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Neuropharmacology: Oxime antidotes  
for organophosphate pesticide and nerve agent  
poisoning

Abstract

Organophosphate (OP) compounds remain a great threat for humans 
because they are used as pesticides or misused as chemical warfare nerve 
agents. Their mechanism of toxicity involves the irreversible inhibition of 
the acetylcholinesterase (AChE) enzyme important in the control of cholin-
ergic neurotransmission at the periphery and in the brain. An available 
pharmacological treatment are oxime compounds, that are reactivators of 
OP-inhibited AChE. However, oximes are not equally effective for every 
possible OP and they cross the blood-brain barrier (BBB) poorly. Novel 
oximes are being designed and synthesized at a high rate and scale and their 
pharmacological efficiency is being addressed mostly with the in vitro reac-
tivation assay. Nevertheless, only few newly synthesized oximes have shown 
comparable or better pharmacological properties than the ones developed 
more than 65 years ago beacuse oxime potential to act as efficient antidote 
in vivo depends on its pharmacokinetic and neuropharmacokinetics profile. 
This paper provides an overview of all the important aspects that should be 
accounted for in the search for a centrally active oxime. Furthermore, it lists 
the most important BBB oxime delivery strategies employed until now, and 
the available pharmacokinetic data on old and new oximes.

NEUROTOXIC ORGANOPHOSPHATES

Neurological disorders include different conditions categorized as 
neurodegenerative, neuroinflammatory, neuropsychiatric, and 

other diseases, and as such represent one of the major global public 
health challenges that affect hundreds of millions of peoples worldwide 
(1). Conditions that originate at the level of the central nervous system 
(CNS) are difficult to treat both pharmacologically and surgically due 
to the specific anatomy and physiology of the nervous system.

In addition, the nervous system is the target of many toxic com-
pounds such as highly lethal synthetic organophosphorus compounds 
(OPs) derived from phosphorous, phosphonic, or phosphonic acid. They 
were primarily developed and used as pesticides; however, they turned 
out to be toxic for different species, including humans; therefore, many 
OP pesticides have been banned, e.g., parathion, dichlorvos (2, 3). The 
incidence of intentional/unintentional OP pesticide poisoning is about 
3 million cases per year, while lethal outcomes of poisoning (about 200 
000 cases) have mostly been recorded in developing or under-developed 
countries due to a lack of strict pesticide use regulation and proper 
medical care (4, 5). In addition, OPs are mostly colourless and odourless 
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liquids, with high vapour pressure and lipophilicity that 
unfortunately makes them convenient and effective 
chemical weapons. Therefore, OPs have been used as 
nerve agents in terrorist or military attacks on several oc-
casions despite the Chemical Weapon Convention en-
acted in 1997: sarin terrorist attacks in Matsumoto and 
the Tokyo (1994 and 1995) (6) and in Syria (2013) (7), or 

the VX assassination of Kim Jong-nam at the Malesian 
airport (2017) (8). Also, Novichocks, a less known class 
of OP chemical warfare agents developed in the Soviet 
Union (9), were allegedly used in the attempted assassina-
tion of Sergei and Yulia Skripal in Great Britain (2018) 
(10). The chemical structures of some OPs are depicted in 
Figure 1. Exposure to nerve agents is most likely to hap-

Figure 1. Chemical structures of organophosphorus pesticides and chemical warfare agents.

Figure 2. Symptoms of OP poisoning arising from overstimulation of muscarinic (green) and nicotinic (blue) receptors in the peripheral nervous 
system or in the CNS (red).
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pen by inhalation or through skin, but oral ingestion is 
also a possible and more probable route for intoxication 
with OP pesticides. Nevertheless, OPs exert a lethal effect 
at low doses by inhalation (LC50≈5‒150 mg min m-3) or 
by percutaneous exposure (LD50≈20 mg kg-1) (11).

The mechanism of acute toxicity of OPs is the irre
versible inhibition of acetylcholinesterase (AChE; EC 
3.1.1.7), an essential enzyme that regulates cholinergic 
signalling by catalysing the hydrolysis of the neurotrans-
mitter acetylcholine (ACh). Butyrylcholinesterase (BChE; 
EC 3.1.1.8), which can serve as a backup enzyme for 
AChE along with other implied functions (12), is also 
inhibited by OPs. Both enzymes belong to a group of 
serine hydrolases termed cholinesterases (ChE). The spon-
taneous reactivation or de novo synthesis of the enzyme is 
far too slow (~1‒3% activity return per day) (13); there-
fore, due to the overstimulation of nicotinic and mus-
carinic acetylcholine receptors (nAChR and mAChR) by 
ACh, an intoxicated organism experiences a cholinergic 
crisis. ACh takes part in the regulation of vital autonom-
ic nervous system and brain functions, and therefore, OP 
poisoning can be recognized by miosis, excessive gland 
secretion, respiratory distress, tremor, and seizures among 
numerous symptoms listed in Figure 2.

If not treated rapidly, exposure to OPs is lethal due to 
respiratory failure and uncontrolled seizures (14). Moreo-
ver, studies have shown that survived animals that devel-
oped and sustained seizures after exposure to nerve agents 
developed brain damage and suffered from cognitive and 
behavioural impairments (13, 15–18). The proposed 
mechanism of the development of seizure activity and 
brain damage following OP exposure included choliner-
gic overstimulation that leads to disruptions of non- 
-cholinergic systems, most importantly to the excitotoxic 
glutamatergic phase (19). Other secondary mechanisms 
implied to cause brain damage are oxidative stress, in-
creased intracellular calcium, upregulation of inflamma-
tion factors and apoptosis in neuronal cells, with more 
details covered in the review by Kaur et al. (20). In addi-
tion, animal and cell line studies revealed that OPs change 
the expression of genes important for biological processes 
and canonical pathways that take part in degenerative and 
regenerative processes of the nervous system (21–24).

