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ATIC as a link between antirheumatic drugs and  
regulation of energy metabolism in skeletal muscle

Abstract

Chronic inflammatory rheumatic diseases, such as rheumatoid arthritis, 
psoriatic arthritis, and systemic lupus erythematosus, increase the risk of 
developing insulin resistance, metabolic syndrome, and/or type 2 diabetes. 
While inflammation is thought to be a major mechanism underlying meta-
bolic dysregulation in rheumatic diseases, antirheumatic drugs that exert 
direct metabolic effects in addition to suppressing inflammation, might be 
particularly useful to prevent metabolic complications. Here we review an-
tirheumatic drugs, such as methotrexate, that inhibit ATIC, the final en-
zyme in the de novo purine biosynthesis, responsible for conversion of ZMP 
to IMP. Inhibition of ATIC results in accumulation of ZMP, thus promot-
ing activation of AMP-activated protein kinase (AMPK), a major regulator 
of cellular energy metabolism and one of the most promising targets for the 
treatment of insulin resistance and type 2 diabetes. We focus especially on ATIC 
inhibition and AMPK activation in skeletal muscle as this is the largest and 
one of the most metabolically active tissues with a major role in glucose ho-
meostasis. As an important site of insulin resistance, skeletal muscle is also 
one of the main target tissues for pharmacological therapy of type 2 diabetes. 
Finally, we review the metabolic effects of ATIC-inhibiting antirheumatic 
drugs and discuss whether these drugs might improve systemic glucose homeo-
stasis by inhibiting ATIC and activating AMPK in skeletal muscle.

INTRODUCTION

Type 2 diabetes and cardiovascular diseases are highly prevalent and 
present a major public health challenge (1). Chronic inflammatory 

rheumatic diseases, such as rheumatoid arthritis, psoriatic arthritis, and 
systemic lupus erythematosus, increase the risk of insulin resistance (2), 
type 2 diabetes (3), the metabolic syndrome (4, 5), and/or cardiovascu-
lar complications (6). Antirheumatic drugs suppress inflammation, but 
they are not all equally effective at reducing the risk of developing dia-
betes (7, 8) or cardiovascular events (9). Some potent immunosuppres-
sive and anti-inflammatory drugs, such as glucocorticoids or calcineurin 
inhibitors, may even increase the risk of metabolic dysregulation (8, 10, 
11). Given the high prevalence of metabolic as well as rheumatic dis-
eases, drugs that help to maintain metabolic homeostasis and reduce the 
risk of metabolic complications would be particularly beneficial. 

Skeletal muscle accounts for ~40% of body weight and 20–30% of 
basal oxygen consumption and is the largest metabolic tissue under the 
physiological conditions (12). In type 2 diabetes, insulin resistance im-
pairs insulin-stimulated glucose uptake and glycogen storage in skeletal 
muscle, thereby contributing to development of hyperglycaemia (13–15). 
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Pharmacological agents that decrease insulin resistance 
and/or stimulate glucose uptake independently of insulin 
would therefore be useful for treatment of type 2 diabetes. 
In this respect, activation of AMP-activated protein ki-
nase (AMPK) is one of the most promising strategies to 
improve metabolic dysregulation in skeletal muscle (16–
18). Activation of AMPK enhances insulin action and 
stimulates insulin-independent glucose uptake in skeletal 
muscle, thus improving metabolic homeostasis and op-
posing development of type 2 diabetes (19, 20, 21, 22, 23, 
24). However, most experimental AMPK activators that 
have been discovered or developed so far do not efficient-
ly target AMPK isoforms which are expressed in skeletal 
muscle (25–27) or have poor pharmacokinetic properties 
(28), highlighting the need for new approaches towards 
AMPK activation in skeletal muscle. 

Interestingly, several antirheumatic drugs, including 
salicylate and methotrexate, have been shown to promote 
activation of AMPK (29–31). On the other hand, both 
drugs were shown to be inhibitors of 5-aminoimidazole-
4-carboxamide ribonucleotide formyltransferase/inosine 
monophosphate (IMP) cyclohydrolase (ATIC) (32–35), 
which is recognized as a promising target in development 
of new antidiabetic compounds (30, 36). Anticancer drug 
pemetrexed, a compound related to methotrexate, also 
inhibits ATIC and activates AMPK (37), but it is not used 
for treatment of rheumatic diseases and will not be dis-
cussed here. Here, we will review the evidence whether 
antirheumatic drugs might promote metabolic homeosta-
sis in skeletal muscle by inhibiting ATIC.

