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Biological activity of monoquaternary ammonium  
compounds based on 3-substituted quinuclidine:  
A short review

Abstract:

Quaternary ammonium compounds (QACs) have a long-known ap-
plication as antiseptics and disinfectants applied in various industries such 
as pharmaceutical, agricultural and food industry. Given the alarming 
number of QACs resistant bacteria, there is an urgent need to develop new 
QACs with broad-spectrum antimicrobial activities and low tendency to 
trigger bacterial resistance. One recently proposed approach to develop new 
QACs is based on quaternization of natural products, which proved to be 
successful. Quinuclidine is an interesting natural precursor find to be a 
part of the structure of biologically active cinchona alkaloids. In addition 
to the well-established medicinal and pharmaceutical potential of 3-sub-
stituted quinuclidines, QACs based on 3-substituted quinuclidines, have 
only recently been shown to exhibit a significant antimicrobial activity. 
Most importantly, these compounds exhibit low toxicity toward normal 
human cell lines, which opens up a new chapter in the QACs field ensur-
ing further investigation of possible therapeutic application of 3-substi-
tuted quinuclidine based QACs.

INTRODUCTION

Bacterial resistance has become one of the major healthcare problems. 
This problem has been associated with a widespread misuse of an-

tibiotics in the agricultural and food industries as well as in hospitals 
wherein up to 50% of prescribed antibiotics are either unnecessary or 
not appropriately administered (1, 2). The rate of the bacterial resistance 
is growing at such an alarming pace that the World Health Organization 
(WHO), European Commission, and Center for the disease control 
(CDC) all run public healthcare campaigns to raise awareness about 
this worldwide problem (3). In line with this, an enormous effort of 
scientific community has been directed to develop strategies to combat 
bacterial resistance and to search for new antimicrobial drugs. 

	 Quaternary ammonium compounds (QACs) have long ago been 
recognized as powerful antimicrobial agents (1). The development of 
QACs started in 1935 when Domagk first reported antimicrobial activ-
ity of benzyldodecyldimethyl ammonium chloride (4), the core of what 
would later be known as BAC (benzalkonium chloride). This ingredient 
soon after became used by surgeons for hand and surgical surface dis-
infection (2). Currently, there are four QACs found as components of 
many commercial products (Figure 1). 
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QACs are amphiphilic molecules of general chemical 
structure N+ R1R2R3R4 X

− (R: hydrogen atom, plain alkyl 
group or alkyl group substituted with other functional 
groups; X−: anion). Owing to their chemical nature, 
QACs are often compared with amphiphilic antimicro-
bial peptides that target cell membrane (5). By analogy, it 
is generally believed that their antimicrobial activity is 
based on the electrostatic interaction between the posi-
tively charged nitrogen atom and negatively charged 
groups on the bacterial cell surface. Once this interaction 
is established, the alkyl part of the QACs penetrates 
through the bacterial membrane, causing membrane per-
foration and osmotic imbalance which ultimately leads to 
the bacterial cell lysis (1, 6).

Since QACs act on a bacterial membrane, resistance to 
these compounds has been considered as almost impos-
sible. However, it has been shown that the resistance to-
ward QACs is developing at such an alarming pace that 
in 2012 as much as 83% of methicillin resistant Staphy-
lococcus aureus (MRSA) isolates were resistant to all com-
mercial QACs (7). It has been proposed that chemical 
stability and a widespread use of these compounds are the 
main contributors to the development of resistance. Each 
year approximately 700,000 tons of QACs is released into 
the environment with BAC having a lifetime of 9 months. 
For these reasons, environmental bacteria that are persis-
tently exposed to sub-lethal concentrations of QACs have 
developed resistance (8, 9). The resistance is based in ei-
ther a change of membrane composition or in expression 
of Qac efflux pumps (1, 10–13). Although, recent research 
suggests that beside Qac efflux pumps, there are other 
unknown mechanism(s) of resistance (14), the most ex-
tensively studied one is the qac resistance mechanism. The 
qac resistance mechanism is based on Qac efflux pumps 
that are under negative control of the QacR transcrip-
tional regulator (15). Upon QACs penetration into the 
bacterial cell, QacR binds to quaternary ammonium com-
pound which leads to conformational change and disso-
ciation of QacR from the DNA. Once Qac pumps are 
expressed, QACs are expelled from the cells preserving 
the bacterial cell integrity (1, 9–12). 

Therefore, an urgent elucidation of resistance 
mechanism(s) and development of new potent QACs that 
are specifically designed to avoid bacterial resistance are 
in the main focus of the future research in the field. 

