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Silencing of HN1L suppresses the proliferation  
and migration of cancer cells

Abstract

Background and purpose: HN1L is a member of the HN1 gene fam-
ily and shares about 30% similarity with HN1 which is another member 
of the family on the primary protein sequence. Since HN1 is an important 
gene that is involved in various cellular mechanisms and also differentially 
expressed in carcinogenesis, we investigated the effect of HN1L on some 
malignant behaviors of various cancer cells.

Material and methods: Co-expression analysis, Gene Ontology enrich-
ment, and database searches were performed to predict the cellular roles of 
HN1, and to investigate its expression in cancers and their corresponding 
normal tissues. Western blotting and Real-Time PCR were used to compare 
the expression of HN1L in the normal prostate cells and prostate cancer cells. 
Cell proliferation and migration assays were used to investigate the effects of 
HN1L depletion on cell proliferation and migration.  

Results: The results of co-expression and Gene Ontology enrichment anal-
yses showed that HN1L is co-expressed with DNA replication and DNA dam-
age response/repair associated genes. The database search results revealed that 
HN1L expression increases in at least 10 diverse cancer types compared to their 
normal corresponding tissues. This result was confirmed in the prostate cancer 
cell model, experimentally. Silencing of HN1L inhibited proliferative and 
migrative behaviors of prostate, breast, colon, and cervix cancer cells.

Conclusions: HN1L probably is a novel proto-oncogene that is involved 
in the DNA metabolism-related mechanisms, and high HN1L level pro-
motes further proliferation and migration in the cancer cells.

INTRODUCTION

Hematological and neurological expressed 1‐like (HN1L) is an evo-
lutionarily conserved gene that encodes a small protein of 190 aa 

in humans (1). Although the molecular functions of HN1L in the cells 
are poorly understood, recent studies partially uncovered its cellular 
functions. HN1L has been shown to be upregulated in many human 
cancers, such as prostate, breast, hepatocellular, non-small cell lung, and 
esophageal cancers, which is significantly associated with further ma-
lignant behaviors of these cancers (2-6). HN1L contributes to the regu-
lation of cell cycle progression through controlling the cellular levels of 
some key genes such as Cyclin D1, Cyclin E1, CDK2, CDK4, CDK6, 
p53, p21, and p27 (2,5-7). Moreover, HN1L has been shown to be in-
volved in multiple signaling pathways to support cell survival and there-
by tumor development and progression, in addition to the cell cycle 
regulation. Increased HN1L level causes sustained activation of the 
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LEPR-STAT3 pathway in breast cancer stem cells and 
thereby promotes tumor development (8). Additionally, 
increased expression of HN1L also causes an increase in 
the TGF-b activity (4). It was shown that HN1L increas-
es the expression of TCF-3 and ZEB1 in an AP-2g/MET-
TL13 dependent manner and thereby induces further 
malignant behaviors in the liver cancer cells (5,6). HN1L 
also directly interacts with intracellular Ca2+ channels and 
mediates enables NAADP to activate Ca2+ release from 
the endoplasmic reticulum (9,10). 

In the present study, we sought to gain evidence of the 
effects of HN1L expression level on cell proliferation and 
migration in various cancers. The results of co-expression 
and gene ontology (GO) term enrichment analyses have 
shown that HN1L is co-expressed with DNA replication 
and DNA damage/repair associated genes. Database 
searches show increased HN1L expression in 10 different 
cancer types compared to their normal counterparts. Fur-
thermore, experimental results showed that silencing of 
HN1L represses proliferation and migration in Prostate 
Adenocarcinoma (PRAD), Breast Cancer (BRCA), Colon 
Adenocarcinoma (COAD), and Cervical Squamous Can-
cer (CESC) cells. 

Taken as a whole, our results suggested that HN1L 
may be associated with DNA metabolism-related mecha-
nisms such as DNA replication, DNA damage response/ 
repair. Furthermore, HN1L expression increases in many 
types of cancer, and elevated HN1L induces further ma-
lignant behaviors in cancer cells.

