ing for all the products needed for their own transposi-
tion, and non-autonomous ones, which depend on the 
enzymes produced by the autonomous counterparts (16). 
Further subdivision is based on structural features of TEs. 
Class I elements with coding capacity and long terminal 
repeats at their ends are called LTR retrotransposons. 
Their central part codes for structural and enzymatic 
components required for retrotransposition via gag and 
pol open reading frames (ORFs). The pol gene is composed 
of several domains, PR-RT-RH-IN, coding for: protease, 
reverse transcriptase, RNAse H and integrase. The order 
of these domains in the pol gene is used to define super-
families within this class of elements (17). Retroviruses 
structurally resemble LTR retrotransposons, with the 
main difference in the presence of an active envelope (env) 
gene in retroviruses (17). Small, non-autonomous LTR 
retrotransposons called Terminal Repeat Retrotranspo-
sons in Miniature (TRIMs) also belong to class I. They 
contain terminal direct repeats (TDRs) flanking an inter-
nal domain which starts with a primer binding site, com-
plementary to a tRNA, and ends with a polypurine tract 

(18). Class I also contains non-LTR retrotransposons, 
further divided into Long Interspersed Nuclear Elements 
(LINE) and Short Interspersed Nuclear Elements (SINE) 
(Figure 1). LINE harbor an internal polymerase II pro-
moter and encode two ORFs, one with RNA-binding 
capability and the other for endonuclease and reverse 
transcriptase. SINEs contain an internal polymerase III 
promoter boxes A and B but their mobility is dependent 
on products of LINEs (19). LINE retrotransposition can 
also produce new chimeric retrogenes and retropseudo-
genes through reverse transcriptase template switching 
from LINE RNA to other nuclear RNAs (20).

Class II DNA transposons have terminal inverted re-
peats (TIRs) at their ends, and encode for transposase that 
binds to sequence segments residing in the terminal re-
gions of autonomous and non-autonomous elements dur-
ing transposition process (21). Non-autonomous ele-
ments, called Miniature Inverted-repeat Transposable 
Elements (MITEs), usually arise from autonomous ele-
ments by internal deletions, preserving similarities in TIR 
sequences (22). One type of DNA transposons, Helitrons, 
use rolling-circle replication in their spread. These ele-
ments contain two modules which can include subtermi-
nal inverted repeats. In addition, left module (at 5’ ele-
ment side) holds a microsatellite sequence, while the right 
module contains a short palindromic sequence at its 3’ 
end. An array of tandem repeats is frequently found be-
tween the two modules (23). 

It has been observed that satDNAs and TEs are con-
nected in many different ways, reviewed in (24). For ex-
ample, satDNA can be formed by tandemization of a 

Figure 1. Main types of tandem and interspersed repetitive sequences found in eukaryotic genomes.
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complete TE or its segments (25–27). As already men-
tioned for Helitrons, some TEs have an internal region 
composed of sequences repeated in tandem. In some cases, 
TE-incorporated tandem repeats can be a source of mono-
mers used in the formation of classical satDNA arrays (28). 
Altogether, the fact that genome evolution is predomi-
nantly a consequence of DNA sequence rearrangements 
and changes in copy-numbers promotes TEs, satDNAs 
and their transitional forms into crucial players that shape 
the genomes’ architecture (3, 29). 

Genome sequencing and assembly is 
significantly challenged by repetitive 
DNA sequences

Genomic regions enriched in repetitive sequences 
cause significant technical problems in DNA sequencing 
and assembly. The difficulties arise in reconstructing exact 
sequential order and length of segments composed of 
highly similar repeat units present in high copy-numbers. 
Consequently, repetitive sequences are frequently omitted 
from datasets available in public databases, or even intro-
duce significant errors in genome annotation (30). For 
example, major satDNA residing in centromeric chromo-
somal regions of the beetle Tribolium castaneum was esti-
mated to build 17% of the genome (31). While satDNA 
monomer sequences were found abundant in unassem-
bled genomic scaffolds, they occupied only 0.3% of the 
genome assembly (32). Next-generation sequencing proj-
ects, producing huge number of short reads, have made 
assembly challenges even more complex (33). Human 
genome assemblies that employed only Illumina technol-
ogy and small insert libraries forced to leave out hundreds 
of megabases of genomic sequences, leading to the conclu-
sion that long-range sequencing approaches must be com-
bined with high-throughput sequencing for comparative 
genomics analyses and studies of genome evolution (34). 
In order to deal with high individual polymorphism and 
abundant repetitive sequences of the oyster Crassostrea 
gigas genome (36% in total; but only 4.8% of tandem 
repeats), the platform combining fosmid pooling, next-
generation sequencing, and hierarchical assembly was 
used in the genome project, but still leaving >60% of 
detected repeats unclassified (35). 

