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Evolutionary age of genes can assist  
in genome mining

Abstract

The rate of sequencing microbial genomes is accelerating, with the hope of 
discovering new antibiotics, cures for various diseases or new industrial en-
zymes. However, about 25-30% of the genes in the sequenced microbial ge-
nomes do not have an assigned function. Predicting the functions of these 
“unknown” genes could unlock a considerable biological potential for bio-
medical and biotechnology applications, as well as further our understanding 
of the molecular tenets of life. Current methods for gene mining rely basically 
on comparison of primary sequences or 3D-structures to those of already char-
acterized genes. The problem with such approaches is that unknown genes 
with no homology to the already characterized genes remain completely out 
of reach. Herein, I argue that evolutionary approaches, such as the genomic 
phylostratigraphy, can make a substantial contribution to genome mining – 
especially regarding genes with no homology to the characterized ones. My 
group has recently used genomic phylostratigraphy to discover new genes in-
volved in sporulation of the bacterial model organism Bacillus subtilis. These 
new sporulation genes exhibited no sequence homology with the known 
sporulation genes and were missed by all other genome mining approaches. 
They have been discovered solely based on their evolutionary age. Along these 
lines, I argue that phylostratigraphy should be integrated into genome mining 
pipelines and develop a brief example of how this could be done.

Genome sequencing technologies have revolutionized modern life sci-
ence and medicine (1). Single cell genomic technologies have led to 

establishment of a human tumor atlas (2), a platform that can be used for 
providing an unprecedented level of precision-medicine treatments for 
cancer patients. Sequencing technologies are extensively used in the hu-
manity’s combat against antibiotic-resistant bacteria, to increase our abil-
ity to detect and study antimicrobial resistance (3). In the PubMed genome 
database, there are presently 246 954 fully sequenced bacterial genomes 
(4), of which about 50 000 have been added in the last 12 months. Ge-
nomes of microbes isolated from various environments are getting se-
quenced at an increasing rate, in the hope that this biodiversity will help 
us find new antibiotics, cures for various diseases, new industrial enzymes, 
producers of biofuels and various other functions useful to humanity. 
However, about 25-30% of all the genes in the sequenced microbial ge-
nomes are still of unknown function. Predicting the functions of these 
“unknown” genes could unlock a tremendous potential for understanding 
the molecular tenets of life, as well as for biomedical and biotechnology 
applications. Methods currently used for discovering gene functions, i.e. 
for genome mining, are largely based on analyses of primary sequences or 
3D-structures and searching for homology with already characterized 

IVAN MIJAKOVIC1,2

1 Division of Systems and Synthetic Biology,  
Department of Biology and Biological Engineering, 
Chalmers University of Technology,  
412 96 Gothenburg, Sweden

2 Novo Nordisk Foundation Center for  
Biosustainability, Technical University of Denmark, 
2800 Lyngby, Denmark

Correspondence:  
ivan.mijakovic@chalmers.se 

 
 
 

Received April 20, 2020 
Revised May 19, 2020 
Accepted May 21, 2020.



Ivan Mijakovic	 Evolutionary age of genes can assist in genome mining

4	 Period biol, Vol 121–122, No 1–2, 2020.

genes (5,6). Such approaches have a serious limitation: com-
pletely “unknown” genes, with no homology shared with 
the “known” genes, remain completely out of reach. By 
consequence, current genome mining technologies have 
advanced the discovery of new biosynthetic pathways only 
very modestly. The focus in this respect has so far been on 
connecting available genomics (homology-based methods) 
and metabolomics data (7) and expressing silent biosyn-
thetic clusters (8). Clearly, conceptually new methods for 
discovering gene functions are needed. 