Prompt reaction and fast application of the treatment 
is crucial in counteracting the deleterious effects of AChE 
inhibition by OPs. Pharmacological intervention after OP 
poisoning includes symptomatic treatments comprising 
drugs with antimuscarinic (e.g., atropine) and anticonvul-
sive (benzodiazepines) action. However, nicotinic effects, 
such as paralysis of respiratory muscles at neuromuscular 
junction, remain untreated. The real antidotes in OP poi-
soning are oximes that act as nucleophilic reactivators of 
inhibited AChE and they restore enzyme activity. There-
fore, oximes could mitigate both muscarinic and nico-
tinic effects. However, the oximes available in medical 

practice (2-PAM, HI-6, or obidoxime) have several flaws. 
Firstly, they are not equally effective for all OP com-
pounds and this issue is hardly ever going to be solved due 
to the different steric and electronic characteristics of 
various OPs. Secondly, some OP-enzyme complexes (e.g., 
soman-AChE) undergo fast dealkylation of phosporyl 
moiety (i.e., aging) and cannot be reactivated afterwards. 
Thirdly, they do not exert an effect in the CNS since they 
have a quaternary nitrogen atom in their structures which 
makes them permanently charged and they cross the 
blood-brain barrier (BBB) poorly (25–28). Whether a 
molecule is going to provide satisfying therapeutic effect 
depends on how it interacts with the molecular target 
(pharmacodynamic aspect), but also on how it is pro-
cessed by the body (pharmacokinetic aspect). Therefore, 
the search for molecules with better pharmacodynamics 
and pharmacokinetic characteristics is still an ongoing 
pursuit with focus on the CNS active reactivators.

PHARMACOKINETIC AND 
PHARMACODYNAMIC VIEWPOINT

Both pharmacokinetic (PK) and pharmacodynamic 
(PD) aspects are primarily governed by the molecular 
(physicochemical) properties of a drug. Generally, PK 
aspects involve the absorption, distribution, metabolism, 
and excretion (ADME) of a drug and a PK profile repre-
sents the time-dependent drug concentration in an indi-
vidual body compartment. The route of drug administra-
tion also dictates the onset of drug action, and can be 
extravascular (per os, intramuscular, subcutaneous, etc.) 
or intravascular (intravenous). The central body compart-
ment includes blood as the first medium for a drug to be 
absorbed in, followed by well perfused organs such as the 
heart, kidney, liver and lungs, while more lipophilic drugs 
also distribute to compartments such as muscle, brain, 
and fat. The hepatic metabolism affects mostly lipophilic 
drugs that are biotransformed into more hydrophilic me-
tabolites, while hydrophilic drugs are readily eliminated 
by renal excretion (via urine). Metabolic enzymes are di-
vided to phase I and phase II enzymes, and the main 
metabolic enzyme family of phase I biotransformation are 
cytochrome P450 enzymes (CYP) that catalyse NADPH-
dependent oxygenation of mostly lipophilic compounds 
(29). Furthermore, proteins in blood and tissue can bind 
drug molecules, affect their distribution, and reduce their 
transport to the target site. This is important since only 
an unbound, free form of a drug can interact with the 
target and is considered pharmacologically active. PD 
studies mechanism of action and effects initiated by a 
drug. The target molecule has a defined affinity for a drug, 
while a drug has both, specific affinity and intrinsic effi-
cacy in provoking the response by interaction with the 
target; both factors determine the overall potency of a 
drug. The oxime reactivation potency in vitro is assessed 
by determination of kinetic parameters that describe the 
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affinity of an inhibited enzyme for an oxime, the first-
order reactivation rate constant achieved with an oxime, 
and the overall reactivation rate (30, 31). Finally, the 
drugability of a compound is also influenced by its toxic-
ity and potency for causing unwanted side effects, which 
can result from a non-specific interaction with non-target 
molecules or from drug-drug interactions. All these as-
pects that determine the overall pharmacological activity 
of a compound are highlighted in Figure 3. With regards 
to an ideal oxime antidote for OP poisoning, it should be 
present at sufficient concentrations for a sufficient period 
of time in both the peripheral (neuromuscular synapses) 
and central (cholinergic brain areas) compartment after 
intramuscular administration, which is a standard route 
of self/buddy-administered first aid autoinjector. Further-
more, the ideal oxime should have a broad therapeutic 
window or well defined effective and toxic concentrations.

NEUROPHARMACOKINETIC VIEWPOINT

The process of drug distribution to tissues follows and/
or occurs simultaneously with drug absorption, metabo-
lism, and elimination. A centrally active drug should be 
distributed into the CNS represented by the brain and the 
spinal cord. The brain parenchyma comprises neurons 
and glial cells (Figure 4), where neurons process nerve 

signals transmitted as the action potentials along the neu-
ronal membrane and causes the release of neurotransmit-
ters from the vesicles of the presynaptic cell. Neurotrans-
mitters then diffuse through the synaptic cleft and bind 
to specific receptors at the postsynaptic cell (e.g., neuron, 
muscle, or gland) that triggers a cell response by changes 
in the ion flow across the cell membrane or through sec-
ondary messengers.

The uncontrolled entry of different endogenous and 
exogenous molecules into the CNS is prevented by the 
BBB located at the place of contact between capillaries 
and brain tissue. Since the brain surroundings and its 
ventricles are filled with cerebrospinal fluid (CSF), there 
is also the blood-cerebrospinal fluid barrier; however, the 
BBB is more significant due to a much larger surface area 
and localization (32). The main BBB unit, called a neu-
rovascular unit (Figure 4), is composed of the capillary 
endothelial cells, pericytes, and astrocytes (32). The para-
cellular transport of molecules across the BBB is decreased 
by the presence of intercellular protein networks called 
tight junctions (TJs) (33–35). Otherwise, most of the 
transport across the BBB is transcellular – i.e., passive 
diffusion, facilitated diffusion, active transport, or, to a 
lesser degree, transcytosis (32, 33).

The most significant way of drug’s entry to the brain 
is passive diffusion and it is a route by which small non-

Figure 3. Relevant factors that define the therapeutic effect of a drug: A) dose and route of application, B) the pharmacokinetic profile of a drug, 
which includes its absorption, distribution, metabolism and elimination, C) a drug shows its potency at the target site through interaction with 
a target molecule (pharmacodynamics), D) a drug can interact with other molecules causing toxic effects or reducing the free and active form of 
the drug.
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polar molecules easily penetrate membranes. Moreover, 
membranes of endothelial cells of BBB have different 
types of transport proteins that primarily serve in supply-
ing the brain with essential molecules such as glucose, 
amino acids, nucleosides, etc., and most of the transport-
ers belong to the solute carrier transporter family (SLC) 
(33, 34). In addition, the BBB has transporters from the 
ATP-binding cassette (ABC) family that serve as efflux 
pumps and transport molecules back to the bloodstream. 
The most important efflux pumps, also known as multi-
drug resistance (MDR) proteins due to a decrease in drug 
concentrations at the target site, are P-glycoprotein (P-gp), 
breast-cancer related protein (BCRP), and several other 
MDR-related proteins (32, 33). The BBB also has the 
metabolic potential due to the presence of different intra-
cellular enzymes that can biotransform a pharmacologi-

cally active molecule into inactive or even toxic metabo-
lites, or an inactive prodrug into an active form (34–36).