AMPK as a pharmacological target in 
skeletal muscle

AMPK is a major cellular energy sensor and regulator 
of cellular metabolism (38–41). AMPK is a heterotri-
meric serine-threonine kinase comprising the catalytic a 
(isoforms a1 and a2) and the regulatory b (isoforms b1 
and b2) and g (isoforms g1–3) subunits (41, 42). AMPK 
senses cellular energy status primarily by monitoring 
changes in the AMP:ATP ratio (41, 43), although chang-
es in the ADP:ATP ratio also contribute (44). Both AMP 
and ADP bind to the g subunit and activate AMPK by 
promoting phosphorylation of AMPKa Thr172. In addi-
tion, AMP, but not ADP, also causes allosteric activation 
of AMPK (40, 44–46). AMPK can also be activated in-
dependently of changes in adenine nucleotides (47) by an 
increase in cytoplasmic Ca2+ (48–50) or by a decrease in 
intracellular glucose concentration (51, 52).

Numerous pharmacological activators of AMPK have 
emerged in the last three decades (reviewed in detail in 
(18)). Based on their mechanism of action, they can be 
divided into three major groups (Table 1). The first group 
comprises direct activators that bind to or close to the 
AMP-binding site. The prototypical representative of this 
group is AICAR (5-aminoimidazole-4-carboxamide-1-b-

D-ribofuranoside or 5-amino-4-imidazolecarboxamide 
riboside), an adenosine analogue and the oldest and the 
most widely used experimental AMPK activator. AICAR 
is actually a prodrug that is intracellularly phosphorylated 
to ZMP (5-aminoimidazole-4-carboxamide-1-b-D-ribo-
furanosyl-5’-monophosphate), which directly binds to 
AMPK and activates it (53) (see below: Intracellular me-
tabolism of AICAR and ZMP). ZMP binds to the AMP-
binding sites on the g subunit (54) and this is required for 
its ability to activate AMPK (47). C2 is another pharma-
cological compound that binds to the g subunit and acti-
vates AMPK (Table 1) (55); however, it does not bind to 
the nucleotide-binding sites but next to them (56).

To avoid ambiguity, it has to be stressed that different 
nomenclatures are in use for AICAR (a nucleoside) and 
ZMP (a nucleotide). Indeed, confusingly, different re-
search fields have adopted different nomenclatures. Thus, 
AICAR is sometimes used to denote the nucleotide form 
ZMP (57–63). However, in the vast majority of research 
literature on AMPK, the term AICAR (aka Acadesine) 
(64) refers to the non-phosphorylated precursor (nucleo-
side) of ZMP (16, 18, 53). ZMP (65, 66) has also been 
referred to as AICAR-monophosphate (37, 67), AICA-
ribotide (68, 69), Acadesine 5’-monophosphate (64), as 
well as a Z-nucleotide (66, 70). Correspondingly, AICAR 
can be referred to as Z-nucleoside, Z-riboside, and AICA-
riboside (28, 59, 61, 63, 66, 69). The letter Z denotes 
5-amino-4-imidazolecarboxamide (AICA, Z-base) based 
on the nomenclature for 5-amino-4-imidazolecarbox-
amide (Z) nucleotides established in 1980s (65, 66, 70). 
Here we will follow the convention of the AMPK field 
and we will strictly use ZMP for the nucleotide and 
AICAR for the corresponding nucleoside.

The second group of AMPK activators comprises di-
rect activators that bind outside the AMP-binding sites 
(Table 1), such as A-769662 (25, 71) and salicylate (31). 
AICAR (as ZMP), A-769662, and salicylate activate 
AMPK allosterically and by stimulating phosphorylation 
and/or inhibiting dephosphorylation of Thr172 (25, 31, 
41, 47, 53, 72). However, while ZMP binds to the AMP-
binding sites on the g subunit (54), A-769662 and salicy-
late bind to a specific pocket between the a and b 
subunits termed the allosteric drug and metabolite 
(ADaM) site (73). Other compounds that activate AMPK 
by binding to this site include MK-8722 (74) and PF-739 
(75) (Table 1).

The third group comprises indirect activators, which 
activate AMPK by inhibiting energy metabolism or by 
increasing intracellular Ca2+ concentrations (Table 1). 
Inhibitors of energy metabolism increase the AMP:ATP 
ratio, which results in AMP-stimulated AMPK activation 
via the g subunit (47). An increase in the AMP:ATP ratio 
underlies or at least contributes to AMPK activation by 
anti-diabetic drugs metformin and canagliflozin, which 
inhibit complex I of the respiratory chain (76–80), as well 
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Table 1. Direct and indirect pharmacological AMPK activators. ADaM site: allosteric drug and metabolite site.