Until now, numerous scientific papers have been pub-
lished about altering QACs structures, such as modifica-
tion of aryl and alkyl part of the molecule or alteration of 

the charge state (1). In addition to distinct class of QACs 
derived from commercially available structures, other 
scaffolds have also been investigated, some of which in-
clude natural product-based, pyridine-, cyclic- and linear-
structure based scaffolds (8). Modifications of alkyl chain 
length and substitutions of aromatic ring hydrogen with 
chlorine, methyl and ethyl groups have also been made in 
order to optimize QACs activity (16–18). In addition to 
efforts concerning optimization of QACs activity, re-
searchers have proposed that QACs variants more prone 
to spontaneous or induced decomposition might be less 
susceptible to trigger bacterial resistance as bacteria would 
be less exposed to these agents. Indeed, several studies 
have shown that QACs variants modified with ester and 
amide functional groups or liable spacer groups are less 
stable and thus represent a lower threat to the environ-
ment (9, 19, 20). However, when comparing ester- and 
amide-containing QACs variants, it was evident that es-
ter-variants had diminished antimicrobial activity and 
were less stable in aqueous solution which makes them 
more prone to decomposition. These and other authors 
have concluded that stability of QACs is tightly related to 
their bactericidal activity, so any modification of stability 
needs to be strictly and carefully regulated (9, 21). 

Special effort in the course of the past ten years has 
been made by Wuest and Minbiole groups that managed 
to develop some of the most powerful QACs. Their com-
pounds have two or even more ammonium centers (bis- 
and multi-QACs) with different lengths of alkyl side 
chains (5, 6, 9, 22–24). The authors have hypothesized 
that QACs with more than one positive ammonium cen-
ter could be more selective toward bacterial cells and 
could be less prone to resistance. In a series of such stud-
ies, Wuest and Minbiole groups have managed to prove 
that bisQACs are indeed superior structures in terms of 
activity, but no significant improvement in antimicrobial 
activity was observed for muliQACs variants.  

Despite these valuable efforts, only few studies so far 
reported development of QACs by derivatization of natu-
ral precursors which is very surprising given the fact that 
nature is an inexhaustible source of bioactive structures. 
By exploring quaternization of nicotine and quinine, 
Joyce et al. showed that natural product derivatization 
could be a promising strategy in new QACs discovery 
(25). Similarly, recently published study showed success-
ful quaternization of b-carboline alkaloid, canthin-6-one, 
resulting in derivatives that have good antimicrobial ac-
tivity (26). 

Figure 1. Structures of the leading commercial QACs: benzylmethyldodecyl amonium chloride (BAC), cetyltrimethylammonium bromide 
(CTAB), cetypyridinium chloride (CPC) and dimethyl dodecyl ammonium chloride (DDAC)
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Quinuclidine – natural heterocyclic 
product

Quinuclidine is a bicyclic compound find as a part of 
bioactive alkaloids isolated from the bark of the cinchona 
tree. Given its long tradition in the folk medicine, quinu-
clidine pose an attractive target for further research in the 
field of medicinal chemistry. Today, quinuclidine based 
drugs are some of the most important FDA approved 
medicines with different treatment application. However, 
antimicrobial potential of quinuclidine has just recently 
start to be the subject of scientific investigations. 

Chemistry 

Heterocyclic natural product, quinuclidine (1-azaby-
ciclo[2.2.2]octane) is a very rigid structure consisting of 
saturated bicyclic system with a bridge headed nitrogen 
atom (27). It is notable for its high symmetry and for the 
insignificant bond energy. The above features of the struc-
ture of quinuclidine explain some of the physical and 
chemical properties and peculiarities of quinuclidine and 
various derivatives of the bicyclic system. For example, 
unsubstituted quinuclidine is a volatile crystalline com-
pound with a high melting point (158 °C). Disturbing the 
symmetry of the quinuclidine molecule (by introduction 
of an alkyl substituents into the quinuclidine ring, for 
example) decreases the melting point (4-methylquinucli-
dine, m.p. 49-50 °C). The peculiarities of the structure of 
the quinuclidine molecule give rise to the remarkable sta-
bility of this compound. Quinuclidine is not changed by 
heating with concentrated mineral acid (HCl, HI, 
H2SO4, HNO3) or by treatment with potassium perman-
ganate (28).

The nitrogen lone-pair electrons are sp3-hybridized 
and are not subject to steric crowding. The basicity of 

quinuclidine, which depends on the electron density at 
the nitrogen atom, is very similar to that observed in 
aliphatic amines and N-alkylpiperidines. Quinuclidine, 
like other tertiary amines, easily forms salts with min-
eral and organic acids. Also, with alkyl or aryl halides 
quinuclidine forms quaternary ammonium compounds 
with higher rates of reaction for quinuclidine with alkyl 
halides than with tertiary aliphatic amines. These find-
ings can be explained by the almost total absence of 
steric hindrance at the nitrogen lone pair of the bicyclic 
compound (Figure 2). 