Recently, my group published a study where we used 
genomic phylostratigraphy (9) to discover new genes in-
volved in sporulation of the bacterial model organism 
Bacillus subtilis (10). To introduce the concept of genom-
ic phylostratigraphy, let us first consider that genes have a 
“life cycle”, as proposed by Neme and Tautz (11) (Figure 
1). This means that non-coding DNA sequences within 
genomes can be altered by random mutations into coding 
sequences. By starting to code for proteins, these genes 
are no longer subject to only stochastic evolution (random 
mutations). This is the step of “gene birth”, shown in Fig-
ure 1 as emergence of genes and their transition to a status 
of coding sequence. The mutations in those genes are now 
subject also to natural selection, and this process is called 
adaptive evolution. Through further random mutations 
and natural selection, functions can be gained, modified 
or lost. Mutations can also lead to “gene death”. A gene 
which has lost its function “sinks” again from adaptive 
into stochastic evolution, shown as the non-coding se-
quence space in Figure 1. Since genes have a life cycle, 

with “gene birth” and “gene death”, the evolutionary tree 
of life will contain some genes that are very old (e.g. those 
that emerged in the last universal common ancestor - 
LUCA), and other genes that have gradually been appear-
ing throughout evolution, some of which very recently. If 
this description of adaptive evolution is generally true, 
then one should be able to correlate emergence of new 
genes to emergence of new features of life, i.e. new func-
tions brought about by adaptation. Phylostratigraphy is a 
computational method for studying genome evolution 
and it operates with a timeline defined by an evolutionary 
tree. As a first step, a consensus phylogeny from the per-
spective of the species to be analyzed is constructed fol-
lowing phylogenetic literature. Each node in the evolu-
tionary tree is named a phylostratum, by analogy to 
strata (layers) found in paleontology, where deeper layers 
of soil contain older fossils. Phylostratigraphy analysis can 
be performed on an entire genome and it classifies indi-
vidual genes into phylostrata, each populated with genes 
whose founder genes emerged at a specific node in a refer-
ence evolutionary tree. In a phylostratigraphy map, all the 
genes from a given genome get distributed into phylostra-
ta. So far, phylostratigraphy approach has been success-
fully used to explain macro-evolutionary phenomena. If 
a function emerged at a given time-point in evolution, 
genes related to that function tend to be significantly en-
riched in the corresponding phylostratum. Based on this 
principle, phylostratigraphy maps have been used e.g. to 
trace the evolutionary origin of over 1000 cancer-related 
genes to the evolutionary time-point of emergence of 

Figure 1. The concept of genomic phylostratigraphy and discovery of gene function. Non-coding DNA space is represented with a grey box, 
and the coding DNA is shown as the white space above. The timeline spans the evolutionary history from emergence of the last universal common 
ancestor (LUCA) to extant species. A certain set of genes (orange arrow 1) emerged (“gene birth”) with LUCA and kept evolving via adaptive evolu-
tion until present times (1*). At different time-points throughout evolution, major adaptations took place (A, B, C), which led to the emergence of 
new sets of genes (orange arrows 2, 3, 4). These new genes then also underwent adaptive evolution, and kept evolving until present times (2*, 3*, 4*). 
Each emerging gene that did not survive biological selection mutated into a pseudogene and “sunk” again into the non-coding DNA space (process 
of “gene death” shown by dotted arrows). The essence of our approach is shown by the magnifying glass: if a certain gene emerged at the time point of 
a specific major adaptation, does it have a higher probability to be functionally involved in that adaptation?
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Metazoa (12), for evolutionary stratification of develop-
mental phenomena (13) and for studying the emergence 
of new genes from non-genic regions (14). 