MATERIAL AND METHODS 

Bioinformatics analysis

The co-expression analysis was performed in the On-
comine database to investigate the HN1L function 
(http://oncomine.org) (11,12) as previously described 
(13,14). Only clinical samples were used in this analysis 
and the threshold was adjusted to p-value < 1E-4, fold 
change ≥ 2, and gene rank top 1%. Seven arrays met these 
criteria (Table 1) and each list was created with the top 
200 co-expressed genes. These filtered gene lists were then 
compared with each other to search genes that are repeat-
edly co-expressed in multiple arrays. Consequently, the 
genes listed commonly in at least three arrays (> 40% of 
7 arrays) were considered as genes co-expressed with 
HN1L. The HN1L co-expressed genes were analyzed in 
the web-based DAVID (http://david.abcc.ncifcrf.gov) to 
determine GO terms (15,16). UALCAN, a web-based 
platform that is used for accessing data deposited in The 
Cancer Genome Atlas (TCGA) project for various cancer 
types, was used to compare the expression of HN1L in 
tumors and their corresponding normal tissues (17).

Cell lines and culture conditions

PC-3, DU145, LNCaP, MCF-7, CaCo-2, and HeLa 
cells were obtained from the American Type Culture Col-
lection (ATCC, Manassas, VA) and cultured in 
RPMI1640 or DMEM F/12 (Invitrogen, USA) supple-
mented with 5–10% fetal bovine serum (FBS). RWPE-1 

Table 1. Arrays used in co-expression analysis, HN1L co-expressed genes, and their functional enrichments. HN1L is co-expressed 
with DNA replication and DNA damage response/repair associated genes. The co-expression analysis and functional enrichments were performed 
using the Oncomine, and David, respectively (11,12,15,16). 

Used Arrays

Kang Leukemia (23), Bourquin Leukemia (24), Zhao Renal (25), Bhojwani Leukemia (26), Bhojwani Leukemia 2 (27), Iacobuzio-Donahue 
Pancreas 2 (28), Ishikawa Pancreas (29)

HN1L co-expressed genes

DYNLL1, CCT5, PAICS, RPA1, RUVBL1, PYCARD, PROSC, ANXA4, DPP3, CEP63, KRCC1, SMARCAL1, TRIM14, HTATIP2, 
TST, HEMK1, DENND2D, ORC3L, GBAP1, SAC3D1, FEN1, TMEM106C, BTN3A2, SRR, BRCA1, UBE2T, TMCO6, BCKDHB, 

RAD51C, ACADM, PDSS2, RAD50, TTC15, ACYP1, HIBCH, RBM8A, RNF170, EHBP1, HERC4, BICD1, ARFIP1, ZNF280D, 
PTER, ATR, RRM2, HMMR, TOP2A, CENPM

Functional enrichment of HN1L co-expressed genes

GO Term P-value Fold FDR Genes

0006259 
DNA metabolic process <10E-4 >9 3.35E-05 RPA1, RAD51C, ORC3L, RRM2, SMARCAL, RUVBL1, 

ATR, TOP2A, RAD50, FEN1, BRCA1, HEMK1

0006260 
DNA replication <10E-4 >16 5.35E-04 RPA1, ORC3L, RRM2, ATR, TOP2A, RAD50, FEN1, 

BRCA1

0006974
 Response to DNA damage stimulus <10E-4 >8 0.046019 RPA1, RAD51C, ATR, CEP63, TOP2A, RAD50, FEN1, 

BRCA1

0006281
DNA repair <10E-4 >9 0.094593 RPA1, RAD51C, ATR, TOP2A, RAD50, FEN1, BRCA1

fold –  fold change; GO – gene ontology; FDR – false discovery rate
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cells were kindly provided by Prof. Dr. Kemal Sami Kork-
maz from Ege University, Department of Bioengineering- 
Turkey and were propagated using keratinocyte – serum 
free growth medium (K-SFM) (Invitrogen, USA) as rec-
ommended. All cells were propagated in a 37 °C incuba-
tor in a humidified atmosphere of 5% CO2, and the 
experiments were performed in the logarithmic growth 
phase. 

Antibodies, siRNAs, and transfections

HN1L and b-Actin antibodies were purchased from 
Bioss antibodies (Beijing, China) and Cell Signaling 
Technology (Danvers, MA, USA), respectively. Non-
specific (NS) (Catalog No: SIC001) and HN1L specific 
(Catalog No: EHU228371) siRNAs were purchased from 
Sigma (St. Louis, MO, USA). siRNA transfections were 
performed using FuGENE HD (Promega-Madison, 
USA), as described in previous studies (18-21). Briefly; 
cells were seeded into 60 mm cell culture plates one day 
before transfection. On the next day, the transfection mix 
was prepared by adding 3 µl of transfection reagent to 100 
µl of pre-warmed medium in a microcentrifuge tube. Af-
ter incubation of the medium-transfection medium mix 
for 5 min at RT, 100 pmol of NS-siRNA or HN1L siRNA 
was added and further incubated for 15 min at RT. Last-
ly, the transfection mix including siRNA, transfection 
reagent, and the medium was dropped on the cells.