At the same time, improvements in sequencing tech-
nologies and the growing accessibility of genomic datasets 
in public databases within the last decade have opened 
the possibility to gain new insights into the poorly ex-
plored repetitive fraction of the genomes (36). There has 
been an explosion of software and database resources spe-
cifically targeted at advancing our ability to assess repeat 
detection and characterization within genomic data, re-
viewed in (37, 38). In particular, high-throughput strate-
gies combining low-coverage short-read DNA sequencing 
and specialized bioinformatic tools enabled identification 
of a complete inventory of repetitive DNAs in the ge-
nome, the repeatome and the satellitome (39–41). These 

approaches are particularly useful in exploring the content 
of repetitive DNAs in non-model species lacking se-
quenced genomes, while in assembled genomes they can 
help in filling the gaps left because of the repetitive se-
quences. Knowledge about the whole-genome composi-
tion and distribution of repetitive DNAs is a valuable step 
towards better understanding of the entire repetitive land-
scape, genome architecture and functioning as a whole, 
for example (42). However, it cannot address the second 
question regarding the repetitive DNAs in a genome, 
namely, how to determine precise sequential order of tan-
dem repeats in long arrays. The appropriate solution to 
this problem may be offered by de novo sequencing using 
single-molecule long-read methodology, which also ap-
peared useful in studies of long satDNA arrays (43). 

While more and more tools are focused on detection 
of all types of repeats, trying to give a comprehensive re-
peatome analysis, there are still specialized tools focused 
on a specific type of repetitive DNA sequences that enable 
more detailed insight into some of these important ge-
nomic components. In the following paragraphs we pro-
vide a brief overview of currently most prominent bioin-
formatic tools used in repeat detection and classification. 
Readers must be aware that this list is not exhaustive, and 
that many other programs exist, as some of the older ones 
are slowly being abandoned and new programs are con-
stantly being published.

Tools and databases used for detection 
and classification of different types of 
repetitive DNA sequences

One of the assets, covering the wide spectrum of re-
peats, is RepeatExplorer (44), a collection of software 
tools accessible via the web interface. It is a computa-
tional pipeline that uses a sequence-clustering algorithm 
to enable novel repeat identification, with no need for a 
reference database of known elements. Ideal input is NGS 
data of low genome coverage, preferably <0.5x. The system 
can process up to several millions of short sequence reads. 
Implemented tools enable classification of identified re-
peats, determine phylogenetic relationships among retro-
elements, allow extraction of repetitive sequences associ-
ated specifically with the centromeric region, and perform 
comparative analysis of repeat composition between mul-
tiple species. 

The next one is Repbase Update (45), which is a com-
prehensive database of repetitive elements from diverse 
eukaryotic organisms. It allows searches against anno-
tated sequences representing different families and sub-
families of repeats, many of which are not reported any-
where else. It is being used in genome sequencing projects 
worldwide as a reference collection for masking and an-
notation of repetitive DNA sequences. Part of it is a sepa-
rate electronic journal, Repbase Reports, which publishes 
information on all new data deposited to Repbase.
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In continuation is RepeatMasker (http://www.repeat-
masker.org/cgi-bin/WEBRepeatMasker), a web server 
that screens DNA sequences in search for interspersed 
repeats and low complexity repetitive DNA sequences. 
The output of this program is a detailed annotation of 
repeats that are present in the query sequence as well as a 
modified version of the query sequence in which all of the 
annotated repeats have been masked. RepeatMasker 
makes use of curated Repbase library of repeats and cur-
rently supports Dfam classification system that combines 
concepts from several classification systems with phylog-
enies based on reverse transcriptase and transposases. This 
web server also hosts RepeatModeler (http://www.repeat-
masker.org/RepeatModeler), a package used for de novo 
repeat family identification in sequenced genomes. The 
latter is based on two repeat finding programs, RECON 
(http://selab.janelia.org/recon.html) and RepeatScout 
(46), which employ complementary computational meth-
ods for identifying repeat-element boundaries and repeat-
family relationships. RepeatModeler uses their output to 
generate, refine and classify consensus sequences of puta-
tive interspersed repeats. 

Another tool oriented towards wide spectrum of re-
peats is Red (47). It focuses on transposons and simple 
repeats. The input to the system is FASTA format, with 
program being capable of processing assembled or unas-
sembled genomes. Red outputs contain detected repeats, 
masked sequences and the genomic locations of the re-
gions of interest.

Repeat-finding tool aimed at prokaryotic genome can 
also be found. Prokaryotic Repeats Annotation Program 

software package (PRAP) (48) is oriented to automated 
ab initio identification of wide spectrum of repeats with-
in the prokaryotic genome, working on completed and 
draft genomes.