Group Pharmacological activator Chemical structure Site of action (comments)

Direct activators that 
bind to or close to the 
AMP-binding site

AICAR AMPK: AMP-binding site

C2 AMPK: close to the AMP-binding site

Direct activators that 
bind outside the  
AMP-binding site

A-769662 AMPK: ADaM site

Salicylate AMPK: ADaM site

MK-8722 AMPK: ADaM site

PF-739 AMPK: ADaM site

Indirect activators

Metformin Mitochondria (inhibits mitochondrial  
respiration and increases the AMP:ATP ratio) 

Canagliflozin Mitochondria (inhibits mitochondrial  
respiration and increases the AMP:ATP ratio)

2-deoxyglucose Glycolysis (inhibits glycolysis and increases 
the AMP:ATP ratio)

Dinitrophenol Mitochondria (uncouples mitochondria and 
increases the AMP:ATP ratio)

A23187 Plasma and organelle membranes (increases 
intracellular [Ca2+])
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as experimental compounds, such as 2-deoxyglucose, 
which inhibits glycolysis, and dinitrophenol, which un-
couples mitochondria (47). Other indirect AMPK activa-
tors, such as Ca2+ ionophore A23187, increase intracel-
lular Ca2+ concentrations, thus leading to AMPK 
activation via Ca2+/calmodulin-dependent protein kinase 
kinase 2 (47–50). Some compounds act by more than one 
mechanism. For instance, salicylate is a direct AMPK 
activator (31) as well as a mitochondrial uncoupler (81) 
and inhibitor of ATIC (32).

Once activated, AMPK stimulates ATP-generating 
catabolic processes and inhibits ATP-consuming ana-
bolic processes (38, 41). In rat skeletal muscles, activation 
of AMPK with AICAR increases glucose uptake and 
fatty acid oxidation (19, 82–84). However, it should be 
noted that effects of AICAR depend on the nutritional 
state as well as muscle (fibre) type, AICAR being less ef-
fective AMPK activator in oxidative than glycolytic mus-
cles (22, 83, 85). Activation of AMPK and increase in 
glucose uptake after treatment with AICAR have also 
been observed in skeletal muscles of insulin-resistant 
obese rats (86) and human subjects with type 2 diabetes 
(87). Further, AICAR suppresses endogenous glucose pro-
duction and decreases plasma triglycerides and fatty acids 
in insulin-resistant obese rats (86). Similarly, administra-
tion of AICAR in subjects with type 2 diabetes reduces 
hepatic glucose output and suppresses lipolysis, thus re-
ducing plasma glucose and free fatty acid concentrations 
(88). However, beneficial effects on glucose homeostasis 
were not paralleled by improvements in lipid profile in all 
experimental models (89). Finally, activation of AMPK 
probably underlies increased insulin sensitivity after mus-
cle contraction or exercise (90). Taken together, these and 
many other studies (19–24) suggest that pharmacological 
activators of AMPK could be used in the fight against 
insulin resistance and type 2 diabetes (16, 17). 

Most experimental AMPK activators have one or more 
shortcomings that prevent them from being used as clin-
ical treatments for insulin resistance and type 2 diabetes 
(91). For example, AICAR has off-target effects, including 
modulation of other AMP-sensitive enzymes, such as 
fructose-1,6-bisphosphatase (92) and glycogen phosphor-
ylase (93), and poor oral bioavailability (28). Notably, 
human studies demonstrated that even intravenous infu-
sion of AICAR results in plasma concentrations (~0.16–
0.18 mM) that are below the threshold for activation of 
AMPK in skeletal muscle (88, 94). A-769662 also shows 
poor oral bioavailability (71) as well as off-target effects, 
notably inhibition of Na+/K+-ATPase (95). Finally, 
A-769662 and several other AMPK activators that bind 
to the ADaM site, preferentially activate the b1-containing 
AMPK complexes (18, 25). This makes them less effective 
AMPK activators in tissues that express predominantly 
the b2-containing AMPK complexes (75), which includes 
skeletal muscle (26, 27).

Intracellular metabolism of AICAR  
and ZMP 

As well as a pharmacological AMPK activator, AICAR 
is an endogenous purine precursor of ZMP (61, 96–101). 
AICAR enters the cell via nucleoside transporters (102–
105) and is converted to ZMP (AICAR-monophosphate) 
by adenosine kinase (53, 66). As well as from AICAR, 
ZMP can be synthesized from AICA, an adenine ana-
logue (37, 70, 106). Following uptake into the cell, AICA 
is converted to ZMP in the reaction catalysed by adenine 
phosphoribosyltransferase (APRTase), thus mimicking 
conversion of adenine to the AMP in the salvage pathway 
of purine synthesis (37, 70). 