Therefore, the concentration of an active drug form 
available at the CNS target site depends on the plasma PK 
and plasma protein binding of the drug, but also on the 
neuropharmacokinetics of the drug that defines its distri-
bution and change of concentrations within the brain. 
This is governed by the flow of extracellular fluid (CSF 
and interstitial fluid) between the brain tissue and ventri-
cles, extracellular-intracellular exchange of molecules, and 
CSF turnover (37), while active concentrations of a drug 
can be reduced by the binding to brain tissue proteins. 
The neurotherapeutic effect also depends on the availabil-
ity of a drug in different brain regions, where its molecu-
lar targets may be differentially expressed and may exert 
distinct functions (37). In conclusion, OP antidotes 

Figure 4. Main nervous system cell types - neuron and glial cells, synapse as the location of a neurotransmitter exchange between presynaptic and 
postsynaptic cell, and neurovascular unit of the blood-brain barrier.
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should achieve their effective concentrations of unbound 
form in the extracellular fluid of the brain. More pre-
cisely, the cholinergic system is the main target site for OP 
antidotes and recently the whole-brain cholinergic atlas 
of a mouse brain has been generated (38); it clearly shows 
the location of cholinergic neurons at the cortical and 
brainstem level, along with their projections to subregions 
of the forebrain and the midbrain. Moreover, the basal 
ChE activity in the brain of guinea pigs was ranked from 
the highest to the lowest following the order striatum > 
cerebellum > brainstem> spinal cord >midbrain >hip-
pocampus> cortex (39). These factors are all to be consid-
ered when evaluating an oxime’s neuropharmacological 
effect.

Prediction of BBB permeability and CNS 
activity

The information on the neuropharmacokinetic profile 
of molecules in humans is highly limited and therefore, 
many in silico, in vitro, and in vivo animal studies com-
bined with translational models are used instead. The 
majority of CNS drugs are small molecules that cross the 
BBB via the transcellular passive diffusion route (40). Li-
pinski’s rule of five (Ro5) represents a pioneer set of rec-
ommendations for physicochemical properties for orally 
active drugs and for the rational drug design (41). Simi-
larly, many research group defined threshold values for 
such parameters to help define CNS active candidates.

Firstly, the BBB penetration of molecules can be pre-
dicted by the analysis of their physicochemical parameters 
that describe size (molecular weight, MW), lipophilicity 
(logP or logD), polarity (hydrogen bond donors and ac-
ceptors, HBD and HBA; total polar surface area, TPSA), 
flexibility (rotatable bonds, RB), and ionization of a mol-
ecule (charge dependent on pKa values of functional 
groups). Ideal CNS drugs are small (MW<450), lipophilic 
(logP<5), nonpolar molecules (HBD<3, HBA<7, 
TPSA<60-70 Å2) with a basic or amphiphilic character 
(pKa=7.5‒10) and moderate flexibility (RB<8) (42).

Others developed central nervous system multiparam-
eter optimization (CNS MPO); a desirability tool with 
flexible multiparameter approach rather than individual 
cutoffs for physicochemical properties (43, 44). This was 
designed to improve the quality of drug design and can-
didates nominated for clinical development with physico-
chemical properties complemental with the optimal 
ADME profile, BBB penetration, and low risk for adverse 
effects. A study by Rankovic (44) showed that lipophilic-
ity and pKa were highly relevant properties to consider for 
minimizing the PK and toxicological drawbacks of com-
pounds, e.g., compounds with lower-risk safety space had 
lower ClogP and higher TPSA, while MW, HBD, and 
TPSA were the most critical CNS-differentiating proper-
ties (45).

There are different in vitro methods to evaluate a drug’s 
potential to be CNS active. The most common high 
throughput screening technique to determine the passive 
permeability potential of a molecule is the parallel artifi-
cial membrane permeability assay (PAMPA) which uses 
artificial “BBB like” membranes (46), especially porcine 
brain lipid extract-based PAMPA model (47). Alterna-
tively, immobilized artificial membrane (IAM) chroma-
tography can be used (48).

A range of in vitro cell cultures derived from a number 
of species are available for a two-compartment experimen-
tal configuration that model BBB for the determination 
of drug’s permeability and have been described in a review 
by Helms et al. (49). Mono-culture configurations use 
either primary culture from isolated brain capillary en-
dothelial cells or immortalized brain endothelial cell 
lines. Also, there are set-ups of co-cultures with astro-
cytes, or even triple-cultures with the addition of peri-
cytes. Brain endothelial cells of bovine and porcine origin 
are well suited for the investigations of the transport of 
small molecules. Immortalized mouse or human brain 
endothelial cell lines, or even brain endothelial cells de-
rived from human pluripotent stem cells (50) are com-
monly used and constantly improved to model BBB in 
permeability assays (49). In addition, a number of non-
cerebral immortalized cell lines are also used for drug 
permeability rate evaluations. The Madin-Darby canine 
kidney (MDCK) cell line is the most suitable (32), while 
the MDCK-MDR1 line with overexpressed P-gp was de-
veloped specially for the evaluation of the affinity of P-gp 
efflux pumps for tested molecules (51).

A number of in vivo and ex vivo methods for the as-
sessment of BBB penetration of a drug are also available. 
Firstly, the most common approach to assessing BBB pen-
etration is determining the brain and blood concentration 
following in vivo administration that yields the brain/
plasma ratio of a compound. However, this approach can 
be misleading if the compound is extensively bound to 
brain tissue or accumulates intracellularly or if the brain 
vasculature is not well perfused. An unbound compound 
brain concentration can be measured by using in vivo 
steady-state concentrations in brain interstitial fluid (ISF) 
or by in situ brain perfusion technique (32). Alternatively, 
the non-specific binding of a drug to brain tissue can be 
assessed by the brain slice uptake or brain homogenate 
binding method (52). An indirect method to estimate the 
unbound drug in brain ISF is measuring the concentra-
tion of a compound in the CSF; still, the CSF concentra-
tion is not necessarily the same as the ISF concentration 
due to different turnovers of two compartments. The only 
direct method to address the unbound compound con-
centration is an animal microdialysis study for the deter-
mination of time-dependent changes in unbound drug 
concentrations in the ISF or CSF of the brain (32, 53).
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Furthermore, the CNS activity of a compound in vivo 
can be defined through different PD biomarkers such as 
target occupancy, target site activation, physiological 
measures, disease process, and clinical endpoints (37). 
Target occupancy is a method for determining the pro-
portion of the compound bound to the target molecule 
in the brain collected at PK profile-based optimal time 
using autoradiography or in the intact brain using PET 
and SPECT techniques (32, 37). In general, neuroimag-
ing techniques (e.g., PET, SPECT, MRI, CT, and EEG) 
are useful tools for assessing anatomical, functional, bio-
chemical or metabolic data after administration of poten-
tial centrally active drugs (37). For more detailed explana-
tions, other reviews can be addressed (32, 37, 54, 55).