Softwares dedicated to detection of 
interspersed repeats

Among the most prominent tools focused mainly to-
wards transposable elements are: REPCLASS (49), TE-
Locate (50), TESeeker (51), REPET (https://urgi.ver-
sailles.inra.fr/Tools/REPET), Generic Repeat Finder (52), 
already mentioned RECON, and similar.

REPCLASS processes single FASTA files, and the en-
try passes through the three classification modules that 
are based on: homology, structure, and target site duplica-
tions. In the final step, results of the three modules are 
compared, ranked, and integrated, yielding a single tenta-
tive classification, supplemented with a description of the 
characterized structural features. 

TE-Locate uses paired-end next-generation sequenc-
ing data reads to identify novel locations of known TEs. 
It utilizes either a database of TE sequences, or annotated 
TEs within the reference sequence. 

TESeeker approach also begins with BLAST searches 
against the genome using representative TEs for the cho-
sen family. Resulting BLAST hits are extracted and the 
next step is CAP3 assembly (53) in order to obtain a cod-
ing sequence. CAP3 results are used for another BLAST 
search against the genome and hits are processed in the 
same manner, this time with adding the flanking regions. 

Figure 2. Graphical overview of tools and databases for repeat detection and characterization, and types of repetitive DNA sequences they focus on.

http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker
http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker
http://www.repeatmasker.org/RepeatModeler
http://www.repeatmasker.org/RepeatModeler
http://selab.janelia.org/recon.html
https://urgi.versailles.inra.fr/Tools/REPET
https://urgi.versailles.inra.fr/Tools/REPET
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This approach does not enable detection of elements with-
out coding regions, like MITE or SINE. 

REPET starts with all-to-all alignment of genomic 
sequences, followed by clustering of matches and generat-
ing multiple sequence alignment for each cluster. This step 
is followed by classification of the consensus sequences, 
redundancy elimination, and comparison of novel an-
notations with those from existing TE databases. Later 
steps include identification of structural variations within 
identified TE families and their manual inspection. 

Generic Repeat Finder (GRF) is a high-sensitivity tool 
for genome-wide de novo repeat detection, integrated with 
optimized dynamic programming strategies. In that re-
spect, GRF sensitively identifies interspersed repeats that 
bear both inverted and direct repeats based on the fast 
and exhaustive numerical calculation algorithms. GRF 
also helps improve the annotation for various DNA trans-
posons and retrotransposons, such as MITEs, LTR ret-
rotransposons, and non-LTR retrotransposons, including 
LINEs and SINEs.

Tools and databases aiming at the 
detection of tandem repeats 

While many tools are focused on detection of different 
types of repetitive DNA sequences, there are those spe-
cialized for a specific type of repeats (Figure 2). 

Most prominent tools and softwares focused specifi-
cally on detection of tandem repeats are: Tandem Repeats 
Database (54), Tandem Repeat Finder (55), Phobos 
(http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_pho-
bos.htm), and TAREAN (56). 

Tandem Repeats Database (TRDB) works on assem-
bled genomes and contains a set of tools for repeat analy-
sis, also implementing the Tandem Repeats Finder (TRF) 
program. TRDB provides many filtering options for find-
ing particular repeats of interest, runs similarity-based 
repeat clustering, does polymorphism prediction based 
on shared patterns of mutation, enables PCR primer selec-
tion and data download in a variety of formats.

TRF program is simple and fast, yielding two output 
files: the table file and alignment file. The table file con-
tains information about each repeat, including its loca-
tion, size, number of copies, percent of matches and indels 
between adjacent copies, and nucleotide composition.

Phobos uses assembled reads and has high detection 
and alignment quality for repeats of small monomer range 
(1–50 bp). That capacity is reduced for repeats of bigger 
pattern size, with detection limit of 10,000 bp-long 
monomers. It also detects and reports overlapping satel-
lites and shows flanking regions of the repeats.

Tandem Repeat Analyzer (TAREAN) pipeline uses 
NGS reads of low genome coverage and reconstructs con-
sensus monomer sequences of tandem repeats by using 

improved RepeatExplorer protocol (56). It uses input data 
to perform graph-based repeat clustering, followed by 
examination of obtained clusters for the presence of cir-
cular structures, distinctive for tandem repeats. Most 
frequent multimer fractions reconstructed during this 
process are used for generating consensus sequences of 
each satDNA. Information from paired-end reads is used 
to distinguish clusters belonging to potential satellite re-
peats from other types of sequences repeated in tandem. 

Additional toolkit based on RepeatExplorer is satMin-
er, specialized for detection of low-copy tandem repeats in 
the genome by filtering out reads of satDNAs detected in 
each of several consecutive cycles of RepeatExplorer anal-
ysis. This modification enables detection of tandem repeats 
present in low copy numbers in large genomes (40). 