Once ZMP is formed, it likely has four possible fates. 
First, it can be phosphorylated to ZDP and/or ZTP (61, 
66, 107, 108). Second, ZMP can be dephosphorylated 
back to AICAR in a reaction catalysed by 5’-nucleotidase 
(61, 107). AICA (109) and AICAR (96, 97, 99) are mea-
surable in urine, indicating that dephosphorylation of 
ZMP is important under physiological conditions. Third, 
some evidence suggests that ZMP can be converted back 
to N-succinyl-5-aminoimidazole-4-carboxamide ribo-
nucleotide (SAICAR or sZMP) by adenylosuccinate lyase 
(66). Finally, ZMP can be converted to IMP by ATIC in 
the last two steps of the de novo purine synthesis pathway 
(Figure 1). 

The physiological role of ATIC 

ATIC, encoded by the ATIC gene (also known as the 
PURH gene), is a bifunctional enzyme responsible for the 
catalysis of the last two steps in the de novo purine bio-
synthesis, i.e. conversion of ZMP to IMP. ZMP is first 
formylated to formyl-AICAR (FAICAR) by AICAR for-
myltransferase (AICARFT) which uses N10-formyl tetra-
hydrofolate (10-CHO-THF) as the formyl donor and 
then FAICAR is converted to IMP by IMP cyclohydro-
lase (IMPCH; also known as inosinicase) (110, 111). 

ATIC was first isolated by Flaks et al. in 1957 from 
chicken (110). In 1991, Ni et al. cloned and sequenced 
chicken ATIC cDNA, which was the first eukaryotic 
ATIC cDNA to be cloned (112). Human ATIC cDNA 
was cloned and sequenced a few years later (113–115). 
Cloning of ATIC cDNA enabled the use of the site-di-
rected mutagenesis and production of large quantities of 
easily purifiable recombinant ATIC protein in bacterial 
expression systems, which opened the door for mechanis-
tic and structural studies. Chicken ATIC was also the first 
ATIC with a determined protein structure. The structure 
was determined by Greasley et al. in 2001 (116). This and 
other ATIC structures that followed, including the struc-
ture of human ATIC (117), advanced the understanding 
of the mechanism of action of ATIC and existing ATIC 
inhibitors and aided in the design of more potent and 
specific ATIC inhibitors (36, 118–121).



ATIC between antirheumatic drugs and muscle energy metabolism	 Klemen Dolinar et al.

Period biol, Vol 121–122, No 3–4, 2020.	 133

Under physiological conditions, Z-nucleotides and 
nucleosides are present only in low intracellular concen-
trations (61, 70). Indeed, even during treatment with low 
AICAR concentrations ZMP can remain below detection 
level (30). However, pharmacological inhibition of ATIC 
promotes intracellular accumulation of ZMP (29, 30, 37, 
58, 122). Further, deficiency of ATIC in humans results 
in marked intracellular accumulation of ZMP and high 
urinary concentrations of AICAR (AICA-ribosiduria) 
(61, 123), which highlights that ATIC is essential for nor-
mal ZMP and AICAR turnover. Indeed, deficiency of 
ATIC in humans leads to severe phenotype, characterized 
by blindness, mental retardation, epilepsy, and dysmor-
phia, underlining the physiological importance of ATIC 
(61). Increased intracellular concentrations of ZTP were 
also observed in subjects with the Lesch-Nyhan syn-
drome, which is characterized by deficient salvage path-
way of purine synthesis, and 5-phosphoribosyl-1-pyro-

phosphate synthetase (Figure 1) overactivity (70), which 
both increase flux through the de novo pathway. Taken 
together, these studies show that increases in Z-nucleotide 
concentrations can be expected when ATIC function is 
suppressed or activity of the de novo pathway is markedly 
increased.

De novo purine synthesis and ATIC in 
skeletal muscle

ATIC is expressed in cultured skeletal muscle cells and 
skeletal muscle tissue (30, 104, 115, 124). Further, the de 
novo purine synthesis pathway is active in cultured skel-
etal muscle cells (125–128) as well as skeletal muscle (125, 
129, 130), indicating ATIC is functionally important for 
muscle physiology. Treatment with exogenous AICAR in 
dogs results in marked increase in muscle IMP concentra-
tions (59), which again indicates that ATIC is functional 