In substituted quinuclidine, the basicity decreases due 
to inductive effect of the substituted group (Figure 3). In 
the array of 3-substituted quinuclidines, the reactivity has 
been correlated to their pKa values whereby unsubsti-
tuted quinuclidine, exert the highest pKa value and is the 
most active (27).

Biological activity of QACs based on 
3-substituted quinuclidine

Quinuclidine was first discovered as a scaffold of the 
cinchona tree alkaloids, quinine, quinidine, cinchoni-
dine and cinchonine, that have long tradition in folk 
medicine as drugs for malaria and cardiac arrhythmia 
(Figure 4) (27). 

In addition to the well-known therapeutic potential of 
cinchona alkaloids, quinuclidine based compounds have 
been shown to exhibit a wide range of other biological 
activities such as anticholinergic, antioxidative, antipara-
sitic, antibacterial and antitumor, which makes this com-
pound extremely interesting for further research (29–35).

The best explored biological activity of quinuclidine is 
that against a7-nicotin acetylcholine receptor (a7 nAChR) 
as evidenced by its several derivatives that are currently in 
the second phase of the clinical trial for treatment of 
schizophrenia and Alzheimer’s disease (36–38). Nowadays, 
compounds with quinuclidine pose some of the currently 
most important FDA-approved drugs, such as Azasetron, 
Benzoclidine, Palonosetron, Solifenacin, and Quinupramine 
(39). 

3-substituted quinuclidines are a subtype of quinucli-
dine derived compounds that are especially interesting 
due to their wide range of different pharmacological prop-

Figure 2. Influence of adjacent hydrogen atoms on the nucleophilic-
ity of tertiary piperidine

Figure 3. The basicity of quinuclidine and their 3-substituted derivatives with associated pKa values
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erties. Well-known drugs, Aceclidine and Temekhin, are 
examples of 3-substituted quinuclidines available on the 
market whereby Aceclidine is used for treatment of ocular 
hypertension in glaucoma suffering patients and Teme-
khin as a ganglion inhibitor (40–42). Beside acting on the 
cholinergic system, some quinuclidine containing com-
pounds have been shown to affect other organ systems in 
the body, acting as antidepressants, stimulators of the 
central nervous system or cough suppressants (40). 

Since 3-substituted quinuclidines generally contain 
common pharmacophores such as positive nitrogen atom, 
carbonyl group and aromatic ring, they have been exten-
sively investigated as antagonists of the 5-hydroxytrip-
taminic receptor3 (5-HT3) (42). This receptor is a ligand-
gated ion channel that regulates membrane potential of 
the central nervous system cells. In recent years, much 
attention has been paid to 5-HT3 receptor antagonists, 
namely zacopride and RG12915, as these agents have been 
found to be effective antiemetic drugs for chemotherapy 
side effect treatment (43). 

3-substituted quinuclidines have an asymmetric car-
bon atom and can therefore be synthesized as either race-
mates or as single enantiomers. As such racemates are 
generally less favorable due to possible different biological 
effects of an individual enantiomer, ranging from either 
lower activity of a less active enantiomer to complete loss 
of response or to an increased toxicity (41, 42). Therefore, 
numerous studies have been focused on finding chemical 
or biocatalytic methods for separation of enantiomers in 
the racemic mixture (44). For the separation of various 
3-substituted quinuclidine enantiomers, two biocatalysts 

have been extensively investigated, namely, acetylcholin-
esterase and butyrylcholinesterase (41, 42, 45–48)(41, 42, 
45–48). Instead successful resolution of enantiomers, 
these studies have identified 3-substituted quinuclidines 
as reactivators or inhibitors of acetylcholinesterase and 
butyrylcholinesterase. Therefore, it has been proposed 
that these compounds could be antidotes for poisoning 
with organophosphorus reagents. 

Antimicrobial activity of 3-substituted 
quinuclidine QACs

Quaternary ammonium compounds are powerful an-
timicrobial agents, mostly used as disinfectants or anti-
septics in various industries. Given the narrow number 
and the widespread bacterial resistance to all QACs cur-
rently available on the market, there is an urgent need to 
develop new such compounds. Development of QACs by 
quaternization of natural products has been proposed by 
Joyce et al. (25). This study motivated us to further ex-
plore quaternization of 3-substituted quinuclidine QACs 
and to explore their antimicrobial activity. 

The first reported study on quinuclidine based QACs 
and their antimicrobial potential was reported by our 
group in 2016 (49). The authors have synthesized 3-hy-
droxyquinuclidine bromides with variable length of alkyl 
side chains, containing 12, 14 and 16 carbon atoms (Fig-
ure 5). The newly synthesized compounds had good ad-
sorption potential and low critical micellar concentra-
tions. Most importantly, all compounds had good 
antimicrobial potential against both, Gram-positive and 
Gram-negative bacterial strains. The authors conclude 
that a bicyclic head with oxime functional group and the 
number of carbon atoms in alkyl chains, have an impor-
tant effect on physicochemical properties affecting hydro-
phobicity and hydrophilicity of synthesized surfactants. 
Given the lower solubility of derivatives with higher num-
ber of carbon atoms in alkyl side chains, derivative con-
taining 12 carbon atoms had considerably higher bioac-
tivity. 