Finally, physiology-based pharmacokinetic (PBPK) 
modelling can be used as a mathematical multi-compart-
ment modelling technique for predicting the PK and 
neuropharmacokinetic behaviour of a molecule in vivo 
and in humans based on physicochemical properties of 
drugs measured in vitro (56).

CNS delivery strategies in OP poisoning

There were more than several attempts to increase the 
BBB permeability of oxime reactivators by changing their 
structural characteristics or delivery methods (Figure 4). 
As the permanent charge of standard oximes is a prop-
erty that hampers significant BBB penetration, this was 
the first issue to be addressed.

Figure 4. Oximes used in practice and different oxime scaffolds and strategies for CNS delivery.
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The first generation of non-permanently charged oxi-
mes with tertiary nitrogen atom were acetyloximes monoi-
sonitrosoacetone (MINA) and diacetylmonoxime (DAM) 
(57). However, they were less potent peripheral reactivators 
than 2-PAM (58). About 10 years ago, the development of 
new tertiary oximes started. Different derivatives of 3-hy-
droxy-2-pyridinium oximes have been synthesised since 
and were proven to be potent reactivators of OP-inhibited 
AChE and BChE (59–64). In addition, the in vivo phar-
macological properties of few such oximes have also been 
evaluated (65–67). At the same time, the synthesis and 
activity of tertiary imidazole aldoximes and N-substituted 
2-hydroxyiminoacetamides were also published (68–72) 
and the lead N-substituted 2-hydroxyiminoacetamide re-
activator RS194B was studied quite extensively in different 
animal models (69, 73–76). Tertiary 3-fluoro-2-pyridinal-
doximes were recently synthesised (77) providing a diverse 
molecular scaffold with fluorine that additionally influ-
ences lipophilicity. Furthermore, charged oximes were at-
tached a substituent or moiety that increases the overall 
lipophilicity of the molecule and preferably governs its 
higher BBB penetration. Such are pyridinium oximes with 
phenoxyalkyl detergent-like substituents (78–80) or chlo-
rine (81, 82) and fluorine atom (83, 84). There were other 
attempts to increase the oxime concentration in the brain. 
One of them was the synthesis of an uncharged pro-2-
PAM that oxidizes into 2-PAM in the brain (85). Further-
more, glycosylated oximes were synthesized to increase the 
brain uptake of an oxime by active glucose transporters at 
the BBB (86, 87). Incorporating oximes in the nanoparti-
cles (NP) that cross the BBB via transcytosis was used for 
the attempted improvement in brain delivery of standard 
oximes 2-PAM, HI-6 and obidoxime (88–91) or 3-hy-
droxy-2-pyridine oxime (67). NP can have various ligands 
(e.g., transferrin, folate, leptin, etc.) attached to their surface 
that would be recognized by specific receptors/transporters 
expressed by endothelial cells of the BBB, and therefore, 
would potentially result with improved brain targeting 
(92). The co-administration of an inhibitor of efflux trans-
porter P-gp is also used for achieving higher oxime concen-
trations in the brain (93).

An additional possibility in treatment and CNS pro-
tection is the prophylactic intraveneous (i.v.) administra-
tion of BChE when exposure is likely. This way, the 
plasma BChE bioscavenging capacity increases, i.e., the 
capacity for irreversible binding of OP molecules which 
prevents them from reaching synapses and AChE (94). 
Exogenous administration of BChE showed protection 
against lethal doses of soman or VX (95) or sarin (96). 
The combination of an oxime that reactivates BChE, or 
various AChE mutants, can offer a pseudo-catalytic scav-
enging of OPs – i.e., cycles of enzyme inhibition by OP 
coupled with oxime reactivation of the inhibited enzyme 
(68, 72, 97–100). Advancements in this field were covered 
in the recent review by Kovarik and Maček Hrvat (101).

More strategies for general brain drug delivery were 
listed in previous reviews (32, 34, 35). For example, hyper-
tonic solution, compounds that modify TJs between brain 
capillary endothelial cells, and ultrasound or electromag-
netic radiation were used to disturb the BBB integrity and 
increase its permeability (34). However, these approaches 
are quite non-selective and have numerous potential side 
effects. The intranasal (i.n.) route seems like another accept-
able and promising brain delivery method for oximes. 
Drugs can be absorbed from the nasal cavity by olfactory 
mucosa (5-10% of surface) directly to the brain via olfac-
tory epithelium cells or nerves or they can be absorbed by 
the respiratory mucosa to systemic circulation and then 
distributed to the brain across the BBB (102). Qualitatively 
similar physicochemical property requirements are listed 
for drugs with good nasal bioavailability as the ones for BBB 
penetrating drugs (42-45), while permeation enhancers or 
other strategies could be applied to additionally improve the 
bioavailability (103). It is important to mention that the 
benefit of the i.n. route is the possibility of self-administra-
tion and non-invasiveness. Moreover, comparative studies 
have shown that the onset of action after i.n. application is 
comparable with the one after i.m. or s.c. injection (104).

PHARMACOKINETIC DATA ON OXIMES 

Absorption and circulation time

After i.m. application, the oxime is absorbed into the 
blood and the maximal concentration (Cmax) in the blood 
is achieved after the absorption process is completed and 
after a defined time (tmax). From there on, the elimination 
process takes place and exponential decrease of the oxime 
concentration in plasma is described by the elimination 
half-life (t1/2). The elimination is more than 90% com-
plete after the time equal to four half-lives. Precise defini-
tions and equations for PK parameters can be found else-
where (105). Two-phase exponential decrease of oxime 
blood concentration can be observed in case of simultane-
ous distribution and elimination. The onset of an oxime’s 
action depends primarily on the rate of its absorption and 
time needed to reach the target sites that are synapses of 
both the peripheral and central nervous systems. Natu-
rally, the absorption process after i.m. application is gov-
erned by the properties of the oxime itself, but also high-
ly depends on the model species. The published data on 
absorption and elimination of standard and charged ox-
imes 2-PAM, HI-6, obidoxime, and TMB-4 after i.m. 
administration is summarized in Table 1.