Figure 1. De novo purine biosynthesis and AMPK activation. Full arrows indicate enzymatic reactions. Enzymatic activity and the gene encod-
ing this enzymatic activity (in parentheses) are indicated for each enzymatic reaction. Intermediates: PRPP: 5-phosphoribosyl-1-pyrophosphate, 
PRA: phosphoribosylamine, GAR: glycinamide ribonucleotide, FGAR: formylglycinamide ribonucleotide, FGAM: formylglycinamidine ribo-
nucleotide, AIR: 5-aminoimidazole ribonucleotide, CAIR: carboxyaminoimidazole ribonucleotide, SAICAR: N-succinyl-5-aminoimidazole-
4-carboxamide ribonucleotide, ZMP: 5-aminoimidazole-4-carboxamide ribonucleotide, FAICAR: 5-formaminoimidazole-4-carboxamide ri-
bonucleotide, IMP: inosine monophosphate, ADS: adenylosuccinate, AMP: adenosine monophosphate, XMP: xanthosine monophosphate, GMP: 
guanosine monophosphate, THF: tetrahydrofolate, AICAR: 5-amino-4-imidazolecarboxamide riboside. Enzymes: GPAT: glutamine phospho-
ribosylpyrophosphate amidotransferase, GARS: glycinamide ribonucleotide synthetase, GART: glycinamide ribonucleotide formyltransferase, 
FGAMS: formylglycinamidine ribonucleotide synthase; AIRS: aminoimidazole ribonucleotide synthetase, AIRC: aminoimidazole ribonucleotide 
carboxylase, SAICARS: succinylaminoimidazolecarboxamide ribonucleotide synthetase, ADSL: adenylosuccinate lyase, AICARFT: 5-amino-
imidazole-4-carboxamide ribonucleotide formyltransferase, IMPCH: IMP cyclohydrolase, ADSS: adenylosuccinate synthetase, IMPDH: IMP 
dehydrogenase, GMPS: GMP synthetase, ADK: adenosine kinase, DHFR: dihydrofolate reductase, SHMT: serine hydroxymethyltransferase, 
MTHFD: methylenetetrahydrofolate dehydrogenase; MTHFC: methenyltetrahydrofolate cyclohydrolase; AMPK: AMP-activated protein kinase.
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in skeletal muscle. According to measurements in rat skel-
etal muscle, 0.3–1% of the total adenine nucleotide pool 
is turned over per hour (131). However, the extent to 
which purines are synthesized via the de novo pathway 
depends also on activity of the salvage pathway, which 
suppresses de novo synthesis (132). In skeletal muscle, de 
novo synthesis is thought to be particularly important 
after contractions, which result in a massive loss of ade-
nine nucleotides from muscle into the bloodstream (133). 

ATIC as an entry point to modulate 
energy metabolism via AMPK in skeletal 
muscle?

ATIC is directly or indirectly suppressed by several 
antirheumatic drugs (Table 2): methotrexate, sulfasala-
zine, non-steroidal antirheumatic drugs (NSAID), and 
azathioprine. Interestingly, folinic acid (leucovorin), 
which is used to reduce methotrexate toxicity, also inhib-
its ATIC (134). While all these drugs have several other 
targets, notably dihydrofolate reductase in the case of 
methotrexate and cyclooxigenases in the case of NSAID, 
suppression of ATIC is thought to be particularly impor-
tant for antirheumatic actions of methotrexate and sul-
fasalazine (57, 122, 135, 136). Methotrexate and sul-
fasalazine are especially interesting because they are 
widely used for chronic treatment of rheumatic diseases. 

Antirheumatic treatment reduces the risk of diabetes 
in subjects with rheumatoid arthritis or psoriasis (7). Sup-
pression of inflammation likely represents one mechanism 
that underlies metabolic improvements with antirheu-
matic treatment (144). However, direct metabolic effects 
of antirheumatic drugs could also contribute. Indeed, 
while all drugs used for treatment of inflammatory rheu-
matic diseases suppress inflammation and immune func-
tion, they are not all equally effective at reducing the risk 
of diabetes (7, 8). The most effective seem to be inhibitors 
of tumour necrosis factor-a (TNF-a) and hydroxychlo-
roquine (7, 8, 145), neither of which acts via ATIC. 

Dysregulated TNF-a signalling plays a major role in 
pathogenesis of rheumatic diseases and its suppression with 
biologicals, such as etanercept and infliximab, effectively 
suppresses their progression (146, 147). Infusion of TNF-a 
opposes insulin-stimulated glucose disposal in humans 
(148, 149). It is therefore not surprising that suppression of 
TNF-a in rheumatic patients protects against diabetes (7, 
8). Hydroxychloroquine is an antirheumatic and antima-
larial drug that has recently been in focus of intense research 
efforts since it suppresses severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2) in vitro (150, 151) and might 
be useful for treatment of coronavirus disease-19 (COV-
ID-19), although its clinical effectiveness needs to be veri-
fied (152–157). Use of hydroxychloroquine in rheumatic 
patients has been linked to improvements in metabolic 
status and protection against diabetes (158). Mechanism of 
action of hydroxychloroquine involves inhibition of lyso-

somal activity, autophagy, and Toll-like receptor signalling, 
but how these effects lead to improvements in metabolic 
homeostasis has not been established (159). 