In 2017 Odžak et al. reported synthesis of another 
series of quaternary ammonium compounds based on 
3-substituted quinuclidines containing benzyl functional 
group and different substituents at para position (Figure 
6) (50). Soon after, Bazina et al. reported synthesis of 

Figure 4. Quinuclidine containing cinchona alkaloids: quinine, 
quinidine, cinchonidine and cinchonine

Figure 5. Quaternary ammonium compounds based on 3-hy-
droxyiminoquinuclidine
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QACs based on 3-substituted quinuclidines with alkyl 
side chain of variable length (Figure 7) (51).

These studies have shown that quaternization improves 
quinuclidine bioactivity by several hundred folds, albeit 
derivatives with aryl substituents typically had lower an-
timicrobial activity than their alkyl counterparts. How-
ever, authors have shown that alkyl chain is an important 
part of the structure, most probably essential for penetra-
tion process involving bacterial cell membrane. In this 
series of 3-substituted quinuclidines (Figure 7), deriva-
tives with longer chains tend to be more active and had 
good antimicrobial potential against Gram-positive and 
Gram-negative strains (51). 

However, the authors have observed better activity 
against Gram-positive bacteria than Gram-negative sug-
gesting that membrane composition might influence 
QACs-membrane interaction. Moreover, the derivative 
with the longest alkyl chain (QOH-C14) have been iden-
tified as a potential candidate due to the lowest MIC val-
ues against several bacterial strains especially against op-
portunistic pathogen Staphylococcus aureus. QOH-C14 
had good potential against bacterial biofilms and was 
capable to inhibit S. aureus growth at even subMIC con-
centrations. Additionally, authors have shown that QOH-
C14 interacts with bacterial membrane, most probably by 
proposed mechanism which includes electrostatic interac-
tion between bacterial membrane and positive nitrogen 
on QOH-C14. When this interaction is established, alkyl 
chain portion can insert in a membrane leading to mem-
brane perforation and cell death. Given the potential ap-
plication of these compounds, cytotoxicity assay was 
performed using normal human cell lines and it was ob-

served that human cells are susceptible to higher concen-
tration of QOH-C14, but this value was several times 
lower than MIC suggesting that QOH-C14 might repre-
sent a good starting point in new QACs discovery (51). 
Moreover, Odžak et al. and Bošković et al. have observed 
good antioxidative potential for aryl and alkyl substituted 
3-quinuclidine QACs, which might be relevant for other 
possible applications or additional mode of action mech-
anisms (32, 33).

Kastelić et al. have synthesized ten new N-alkyl and 
N-aryl derivatives of 3-hydroxyiminoquinuclidine (Fig-
ure 8) (39). 

The best activity was recorded for compounds para-
ClC6H5CH2- (5), meta-ClC6H5CH2- (6), para-
BrC6H5CH2- (9), meta-BrC6H5CH2- (10) with MIC 
values ranging from 0.25 to 256 µg/mL. However, despite 
usually seen better activity against Gram-positive bacte-
ria, here the authors have reported better bioactivity 
against Gram-negative strains, which might be relevant 
for future design of QACs with broader activity spectrum. 
In addition, authors have concluded that quaternary N-
benzyl derivatives of quinuclidine oximes are, in general, 
more potent and have broader antimicrobial activity than 
their core molecule, qox, but position of substituents at 
benzyl moiety does not seem to be an important factor 
affecting antimicrobial efficacy. Most important, the 
compounds have not shown toxicity toward normal hu-
man cell lines and have been tested for intracellular ROS 
generation potential. The ROS generating potential was 
found to be different for each cell line tested. Lower con-
centration of 5, 6, 9 and 10 derivatives in HaCaT cell line 

Figure 6. Quaternary ammonium compounds based on 3-hydroxoquinuclidine and 3-chloroquinuclidine. 

Figure 7. Quaternary ammonium compounds based on 3-hydroxy-
quinuclidine with alkyl chain

Figure 8. Quaternary ammonium compounds based on 3-hy-
droxyiminoquinuclidine (qox)
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(human keratinocytes) induce generation of ROS while 
in HMEC cell line, ROS production was not concentra-
tion dependent. This was found to be in correlation with 
catalase activity. In HaCaT cells, catalase activity did not 
change but results with human mammary epithelial cell, 
HMEC were less conclusive due to similar effect of 
DMSO and compounds. 
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