RNA isolation, cDNA conversion, primer 
design, and quantitative real-time PCR

Total RNAs were isolated as described in previous stud-
ies with minor modifications (18,19). In summary, the 
RNeasy kit (Qiagen, CA) was used to isolate total RNAs 
from the cells, and the amount and purity of RNA prod-
ucts were measured by using a nanodrop. 2 µg of total 
RNA was reverse transcribed using random and anchored 
oligo dT primers by using Omniscript cDNA synthesis kit 
(Qiagen, CA). To analyse gene expression changes, quan-
titative RT-PCR was performed using a SYBR Green RT-
PCR kit and the StepOnePlus Real-Time PCR system 
(Applied Biosystems, USA). The qPCR conditions were 
set as follows: Initial denaturation at 94 °C for 4 min, 
followed 40 cycles of denaturation at 94 °C for 30 sec, 
annealing at 60 °C for 30 sec. and extension at 72 °C for 
1 min, and a final extension step at 72 °C for 2 min. The 
abundance of each amplified cDNA was calculated using 
the relative quantification method and GAPDH was used 
as the housekeeping gene, as described previously (18,19). 
The primers used were as follows; HN1L forward: 
ACACCCAAACAAACCCAAGG, HN1L reverse: 
GACCTTGTTGTGAGAGCGAG, GAPDH forward: 
CATTGCCCTCAACGACCACTTT, and GAPDH re-
verse: GGTGGTCCAGGGGTCTTACTCC which were 
designed using Primer3 primer design tool (https://bio-
info.ut.ee/primer3/).

Immunoblotting 

The cells were lysed in ice-cold RIPA modified buffer 
[10 mM Tris-Cl (pH 8.0), 1% Triton X-100, 0.1% SDS, 
0.1% Na deoxycholate, 1 mM EDTA, 1 mM EGTA, 140 
mM NaCl] including complete protease and phosphatase 
inhibitor cocktails. Proteins were separated on 12% SDS–
polyacrylamide gels and then were transferred onto 
PVDF membranes using a wet transfer blotter. The mem-
branes were blocked using 5% skim milk which was pre-
pared in TBS-T and then primary antibody incubations 
were performed at room temperature (RT) for 1 hour on 
a shaker. The membranes were washed in TBS-T and then 
secondary antibodies which HRP conjugated were added 
on the membranes and further incubated for 1 hour, at 
RT. After washing of the membranes in TBS-T, they were 
developed using ECL Prime (GE Healthcare - Ingham-
shire, UK) for 5 min and were photographed using X-ray 
films in a darkroom.

Measurement of cell proliferation and 
migration

The WST-1 was used to quantify cell proliferation, as 
described previously (22). In summary, NS-siRNA or 
HN1L specific siRNA transfected cells were trypsinized 
and re-seeded in triplicates in 96-well dishes at a concen-
tration of 4×103 cells/well. For designed time points (0, 
24, 48, and 72 hours after plating of the cells), WST-1 
solution (BioVision, USA) was added at 10 μl per well and 
further incubated for 4 hours at incubator at 37 °C, 5% 
CO2. The absorbances were measured at 450 nm with a 
SpectraMax M2 microplate reader (Molecular Devices 
LLC, CA, USA) and obtained values were normalized to 
0 hour absorbances. Then, the normalized absorbances 
were converted to % values, and graphs were constructed 
using Microsoft Excel.

Cell migration was assessed by Cytoselect 96-well cell 
migration assay (Cell Biolabs Inc., San Diego, CA, USA) 
according to manufacturer recommendations. In sum-
mary, the cells were seeded in 60 mm plates and next day 
were transfected with NS-siRNA or HN1L specific siR-
NAs as described above. 48 hours after transfection, cells 
were trypsinized, counted, and seeded into upper cham-
bers containing a serum reduced medium (containing 1% 
FBS ) at a concentration of 10×103 cells/well, and 100 µl 
medium containing 10% FBS was added to the bottom 
chambers. After 24 hours incubation, migrating cells were 
detached from the underside of the membrane, lysed, and 
stained according to the manufacturer’s recommenda-
tions. Then, fluorescence intensities were measured at 480 
nm (Excitation)/520 nm (Emission) using SpectraMax 
M2 microplate reader (Molecular Devices LLC, USA). 
The relative values were obtained by comparing the fluo-
rescence values of HN1L siRNA transfected cells to NS-
siRNA transfected cells.
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The Student’s t-test was used to assess the statistical 
significance of any differences between NS and HN1L 
siRNA transfected cells, and consequently a p-value < 
0.05 was considered as significant in both proliferation 
and migration assays.