Although less potent as regards metabolic actions, 
methotrexate has also been rather consistently linked with 
at least mild improvements in glucose homeostasis and/or 
protection against diabetes (Table 3). Methotrexate (ame-
thopterin) is a folate antagonist that was first used for treat-
ment of cancer (160). Anticancer effects of high doses of 
methotrexate, which may lead to peak plasma concentra-
tions as high as 1000 μM (or more) (161), are thought to 
be the result of inhibition of dihydrofolate reductase, which 
suppresses thymidylate and consequently DNA synthesis, 
although inhibition of ATIC and other enzymes also con-
tributes (34). In rheumatology, low-dose methotrexate is 
used (63, 96, 146, 162), which produces peak plasma con-
centrations below 1 μM (~100–500 nM) (163–165). Dur-
ing treatment with low-dose methotrexate, inhibition of 
ATIC is thought to be particularly important for antirheu-
matic effects of methotrexate (57, 58, 166).  

Sulfasalazine, a conjugate of 5-aminosalicylic acid and 
sulfapyridine, is another widely used antirheumatic drug 
(146). However, compared with methotrexate, relatively 
few studies examined metabolic effects of sulfasalazine. 
Molecular mechanisms underlying its anti-inflammatory 
and immunosuppressive effects are complex (167, 168), 
involving modulation of various cellular processes, in-
cluding inhibition of ATIC (32, 122). Interestingly, sul-
fasalazine has been suggested to reduce blood glucose 
concentrations in patients with type 2 diabetes (169). 
Further, animal studies suggest sulfasalazine may protect 
against diabetic retinopathy and neuropathy (167, 168).

An important question is whether antirheumatic 
drugs, such as methotrexate and sulfasalazine, can exert 
protective metabolic effects by inhibiting ATIC and pro-
moting AMPK activation in skeletal muscle. There are at 
least four lines of evidence directly or indirectly support-
ing this notion. First, methotrexate was shown to activate 
AMPK or enhance AICAR-stimulated AMPK activation 
in cultured cancer and skeletal muscle cells (29, 30, 104). 
Further, methotrexate enhances AICAR-stimulated 
AMPK activation and downstream metabolic effects in 
isolated mouse skeletal muscle (30). Second, in vivo evi-
dence supports the notion that methotrexate can activate 
AMPK in tissues. Indeed, methotrexate increased phos-
phorylation of AMPK not only in cultured human um-
bilical vascular endothelial cells, but also in aorta in mice 
in vivo (194). Third, in the db/db mice methotrexate up-
regulated GLUT4 in skeletal muscle and reduced serum 
glucose and insulin concentrations (174), which is consis-
tent with muscle AMPK activation. Finally, Cpd14, a new 
experimental ATIC inhibitor, activates AMPK and im-
proves glucose homeostasis in obese mice (36). 

As mentioned above, ATIC is not the only pharmaco-
logical target of methotrexate. Other targets are dihydro-
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Table 2. Overview of antirheumatic drugs that inhibit ATIC. Ki values may depend on the enzyme used in the assay (human or chicken) 
and on the assay conditions. Source of the enzyme is indicated in the table while assay conditions can be found in the references. References are 
listed chronologically. Abbreviations: DMARD – disease modifying antirheumatic drugs; NSAID – non-steroidal anti-inflammatory (anti-
rheumatic) drugs; PBMC – peripheral blood mononuclear cell; 7-OH-MTX - 7-hydroxy-MTX (a major metabolite of MTX). 

Class Drug Inhibition of ATIC activity Refs.

DMARD Methotrexate (MTX), amethopterin MTX increases urinary AICA excretion in patients with  
leukemia.

(137, 138)

MTX-pentaglutamate is >2,000-fold more effective inhibitor of 
ATIC than MTX-monoglutamate.

(34, 35)

MTX is a non-competitive inhibitor, while polyglutamylated MTX 
acts as a competitive inhibitor; polyglutamylated MTX inhibits 
chicken liver ATIC with Ki of 3.15 µM.

(33)

MTX produces ZMP accumulation in cultured MCF-7 cells. (139)

MTX (in low concentrations) produces ZMP accumulation in 
malignant lymphoblasts.

(140)

7-OH-MTX inhibits human ATIC (from MCF-7 breast cancer 
cells) with Ki of 0.03-180 µM (Ki depends on the folate cofactor 
and glutamylation of 7-OH-MTX).

(141)

MTX inhibits chicken liver ATIC with Ki of 0.11 mM. (32)

Treatment with MTX increases ZMP concentration in murine 
splenocytes (in vivo).

(58)

7-OH-MTX inhibits chicken liver ATIC with Ki of 133 µM. (142)

MTX increases urinary AICA excretion in patients with psoriasis. (69)

MTX increases urinary AICA excretion in patients with rheumatoid 
arthritis.

(63)

MTX enhances ZMP accumulation in AICAR-treated  
MDA-MB-231 cells.