In our study (10), we went beyond using phylostratigra-
phy to only explain evolutionary events, we used it to pre-
dict functions of completely uncharacterized genes, based 
solely on their evolutionary age. We commenced by per-
forming a genome-wide phylostratigraphy analysis of B. 
subtilis (15). This revealed that most of the >300 genes 
known to be involved in development of B. subtilis spores 
(extremely resistant forms of bacterial cells) tend to cluster 
in only a few phylostrata (10). Put simply, this means that 
sporulation most probably first emerged in phylostratum 8, 
corresponding to separation of Bacilli from other bacterial 
genera. The process co-opted a certain number of older 
genes (phylostrata 1 and 2) and was modified/enhanced 
with addition of new genes/functions in phylostrata 9, 10 
and 13. Based on this, we hypothesized that genes of still 
unknown function belonging to sporulation-enriched phy-
lostrata have a higher probability to be involved in sporula-
tion, compared to genes of unknown function in other 
phylostrata. Next, we individually knocked out (inactivat-
ed) a selection of genes of unknown function in the con-
cerned phylostrata. Then we examined whether the result-
ing strains with gene knockouts can sporulate normally. 16 
out of 37 (43%) of tested knockout strains exhibited a 
sporulation phenotype. The 16 newly discovered sporula-
tion genes have been shown to participate in transcription-
al regulation of sporulation functions, maintaining struc-
tural integrity of the spore coat and signaling between the 
forespore and the mother cell. These results clearly con-
firmed that phylostratigraphy can indeed be used to predict 

genes involved in sporulation with considerable success. It 
should be emphasized that the newly discovered sporula-
tion genes bore no sequence homology with the known 
sporulation genes. They were missed by all other genome 
mining approaches and were identified solely based on their 
evolutionary age. Based on these findings, I would like to 
argue that phylostratigraphy should be integrated into ge-
nome mining pipelines, e.g. when searching for uncharac-
terized biosynthetic genes in microbial genomes.

In the following paragraph I will outline how this in-
tegration could work, by describing a putative computa-
tional workflow to predict biosynthetic gene clusters that 
would integrate evolutionary history, genomic, transcrip-
tomic and metabolomic data (Figure 2). Firstly, the bio-
synthetic gene clusters of bacterial isolates should be iden-
tified using antiSMASH (16). The resulting biosynthetic 
gene clusters should be clustered into gene families. A 
BLAST-based phylostratigraphic approach should then be 
employed to estimate the evolutionary age of biosynthet-
ic gene cluster families and to assess their clustering along 
evolutionary age (13). Each biosynthetic gene will be as-
signed to a phylostratum (PS), representing the oldest 
phylogenetic node to which the gene can be traced. With 
the predicted age of each gene, the evolutionary transcrip-
tome age of any specific growth condition can then be 
inferred by the transcriptome age index methods (the 
weighted sum of genes ranked by their expression level in 
each phylostratum). With available metabolomics data, 
the sequence similarity networks should then be associ-
ated to chemical similarity networks of natural products, 
which provide a link between gene families and natural 
products. Finally, this information should be used to pre-

Figure 2. Proposed pipeline for systematic exploration of biosynthesis gene clusters from large-scale omics data. Biosynthetic gene 
clusters identified by antiSMASH are clustered into gene families (GFs) and then stratified into phylostrata (PS) according to evolutionary age. 
Transcriptome age index and metabolomics data are used to link GFs to chemical similarity networks, leading to a functional link to specific 
natural products, e.g. novel antibiotics.
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dict the potential products of biosynthetic gene clusters in 
microbial isolates using machine learning methods by 
integration of gene similarity, gene age and transcription-
al information. 

It is exciting to imagine phylostratigraphy and other 
evolutionary methods as components of future genome 
mining pipelines. It should be mentioned that some au-
thors claimed that phylostratigraphy tends to underesti-
mate age of certain categories of genes, such as short cod-
ing sequences with fast evolution rates (17). To address 
this putative bias of phylostratigraphy, a strategy that 
involves exclusion of error-prone genes has been proposed 
(18). This and other limitations should be kept in mind 
when implementing phylostratigraphy in genome mining. 
It could also be argued that phylostratigraphy has been 
developed for species with predominant vertical evolu-
tion, and one could speculate that extensive lateral gene 
transfer known to occur in bacteria might limits its use 
(19). However, the success of phylostratigraphy in predict-
ing new sporulation genes in B. subtilis (10) may be taken 
as a counter argument. In conclusion, evolutionary biol-
ogy has much to offer and all biologists would be well 
advised to keep that in mind. For example, experimental 
evolution (20) has been used with notable success in 
metabolic engineering and synthetic biology (21). Hope-
fully, phylostratigraphy-based approaches will have simi-
larly broad impact on other fields of biology. 
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