In general, the absorption rate of all charged oximes 
after i.m. application is similar within the species. The 
maximal plasma concentration was achieved relatively fast 
in rodents (roughly 5‒20 min) (106, 107, 112-115, 117) 
although some exceptions were observed in several studies 
for oxime HI-6 and TMB-4 (tmax >30 min) (114‒116, 
121). In humans, the tmax for 2-PAM was slightly shorter 
(109‒111) than for HI-6 and obidoxime (119, 120).
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Furthermore, one of the major pharmacokinetic draw-
backs of charged oximes is their short circulation time and 
short duration of pharmacological action. As observed, 
charged oximes also exhibited a shorter circulation time 
in smaller mammals than in larger mammals, as expect-
ed due to a more rapid metabolism and elimination in the 
former (123). Standard oximes in humans have a similar 
t1/2 of 80‒100 min, implying almost total elimination 
within 5‒7 hours (109, 119, 120, 122). Thiermann et al. 
demonstrated a two-phase exponential decay of obidoxi-
me with half-lives of 2 h and 14 h in case of a clinical 
therapy of human OP pesticide poisoning (124). For 
other charged oximes, PK analyses showed similar absorp-
tion rates, i.e., K027 and K203 achieved their Cmax in 
40‒60 min in rats (115, 121, 125, 126) and in pigs after 

20 min (127), as well as similar elimination. In rats, K027 
showed a somewhat slower elimination with a t1/2 of 128 
min (121). The elimination t1/2 in pigs for K027 and K203 
was comparable to that of HI-6, with values of 93 min 
and 100 min, respectively (127). Oral application of 
standard oximes was also evaluated in human studies that 
showed that maximal blood concentration is achieve 
within 30‒180 min for 2-PAM (128, 129), 60‒120 min 
for obidoxime (130, 131), or 36‒96 min for HI-6 (132), 
however, the oral bioavailability was very low for all oxi-
mes. For comparison, the bioavailability of HI-6 after i.m. 
application was 100% (113).

As for uncharged oximes, several studies have analysed 
their PK behaviour and demonstrated the same flaws con-
cerning their circulation time as for the charged oximes 

Table 1. Absorption and elimination of i.m. applied standard oximes. Pharmacokinetic parameters: tmax – time needed to reach the maximal 
plasma concentration of an oxime (Cmax), t1/2 – elimination half-life, time needed for plasma concentration Cmax to be reduced in half, MRT 
– mean residency time, represents the average time of a molecule in the body.

Oxime Absorption, tmax Elimination, t1/2

2-PAM Mouse: 5 min (65)*
Rat: 5‒20 min (106, 107)
Sheep: 12 min (108)
Human: 5‒23 min (109‒111)

Mouse: MRT=30 min (65)*
Rat: 30‒70 min (106, 107)
Sheep: 29 min (108)
Human: 75‒100 min (109‒111, 122)

HI-6 Mouse: 7 min (65)*
Rat: 5‒45 min (112‒117)
Dog: < 30 min (117)
Rhesus monkey: 25‒30 min (117)
Pig: 10 min (118)
Sheep: 14 min (108)
Human: 30‒60 min (119)

Mouse: MRT=45 min (65)*
Rat: 20‒65 min (112, 113, 116, 117)
Dog: 40‒50 min (117)
Rhesus monkey: 25‒30 min (117)
Pig: 80 min (118)
Sheep: 52 min (108)
Human: 80‒85 min (119)

Obidoxime Rat: 10 min (114)
Human: 20‒30 min (120) Human: 80 min (120, 121)

TMB-4 Rat: 15‒40 min (106, 115, 121) Rat: 30‒110 min (106, 121)

*2-PAM and HI-6 in mouse were i.p. applied (65).

Table 2. Absorption and elimination of i.m. applied non-permanently charged oximes. Pharmacokinetic parameters: tmax – time needed to reach 
the maximal plasma concentration of an oxime (Cmax), t1/2 – elimination half-life, time needed for plasma concentration Cmax to be reduced in 
half, MRT – mean residency time, represents the average time of a molecule in the body.

Oxime Absorption, tmax Elimination, t1/2

RS194B Mouse: 5 min (69, 76) 
Guinea pig: 30 min (75) 
Macaque: 60 min (74)

Mouse: 12 min (69) 
Guinea pig: 52 min (75) 
Macaque: n.s. (74)*

RS41A Mouse: 5 min (69, 76) Mouse: 11 min (69)

JR595 Mouse: 15 min (66) Mouse: 14 min, MRT=25 min (66)

GM415** - Rat: 18 min (67)

GM508*** Mouse: 14 min (65) Mouse: MRT=40 min (65)

GM113*** Mouse: 17 min (65) Mouse: MRT=49 min (65)

*More than 90% of Cmax was eliminated from plasma 8 hr after application. n.s.- measured but not stated.
**GM415 in rats was i.v. applied (67).
***GM508 and GM113 in mouse were i.p. applied (65).
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(Table 2). N-substituted 2-hydroxyiminoacetamide oxi-
mes RS194B and RS41A showed fast absorption within 
5 minutes in mice (69, 76), while PK studies on RS194B 
showed slower absorption and slightly longer circulation 
times in guinea pigs (75) and macaques (74). Worth men-
tioning is that RS194B demonstrated an abundant ab-
sorption after i.m. application (88% bioavailability). Sus-
tained plasma concentrations of RS194B in mice were 
provided by repeated oral administration following the 
initial i.m. dose (76). Similarly, 3-hydroxy-2-pyridine 
oximes (JR595, GM415, GM508, GM113) demonstrated 
fast absorption and rapid elimination in mice and rats 
(65–67). Oximes 2-PAM and GM415 encapsulated in 
NP showed significant prolongation of the their circula-
tion time relatively to the free oxime (67, 91).

Metabolism and route of elimination

For charged oximes 2-PAM, HI-6, obidoxime, and 
TMB-4, it was demonstrated in several animal species 
that the main elimination route is renal (106, 112, 117, 
119, 120, 122, 133, 134). The high renal clearance of 
2-PAM in human suggested its active renal elimination 
via renal tubulae (122, 135). In addition, studies in hu-
man showed that 80-90% of applied dose was eliminated 
unchanged in urine within 24 hours (110, 122). Studies 
in dogs and rats showed that 60% of HI-6 was elimi-
nated unchanged in the urine, and 40% was presumably 
metabolized and excreted in urine since there was no 
HI-6 in bile or feces (117, 133, 134). However, the total 
metabolism of HI-6 was of low significance for its bio-
logical activity (112). In man, the renal elimination of 
60% of unchanged HI-6 occurred within the first 6 h 
(119). PK analysis of obidoxime in human showed that 
68‒84% of applied dose was excreted in the urine un-
changed within 24 hours (120, 122) despite its possible 
reabsorption in kidneys (122). For TMB-4 in rats, it was 
also shown that it is eliminated unchanged in urine (106).