(29)

MTX enhances ZMP accumulation in AICAR-treated skeletal 
muscle cells in vitro.

(30)

Sulfasalazine (SSZ), sulphasalazine, 
alazosulfapyridine, salicylazosulfapyridine, 
salazopyrin, azulfidine, sulfazine, azopyrin

Sulfasalazine inhibits chicken liver ATIC with Ki of 22 µM. (32)

Sulfasalazine increases ZMP content in murine splenocytes  
(in vivo).

(122)

Azathioprine, 
imuran

Azathioprine and its metabolite thioinosinic acid (TIMP) 
are competitive inhibitors of ATIC from chicken liver (Ki for 
azathioprine and TIMP are 120 and 39 µM, respectively) and 
mouse PBMCs (Ki for azathioprine and TIMP are 90 and  
110 µM, respectively).

(143)

NSAID Aspirin Ki = 11 mM (chicken liver ATIC) (32)

Ibuprofen Chicken liver ATIC is inhibited by 14–22% with 2 mM  
ibuprofen.

(143)

Ki = 1.5 mM (chicken liver ATIC) (32)

Indomethacin Ki = 0.35 mM (chicken liver ATIC) (32)

Mefenamic acid Ki = 3.8 mM (chicken liver ATIC) (32)

Naproxen Chicken liver ATIC inhibited by 32–46% with 2 mM naproxen. (143)

Ki = 0.99 mM, (chicken liver ATIC) (32)

Salicylic acid Ki = 1.1 mM (chicken liver ATIC) (32)

Sulindac Ki = 0.13 mM (chicken liver ATIC) (32)

Folate Leucovorin, 
folinic acid, 
5-formyltetrahydrofolic acid

Leucovorin pentaglutamate inhibits human ATIC (from MCF7 
cells) with Ki of 3 µM.

(134)
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Table 3. Metabolic effects of antirheumatic drugs that inhibit ATIC. References are listed chronologically. Abbreviations: RA - rheuma-
toid arthritis; PsA - psoriatic arthritis; T2D - type 2 diabetes.

Drug Metabolic effects Refs.

Methotrexate 
(MTX)

MTX decreased glycogen content of the liver and glucose level and level of nonesterified fatty acids in the liver 
perfusate (experiment with isolated perfused rat liver).

(170)

MTX activated glucose release from endogenous glycogen (glycogenolysis) (experiment with isolated perfused rat liver). (171)

MTX reduced risk of metabolic syndrome in RA patients older than 60 years. (172)

MTX did not significantly reduce HbA1c concentration in diabetes patients with RA.
(However, the study was not powered to detect a difference in MTX.)

(145)

MTX treatment of RA or PsA was linked to reduced risk of developing diabetes. (7)

Obese mice treated with MTX displayed reduced serum levels of insulin and glucose, and an improvement of 
insulin sensitivity.

(173)

MTX increased skeletal muscle GLUT4 mRNA expression and GLUT4 protein level and reduced serum glucose 
and insulin levels in diabetic (db/db) mice.

(174)

Long-term MTX therapy was associated with a lower rate of dyslipidemia. (175)

MTX therapy and MTX-polyglutamates were associated with lower concentrations of HbA1c in patients with RA. (11)

MTX reduced concentration of HbA1c in patients with RA or PsA, but urinary AICAR or erythrocyte ZMP were 
not increased.

(96)

MTX numerically (but non-significantly) reduced the risk of diabetes in RA patients. (8)

MTX in PsA patients did not appear to have hyperglycaemic effects (there were no significant changes between 
HbA1c levels before and after MTX therapy).

(176)

Sulfasalazine 
(SSZ)

SZZ was linked to increased risk of hypoglycaemia and improved glycaemic control in T2D. (169)

SSZ prevented loss of retinal ganglion cells and degeneration of retinal capillaries in diabetic (streptozocin-treated) 
rats, indicating it protects against diabetic retinopathy.

(167)

SSZ blocked development of tactile allodynia and ameliorated mechanical hyperalgesia in diabetic (streptozocin-
treated) rats, indicating it protects against diabetic neuropathy.

(168)

Leucovorin Leucovorin reduced glucose uptake and storage of glycogen in isolated rat diaphragm. (177)

Naproxen Naproxen reduced serum glucose levels and increased hepatic glycogen and serum insulin levels in normal and dia-
betic (streptozocin-treated) mice. Naproxen also reduced weight, serum glucose and resistin levels, while it elevated 
serum insulin, C-peptide, and adiponectin levels in obese mice. 