RESULTS

GO and pathway enrichment for HN1L

To investigate the probable roles of HN1L in the cells, 
GO Term enrichment analysis was performed. initially, a 

Figure 1. HN1L expression increases in cancer. (A) HN1L expression increases in PRAD, BRCA, CHOL, COAD, ESCA, LIHC, LUAD, 
LUSC, CESC, and STAD, compared to their normal corresponding tissues. Statistical values were automatically generated by the database 
by comparing normal and cancer data (17). *** p<0.0001, and ** p<0.001. The HN1L mRNA (B) and protein (C) levels are lower in RWPE-
1 normal prostate cells compared to LNCaP, PC-3, and DU145 PRAD cells. RWPE-1 is derived from the normal prostate, whereas LNCaP, 
PC-3, and DU145 cells are derived from lymph node, bone, and brain metastasis of PRAD, respectively. LNCaP is androgen-dependent 
whereas PC-3 and DU145 are androgen-independent cells. PRAD, BRCA, CHOL, COAD, ESCA, LIHC, LUAD, LUSC, CESC, and 
STAD represent Prostate Adenocarcinoma, Breast Cancer, Cholangiocarcinoma, Colon Adenocarcinoma, Esophageal Carcinoma, Liver 
Hepatocellular Carcinoma, Lung Adenocarcinoma, Lung Squamous Cell Carcinoma, Cervical Squamous Cancer, and Stomach Adenocar-
cinoma, respectively.
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co-expression analysis was performed using Oncomine 
and 49 genes were found to be co-expressed with HN1L 
in 3 or more studies (Table 1). The results of GO analysis 
of HN1L co-expressed genes with the DAVID function-
al annotation tool (GO Biological Processes) under high 
stringency conditions (p<0.0001 and fold enrichment > 
2) resulted in 4 GO categories which are “DNA meta-
bolic process”, “DNA replication”, “Response to DNA 
damage stimulus” and “DNA repair” (Table 1).

HN1L expression increases in various 
types of cancer 

UALCAN was used to compare the expression of 
HN1L in tumors and their normal corresponding tissues. 
The results have shown that HN1L expression has mean-
ingfully increased in PRAD, BRCA, COAD, CESC, 
Cholangiocarcinoma (CHOL), Esophageal Carcinoma 
(ESCA), Liver Hepatocellular Carcinoma (LIHC), Lung 
Adenocarcinoma (LUAD), Lung Squamous Cell Carci-
noma (LUSC), and Stomach Adenocarcinoma (STAD) 

compared to their normal corresponding tissues. To ver-
ify the UALCAN results, the mRNA and protein levels 
of HN1L were investigated in normal prostate and PRAD 
cell lines. Initially, we examined the HN1L mRNA level 
in a normal prostate cell line (RWPE-1) and three PRAD 
cell lines (PC-3, DU145, and LNCaP). The results have 
shown that HN1L mRNA level increases in all three 
PRAD cell lines compared to normal prostate cells, in 
accordance with database results (Figure 1b). Further-
more, we also examined HN1L protein level in normal 
prostate and PRAD cell lines to confirm whether in-
creased HN1L expression in PRAD cells is at the protein 
level or not. The results show that HN1L protein level 
increases in PRAD cells compared to normal prostate 
cells, in concordance with mRNA results (Figure 1c). 

HN1L depletion represses proliferation and 
migration in all investigated cancer cells

To investigate the effects of HN1L on cell proliferation 
and migration, the cells were transfected with NS-siRNA 

Figure 2. Silencing of HN1L represses proliferation and migration in PRAD, BRCA, COAD, and CESC cells. Transfection of HN1L 
siRNA reduced endogenous HN1L level and significantly inhibited proliferative and migrative behaviors of LNCaP (a), MCF-7 (b), CaCo-2 (c), 
and HeLa (d) cells, which represent Prostate Adenocarcinoma (PRAD), Breast Cancer (BRCA), Colon Adenocarcinoma (COAD), and Cervical 
Squamous Cancer (CESC). The Student’s t-test was used to evaluate the statistical significance and data in the graphs represent means ± standard 
deviation of three independent results. *<0.05