The possibility of oximes to be biotransformed by CYP 
enzymes was tested in several studies. It seems that 
charged oximes K048 and HI-6 were not degraded by 
CYPs (136). As for non-permanently charged and more 
lipophilic oximes, the study on RS194B showed that the 
primary route of elimination is via urine, and that it was 
metabolically stable over the course of the experiment 
(75). 3-hydroxy-2-pyridine oximes were also shown to be 
metabolic stable in the liver microsome CYP metabolic 
degradation assay, with the exception of the highly lipo-
philic GM508 oxime with a tetrahydroisoquinoline sub-
stituent (66).

Plasma protein binding and distribution 
into tissues 

A study by Ecobichon et al. (117) showed there is no 
significant plasma protein or tissue protein binding for 
HI-6. Moreover, Zemek (115) reported no significant 

binding (1‒7%) of HI-6, obidoxime, or TMB-4 to hu-
man serum albumin (HSA). Some charged K-oximes 
(K027, K075, K127, K203, and K282) also showed a low 
level of binding to HSA (4‒15%) (115). Therefore, this 
aspect is not expected to affect the therapeutic efficacy of 
these or similar oximes, i.e., compounds that are not 
bound to plasma proteins are free to move within different 
body compartments and exert different actions.

As for the distribution, 2-PAM showed it diffuses 
freely across the physiological compartments with a high-
er apparent volume of distribution (Vd) than obidoxime 
in human (122) or than HI-6 in sheep (107) and in hu-
man (119). Studies by Garrigue et al. (106, 112) demon-
strated the highest distribution of 2-PAM and HI-6 to 
mucopolysaccharide-containing tissues (cartilage, in-
tervertebral disc), kidney, and some distribution to other 
highly perfused tissues. A study on obidoxime in humans 
by Thiermann et al. (124) showed distribution and reten-
tion in cartilage, kidney and liver; less in the lungs, mus-
cle, hearth, and brain.

Uncharged oximes have not been tested for plasma 
protein binding; however, from the PK blood profile and 
short circulation time for 3-hydroxy-2-pyridine oximes it 
can be concluded that no plasma protein binding took 
place (66). A study on RS194B in guinea pigs showed 
rapid and extensive distribution beyond the plasma com-
partment (75). Highest RS194B concentrations were de-
termined in kidney and liver, followed by lung, spleen, 
heart and brain tissues (75).

Brain penetration of oximes

Several in vitro methods, mostly PAMPA or MDCK 
cell line, were employed in order to test the BBB penetra-
tion ability of standard charged oximes and oximes de-
signed for CNS activity and resulting permeability rates 
are presented in Table 3. From available data, the perme-
ability rate of 3-hydroxy-2-pyridine oximes was signifi-
cantly higher than that of charged standard oximes. 
Charged oximes HI-6, 2-PAM and MMB-4 were also 
classified as impermeable in another PAMPA study (137). 
Moreover, studies on charged pyridinium oximes showed 
that their PAMPA permeability was increased with the 
number of fluorine atoms (83) or chlorine atoms (81) com-
pared to non-substituted analogues. The IAM technique 
also showed a relatively low predicted permeability value 
for charged bisquaternary oximes (e.g., HI-6, obidoxime, 
TMB-4, K-oximes), whereas monoquaternary oximes (2-
PAM) had higher potential for penetration across the BBB 
(138). HI-6 encapsulated in nanoparticles showed a 1.5 to 
2 times higher transport of the oxime across the in vitro 
primary porcine brain capillary endothelial cells model 
compared to the transport of HI-6 alone (89).

In addition, using different MDCK cell lines, it was 
shown that charged oxime 2-PAM is not a substrate of 
P-gp or BCRP efflux pumps (139). Moreover, the P-gp 
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efflux pump did not show any affinity for non-perma-
nently charged oximes RS194B and JR595 (66, 75) nei-
ther. Other study investigated the affinity of the P-gp 
substrate for a number of substituted phenoxyalkyl pyri-
dinium oximes and tried to correlate it with in vivo oxime 
efficacy (140).

Standard oximes also showed poor BBB penetration in 
vivo (147, 148) and this was addresses either by determin-
ing the brain/blood ratio or by measuring brain ChE re-
activation after a defined time of treatment with an oxime. 
Slight differences in BBB penetration data for an individ-
ual oxime are the result of various animal models or meth-
ods/techniques used to determine these parameters. Also, 
oximes clearly achieve different concentrations in different 
brain regions, and this is one of the possible reasons for the 
variability between studies that used whole brain or differ-
ent brain regions to determine an oxime’s presence.

More precisely, brain concentrations of 2-PAM in rats 
were approximately 10% of blood concentrations (25, 
142, 143). Moreover, Sakurada et al. suggests that 2-PAM 
is actively transported across the BBB in a Na+-dependent 
manner (25). Obidoxime application to mice and rats 
resulted in 3‒5% of blood concentration penetrating into 
brain (145), while 9‒18% of the plasma HI-6 reached the 
brain in rats (116). In a study by Joosen et al. (93), brain 
HI-6 concentrations were less than 5% of its blood con-
centration. Even poorer brain penetration (<1%) of HI-6, 
obidoxime, and TMB-4 in rats was observed in other 
studies (144, 146). As for studies that measured brain 
ChE reactivation, Clement (149) examined the reactiva-
tion of sarin-inhibited ChE in the hypothalamus, hip-
pocampus, and cortex by HI-6, obidoxime, and 2-PAM; 
only HI-6 showed significant reactivation with highest 
reactivation in hypothalamus (45%) relatively to control 

groups. In rats exposed to OP insecticide, 2-PAM reac-
tivated 12% of ChE in the cortex and spinal cord, while 
at the whole brain level it was 6% (142). The brain con-
centrations of other pyridinium oximes (K027, K048, 
K074) were less than 2% of their blood concentration 
(144, 146, 147, 150). K027 achieved the highest concen-
tration in the frontal cortex>pontomedullar area>basal 
ganglia (125), and the same distribution was observed for 
TMB-4 and K074 (146).

Studies on the brain penetration of non-permanently 
charged oxime RS194B in mice showed rapid penetration 
to the brain amounting to concentrations equal to 30% of 
the blood concentration. Moreover, its brain concentra-
tions exceeded blood levels after approximately 30 minutes 
(69, 76). In comparison, the Cmax of RS194B in the brain 
of guinea pigs corresponded to 4‒18% of blood concentra-
tion across the dose range and the elimination of RS194B 
from the brain also lagged behind plasma clearance (75). 
The lead 3-hydroxy-2-pyridine oxime reactivator JR595 
achieved maximal brain concentration that corresponded 
to 40% of blood concentration 15 min post-application 
(66). Other 3-hydroxy-2-pyridine oxime, GM415, applied 
i.v. to rats also achieved the brain concentration of ap-
proximately 30% of blood concentration at 5 minutes, 
while NP-encapsulated GM415 reached higher brain con-
centrations that were sustained for a longer time (67). 
Comparably, 2-PAM in NPs also achieved higher brain 
concentrations in rats relatively to 2-PAM administered 
alone (91). In paraoxon-exposed rats, 2-PAM or GM415 
administered alone reactivated no or <5% of brain AChE, 
respectively. The same oximes encapsulated in NP reacti-
vated 15% and 30% of brain AChE, respectively (67, 91).