(178)

Salicylate Salicylate reduced glycosuria in a patient with diabetes mellitus. (179)

Salicylate reduced glycosuria and blood glucose concentrations in diabetic (alloxan-treated) rats. (180)

Salicylate reduced glycosuria and hyperglycaemia in rats treated with cortisone. (181)

Salicylate reduced liver glycogen content in mice. (182)

Salicylate caused hyperglycaemia in rats. (183)

Salicylate increased glucose uptake in perfused rat hearts. (184)

Salicylate increased plasma insulin levels and reduced plasma glucose levels in mild diabetic patients. Salicylate also 
improved glucose tolerance in these patients. 

(185)

Salicylate inhibited the development of diabetic retinopathy. (167)

Salicylate prevented fat-induced insulin resistance in rats: salicylate prevented lipid-induced decrease in whole body 
and skeletal muscle glucose uptake, skeletal muscle glycolysis and glycogen synthesis.

(186)

Salicylate was shown to be a direct AMPK activator. (31)

Salsalate (a prodrug of salicylate) reduced HbA1c in diabetic patients. Fasting glucose and triglyceride levels de-
creased with salsalate, but weight and low-density lipoprotein cholesterol levels increased.

(187)

Salicylate activated AMPK, stimulated glucose uptake and decreased ATP, phosphocreatine, and glycogen contents 
in rat skeletal muscles. 

(188)

Salicylate uncoupled mitochondria and improved glucose homeostasis in mice independently of AMPK. (81)

Salicylate attenuated development of diabetic nephropathy in diabetic mice. (189)
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folate reductase, methylenetetrahydrofolate reductase, thy-
midylate synthase, as well as glycinamide ribonucleotide 
formyltransferase (GART) (34, 57). Notably, GART is an 
enzyme upstream of ATIC in the de novo pathway of pu-
rine synthesis (Figure 1), whose inhibition would therefore 
tend to suppress de novo synthesis, reduce endogenous in-
tracellular ZMP levels (140), and AMPK activity. In its 
native (monoglutamate) form methotrexate is approxi-
mately equally effective inhibitor of GART and ATIC (34). 
However, once inside the cell methotrexate is glutamylated 
and methotrexate-polyglutamates are much more effective 
ATIC inhibitors than GART inhibitors (34). Due to for-
mation of methotrexate-polyglutamates, exposure to low 
concentrations of methotrexate primarily inhibits ATIC, 
thus leading to intracellular accumulation of endogenous 
ZMP (140). Consistent with this notion, low-dose metho-
trexate, which is used for treatment of rheumatic diseases, 
produces intracellular accumulation of ZMP in mice (58) 
and increases urinary excretion of ZMP metabolite AICA 
in subjects with rheumatoid or psoriatic arthritis (63, 69). 
In contrast, exposure to high concentrations of methotrex-
ate inhibits both enzymes, which blocks ZMP synthesis 
and accumulation despite ATIC inhibition (140). Under 
these conditions, methotrexate alone does not activate 
AMPK, but it effectively enhances AMPK activation by 
exogenous AICAR (29, 30, 104). 

Finally, it needs to be emphasized that methotrexate, 
even when used in low dosages, might lead to toxicity, 
including suppression of the bone marrow, loss of hair, 
and liver fibrosis (57, 195, 196). In addition, therapy with 
methotrexate may lead to a small increase in the risk of 
skin cancer (196). Although adverse effects can be con-
trolled to some extent by administration of folic or fo-
linic acid (leucovorin) (196–198), toxicity of methotrexate 
or related compounds would be a limiting factor in treat-
ment of metabolic disorders. Nevertheless, patients who 
need methotrexate to treat their rheumatic disease might 
benefit from its metabolic effects. 

CONCLUSIONS AND PERSPECTIVES

In summary, antirheumatic drugs that inhibit ATIC, 
such as methotrexate, might exert direct metabolic effects 

by promoting AMPK activation in skeletal muscle and 
other tissues. Activation of AMPK would tend to benefit 
patients with inflammatory rheumatic diseases by amelio-
rating metabolic dysregulation. Further, AMPK activation 
was linked to suppression of inflammation (199, 200), in-
dicating AMPK might be important for anti-inflammato-
ry and immunosuppressive effects of these drugs. Several 
effective anti-inflammatory and immunosuppressive drugs 
promote metabolic dysregulation, especially when used in 
combination (8, 10, 11). In contrast, antirheumatic drugs 
that also inhibit ATIC seem to be beneficial for controlling 
both inflammation and metabolic dysregulation. Develop-
ment of new compounds with such characteristics might 
therefore be particularly relevant for patients with chronic 
inflammatory diseases and increased risk of metabolic dys-
regulation, including type 2 diabetes. Finally, since chron-
ic low-grade inflammation plays a role in obesity and type 
2 diabetes (18, 201), compounds that simultaneously op-
pose both pathological processes might also be useful for 
treatment of metabolic diseases. 
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