In addition, a specialized program repeatConnector 
has been developed for screening next-generation datasets 
in order to find particular satDNAs in different species 
and to analyze them (57).

A tool that can be used for estimation of minisatellite 
and microsatellite repeat variability in the genomes has 
also been developed, named SERV (58). It uses three pa-
rameters (number of repeated units, repeat length, and 
identity) to produce a numeric “VARscore”, which can be 
used for genotyping and forensic purposes.

Tools and databases focused on specific 
types of repeats

Specialized tools that are focused specifically on a cer-
tain type of interspersed elements also exist. Among them 
is LTR_FINDER (59), web server developed for de novo 
detection of LTR retrotransposons. It predicts locations 
and structure of full-length LTR retrotransposons by rec-
ognizing structural features common for these elements, 
such as long terminal repeats, primer binding sites, reverse 
transcriptase, integrase, and RNaseH domains. The out-
put shows LTR sizes, element location, identity between 
two LTRs, sharpness (prediction reliability of LTR 
boundaries) etc. 

Inpactor (Integrated and Parallel Analyzer and Classi-
fier of LTR Retrotransposons) (60) is also a pipeline 
aimed at classification of this type of retroelements. It 
identifies both autonomous and non-autonomous ret-
rotransposons, generates phylogenetic trees based on RT 
genes, and analyzes element’s time of insertion based on 
the divergence between two LTR sequences of each copy. 
Inpactor integrates previously mentioned LTR_FINDER 
and several other external bioinformatics softwares. 

LTR_STRUC program (61) has advantages over con-
ventional search methods in the case of LTR retrotrans-
poson families with low sequence homology to queries, 
or in the case of non-autonomous elements lacking ca-
nonical retroviral ORFs. For each LTR retrotransposon 
found, LTR_STRUC automatically generates an analysis 

http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm
http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm
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of a variety of structural features of biological interest. 
Output file contains: name and length of a source contig, 
location and orientation of the element within the contig, 
length of the element, LTRs, and largest ORF. It also 
shows nucleotide sequences for the whole element, LTRs, 
primer binding site, polypurine tract, dinucleotides ter-
minating the LTRs and ORFs, as well as intra-element 
percent identity of LTRs, and alignment of putative 
LTRs. Several other programs with similar functions were 
developed, starting with de novo prediction of LTRs, and 
taking into consideration other features and constitutive 
components of LTR retrotransposons in later processing 
steps to enhance the quality or sensitivity of the predic-
tions. Examples are: LTR_par (62), LTR_Rho (63), 
LTR_harvest (64), LTRdigest (65), and others. 

More recently developed software, LTRtype (66), is 
intended to characterize different types of structurally 
complex LTR retrotransposon elements, in addition to the 
canonical LTR retrotransposons. Such include: solo-LTR 
elements, elements with three or more LTRs, fragmented 
forms of all mentioned elements, and nested events where 
TEs served as a hotspot for further insertions.

Website oriented towards non-autonomous non-LTR 
retrotransposons is SINEBase (67). It can be used for ex-
ploring the existing database of different SINE families, 
or to analyze individual modules of a candidate SINE 
sequence. Four databases can be included in SINESearch: 
SINEBank, RNABank, LINEBank, and COREBank 
(holding consensus sequences of SINE central domains).

In searches oriented specifically towards non-autono-
mous DNA transposons (MITEs), several programs can 
be employed. Among most frequently used are MITE 
Digger (68), MITE-Hunter (69), MAK (70), detect-
MITE (71) and MITE Tracker (72). All programs have 
the ability to process genome-scale inputs, splicing them 
into shorter fragments and starting with the search for 
inverted repeats. In continuation, algorithms of different 
complexity are employed in these programs. Comparative 
analyses have shown that detectMITE is one of the most 
efficient, precise and comprehensive in detecting MITEs, 
while meticulous filtering of false positives  makes MITE 
Tracker the most accurate. Of course, additional pro-
grams performing similar functions can be found, in ad-
dition to the abovelisted. 

CONCLUSION

Quickly evolving sequencing technologies are rapidly 
advancing the availability of genomic data across many 
taxa. In respect to that, comprehensive and accurate an-
notation and characterization of repetitive sequences is an 
important contribution to the understanding of genomic 
architecture and function as a whole. For that purpose, 
many bioinformatics tools, databases and pipelines have 
been created to attend the emerging needs in repeat anal-

ysis. Some of these programs are focused on a specific type 
of analysis or on a specific repeat type, and intended to 
answer specific scientific questions. Others try to give a 
broader overview, although not a single program so far 
has proven to be sufficiently exhaustive, making the em-
ployment and improvement of others unnecessary. For 
that purpose, new programs are constantly being pub-
lished, co-evolving with sequencing strategies, available 
data and specific needs of the research community.
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