Also, the administration of an inhibitor of efflux trans-
porter P-gp, tariquidar, resulted in a 2-times higher con-

Table 3. BBB penetration of oximes determined in vitro (permeability rate, Pe/Papp) and in vivo (brain/blood ratio).

Oxime PAMPA
Pe (10-6 cm s-1)

MDCK cell line
Papp (10-6 cm s-1)

In vivo
([oxime]brain/[oxime]blood) ∙ 100

2-PAM <0.4 (75, 81, 141) <3 (139, 141) Rat: 6‒10% (25, 142, 143)

HI-6 0.8 (81, 141) 0 (141) Rat: 9‒18% (116), <1% (144)

Obidoxime 0.7 (141) 1 (141) Mouse, rat: 3‒5% (145); Rat: <1%(144)

TMB-4 0.1 (141) 0.4 (141) Rat: <1% (146)

Other pyridinium oximes <0.5 (81) - Rat: <1% (125, 144, 146)

Chloro-pyridinium oximes 1.0‒2.6 (81) - -

3-hydroxy-2-pyridine oximes
GM415
JR595

5‒7 (141); 6‒30 (64)
12 (64)
6 (64)

12‒32 (141)
-
36 (66)*

Rat: 30% (67)
Mouse: 40% (66)

2-hydroxyiminoacetamide oximes
RS41A
RS194B

-
<0.5 (75)

-
n.s. (75)**

Mouse: 12% (69)
Mouse: 30% (69); Guinea pig: 4‒18% (75)

*Determined in MDR1-MDCK cell line with overexpressed P-gp.
**n.s.- measured but not stated.
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centration of HI-6 in the brain of rats pre-treated with 
HI-6 and poisoned with soman; it also showed a compa-
rable increase in AChE activity (93).

The CNS activity of oximes has also been evaluated by 
using biomarkers such as neuroprotection or survival. 
Tertiary oximes MINA and DAM exerted improved sur-
vival and prevented of seizures when compared to charged 
oximes 2-PAM, MMB-4, or HLö-7 in sarin-poisoned 
guinea pigs, and this was attributed to the reactivation of 
brain AChE. Brain reactivation by MINA was addition-
ally proved in VX- and cyclosarin-exposed guinea pigs 
(58, 151). A study with the prodrug of 2-PAM (pro-2-
PAM) showed moderate reactivation of brain AChE and 
prevention of seizures and neuropathology in guinea 
pigs exposed to sarin and VX, while it was ineffective for 
cyclosarin (152). Moreover, a lead charged phenoxyalkyl 
pyridinium oxime with lipophilic moiety showed brain 
neuroprotection against sarin and VX surrogates and 
paraoxon as opposed to no effect with 2-PAM (79, 80). 
Fluoro-pyridinium oxime KR-22836 showed a slightly 
higher neuroprotective effect than K203 and obidoxime 
in case of tabun-poisoned rats (153). 3-hydroxy-2-pyri-
dine oxime GM415 encapsulated in NPs achieved higher 
brain AChE reactivation in rats exposed to paraoxon 
when compared to the oxime alone (67) and showed po-
tential to provide protection for mice exposed to high 
doses of VX and sarin (66). JR595 demonstrated potential 
to attenuate toxic effects in mice exposed to multiple 
doses of VX and sarin (66).

Finally, it is important to state that some authors re-
ported that the smallest necessary level of AChE activity 
is as low as 2% in the pontomedullar area, one of the 
suggested brain regions critical for survival (154). Others 
suggested that some of the protective effects of bispyri-
dinium oximes could be attributed to mechanisms other 
than enzyme reactivation, e.g., interaction with nAChR 
and mAChR receptors at both peripheral and central 
level (155).

Drug-drug interaction and oxime 
formulation

Drug-drug interaction and drug formulation can sig-
nificantly influence drug PK profile. In the study Lundy 
et al. (118) it was demonstrated that HI-6 oxime retained 
the same PK profile when applied along with muscarinic 
receptor antagonist atropine as without it. This was also 
observed in studies in man (119, 156). Some charged 
oximes were tested for their inhibitory potential of CYP 
enzymes, which is one of the mechanisms that can lead 
to drug-drug interaction by reducing metabolism of co-
administered drugs and possibly lead to their prolonged 
action or toxicity. Oximes K048 and HI-6 showed only 
a slight inhibitory potential for some members of the CYP 
family. For example, K048 showed low inhibition of 
CYP2C19 (20%) at concentrations ≥100 μM, and up to 

20% inhibition of CYP2D6 at 400 μM, while HI-6 in-
hibited CYP2E1 in a 5‒40 % range with concentrations 
of 10-400 μM. However, inhibition at these concentra-
tions is probably not clinically significant (136). Simi-
larly, K027 and K203 did not significantly inhibit either 
of the CYP family members: K203 inhibited 35% activ-
ity of CYP2E1 and up to 20% of 2C9, 2D6, and 3A4 
members at high 400 μM concentration (157).

The drug formulation or the means of administration 
are known to affect the PK behaviour of a drug. A study 
on two different HI-6 salts, dimethanesulfonate and di-
chloride did not show any significant difference between 
their PK profiles (118). Chloride and methanesulfonate 
salts of 2-PAM also show similar PK behaviour after p.o. 
application in human (128, 129). HI-6 application via 
i.m. syringe or i.m. autoinjector also had minor effect on 
its circulation time (109).

OP exposure can change the 
pharmacokinetic behaviour of oximes

In general, PK and PD of a drug can be influenced by 
the possible pathophysiological changes in an organism. 
Studies have shown that poisoning with OPs can influ-
ence the blood flow and PK behaviour of oximes. Maxwell 
et al. (158) showed that soman reduces the kidney blood 
flow which can reduce the renal excretion of oximes. Stud-
ies by Garrigue et al. (106, 112) showed that soman did 
not show significant change of plasma PK for neither HI-6 
or 2-PAM, while OP compound A4 increased blood con-
centrations for the lower doses of both oximes (106, 112). 
In addition, Cassel et al. (116) showed that soman poison-
ing in rats resulted with a higher HI-6 blood concentra-
tion over time when it was administered at a higher dose 
(100 mg/kg) probably due to reduced renal secretion 
(116), while at concentrations ≤75 mg/kg there was no 
significant change of HI-6 blood concentration between 
soman-exposed and control rats (116). Therefore, the in-
fluence of OPs on PK of oximes should be taken into ac-
count when considering the duration of the oximes effect, 
but also when considering oximes that could exert serious 
side-effects because of their prolonged circulation time 
and slow elimination. Kušić et al. (119) study reported no 
side-effects of HI-6 in man. Moreover, Clement et al. 
(156) demonstrated that HI-6 reduce adverse drug experi-
ences caused by atopine alone. However, a dose-dependent 
mild to moderate transient side-effects of 2-PAM (diar-
rhea, dizziness, blurred vision, diplopia) (110, 128) and 
obidoxime (face muscles paresthesia, cool sensation in 
mouth, heavy eyes, blood pressure and heart rate change, 
nausea, vomiting) (120, 131) were observed in man. 
Moreover, a product in reactivation reaction with charged 
pyridine oximes is phosphonyl oxime that can re-inhibit 
AChE and possibly reduce the antidotal potency of ap-
plied therapy or cause other side-effects (159). With that 
in mind, the generally observed fast elimination of oximes 
and/or phosphonyl oximes is a beneficial characteristic.
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Furthermore, BBB permeability was shown to be tem-
porarily or permanently changed in many pathological 
CNS conditions (e.g., multiple sclerosis, hypoxia, ischemia, 
oedema, Parkinson’s or Alzheimer’s disease, epilepsy, tu-
mours, glaucoma, lysosomal storage diseases) or in dis-
eases that originate outside the CNS (e.g., HIV infection, 
diabetes, etc.) (33, 36). Since human brain microvessels and 
astroglia express muscarinic receptors, ACh is involved in 
the cortical perfusion (160) and ACh overstimulation in 
OP poisoning can change the BBB permeability. Increased 
blood flow in brain was observed in soman-poisoned rats 
(158), and other study showed that soman induced an in-
crease of BBB permeability in rats without seizures (161). 
Similarly, Scremin et al. (162) showed an increase in re-
gional cerebral blood flow in rats exposed to low level sarin. 
In addition, BBB permeability change and disruption was 
observed in a transcriptomic study in rats after sarin expo-
sure through change in gene expression that indicates a 
disturbance of normal oligodendrocyte and BBB function 
(22). Finally, a study by Cassel et al. (116) demonstrated 
lower brain-uptake of oxime HI-6 in soman-exposed rats 
and the authors suggested that this could be the result of 
the soman-induced vasoconstriction of the capillaries in 
the BBB or a depressing effect on blood pressure. A study 
in rats exposed to paraoxon did not show relevant changes 
in brain concentrations of 2-PAM compared to non-ex-
posed rats (143). The brain 2-PAM concentration was not 
different in non-exposed vs. soman-exposed rats, while 
HI-6 achieved slightly higher concentrations in soman- 
and A4-exposed rats compared to control animals (106, 
112). Therefore, the possibility of BBB change upon OP 
exposure when predicting the brain concentrations of oxi-
mes should be taken into account.

Finally, the change in mucus production after expo-
sure to OPs could affect the oxime absorption in case of 
its intranasal application. More precisely, the rhinorrhea 
is one of the first symptoms even at exposure to low OP 
doses (163) while some studies showed that allergic or 
viral rhinitis could affect nasal absorption (103).

CONCLUDING REMARKS

Brain oxime activity and the necessity of brain ChE 
reactivation is still a controversial subject as some authors 
reported that relatively low oxime penetration to the brain 
could elicit pharmacological effects. Additional point is 
that antimuscarinic activity of atropine could minimize 
most of OP poisoning symptoms; however, nicotinic ef-
fects are only addressed indirectly by the oxime reactiva-
tion of inhibited AChE. The influence of reactivation of 
brain ChE in the survival and/or neuroprotection in OP-
exposed animals was demonstrated after treatment with 
non-permanently charged tertiary oximes with improved 
BBB penetration potency. Nevertheless, newly designed 
oximes are usually evaluated for their reactivation po-
tency in vitro by determining their reactivation potency. 

It is generally known that the PD parameters defined in 
a closed system at equilibrium in vitro does not properly 
reflect the potency in vivo where the oxime concentration 
at the target site is under constant change and is influ-
enced by numerous factors. However, in silico, in vitro, 
and ex vivo methods serve to detect potential drawbacks 
early in the pre-clinical studies.

The main predisposition of an oxime’s central activity 
is the sufficiently long exposure of AChE in the synapses 
of peripheral and central nervous system to the effective 
concentrations of unbound active form of an oxime. 
Therefore, evaluating the PK and neuropharmacokinetics 
behaviour of oximes is a crucial step in obtaining a clear-
er picture of an oxime’s antidotal potency. High-through-
put assays are useful in characterizing individual PK de-
scriptors such as BBB penetration, metabolic stability, 
plasma and tissue protein binding, etc. that can give a 
glimpse into a target site exposure to an oxime and help 
determine the lead compound for further in vivo evalua-
tion. Certainly, in vivo studies enable assessment of a full 
concentration-time profile of an administrated oxime 
dose in blood and brain. Simultaneously, different PD 
markers such as survival and neuroprotection can be ad-
dressed in OP-poisoned animals treated with an oxime.

An unfavourable outcome can be improved by chang-
ing the dosage regime or by improving oxime formula-
tions. Since the main drawback of both charged and non-
permanently charged oximes seems to be their short 
circulation time, this should be addressed by either re-
peated administration of an oxime or by the application 
of an i.v. infusion. Future improvements in that regard 
are expected with the enforcement of NP-encapsulated 
drugs that would serve to prolong circulation time and 
brain targeting. Additional possibility with NPs is the 
encapsulation and delivery of more than one active com-
pound, which is especially interesting for yielding a potent 
reactivation for a broad spectrum of OPs. Also, the first-
aid autoinjector for treatment of OP poisoning includes 
both atropine and an oxime. Therefore, possible drug-
drug interactions along with pathophysiological changes 
elicited by OP should be accounted in the evaluation of 
the overall antidotal treatment.

In conclusion, defining the PK-PD relationship of dif-
ferent oxime candidates would help generate databases 
and models that would help estimate the in vivo behav-
iour of an oxime based on its molecular properties as well 
as for translation from animal studies to humans. Gather-
ing such information and taking them into consideration 
might greatly improve future design and development of 
novel antidotes.
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