Lokman Varisli and Veysel Tolan	 HN1L expression increases in the cancers

60	 Period biol, Vol 124, No 1–2, 2022.

or HN1L siRNA, and the proliferative and migrative 
abilities of the cells were compared. In this experiment, 
LNCaP, MCF-7, CaCo-2, and HeLa cells were used as 
the cell models of PRAD, BRCA, COAD, and CESC, 
respectively. Transfection of HN1L siRNA efficiently sup-
pressed protein level of HN1L to 20-25%, compared to 
NS-siRNA transfected cells, in all investigated cells (Fig-
ure 2a, b, c, d). The cell proliferation results have shown 
that the proliferation rates of all investigated cells were 
markedly reduced in HN1L siRNA transfected cells com-
pared to NS-siRNA transfected cells from 48-72 hours 
onwards (p<0.05) (Figure 2a, b, c, d). The results obtained 
from the cell migration assay showed that HN1L siRNA 
transfection represses the migrative capabilities of all in-
vestigated cells compared to NS-siRNA transfected cells 
(p<0.05) (Figure 2a, b, c, d).

DISCUSSION

HN1L is a member of the HN1 gene family and en-
codes a small protein that has a Jupiter microtubule-bind-
ing domain. In previous studies, we and others have 
cloned and characterized HN1 which is another member 
of the HN1 family, in various cell models (18-21,30-33). 
We have shown that HN1 has critical roles in normal 
cellular physiology and its expression increases, in many 
types of cancer. Furthermore, we have shown that in-
creased HN1 level is associated with the malignant behav-
iors of cancer cells (18,34-38). It was shown that HN1 is 
an androgen and EGF-regulated gene (18,19). Besides, it 
was proven that it has inhibitory roles in the PI3K/AKT 
and androgen signaling in the PRAD cells (18,19). Fur-
thermore, it physically interacts with APC/b-Catenin/ 
GSK3b complex and thereby is involved in the controlling 
of b-catenin degradation mechanism (21). HN1 also in-
teracts with gamma-tubulin and is involved in the regula-
tion of centrosome organization, in advanced PRAD (20). 

Recent reports have shown that HN1L may have sim-
ilar roles with HN1 in normal and cancer cell physiology. 
In the previous studies Nong et al. (2021), and Jiao et al. 
(2021), have shown the association between decreased 
HN1L level and repressing of proliferation and migration, 
in prostate and breast cancers (3,4). The results that we 
presented here are in accordance with their results, and 
we showed that silencing of HN1L represses malignant 
behaviors not only in prostate and breast cancers but also 
in colon and cervix cancer cells. Wang et al. (2021), and 
Lei et al. (2019) reported a negative association between 
HN1L level and apoptosis (2,7). In contrast, Li et al. 
(2017) and Li et al. (2019) reported that HN1L doesn’t 
affect apoptotic processes (5,6). We couldn’t see an asso-
ciation between HN1L depletion and apoptotic induction 
in LNCaP cells (data not shown), in accordance with Li 
et al. (2017), and Li et al. (2019). On the other hand, it 
was reported that silencing of HN1L causes cell cycle ar-
rest (6,7). These reports were important to explain the 

effect of HN1L depletion on the inhibition of cell prolif-
eration. It seems that HN1L, like HN1, is involved in the 
progression of the cell cycle and the inhibition of cell 
proliferation caused by HN1L silencing may rely on cell 
cycle arrest. On the other hand, we have seen that HN1L 
is co-expressed with the genes associated with DNA me-
tabolism-related mechanisms such as DNA replication, 
DNA damage response, and repair. Indeed, increased 
expressions of many genes related to these mechanisms 
have been shown in various cancers and their association 
with malignant behaviors have already been reported (39-
42). Therefore, although the results of co-expression 
analysis generally need comprehensive experiments, our 
analysis has provided a strong starting point to uncover 
the cellular functions of HN1L in the cells. The report of 
Jiao et al., which showed HN1L interacts with HSPA9 
and up-regulates the expression of HMGB1 was also sig-
nificant to explain the effects of HN1L on migration, at 
least partly, since HMGB1 is a cytokine and has crucial 
roles in epithelial to mesenchymal transition (EMT) and 
metastasis (3). Therefore, HN1L depletion-dependent in-
hibition of cell migration may be related to the down-
regulation of HMGB1, at least partly. On the other hand, 
Nong et al., have shown that HN1L level is positively 
associated with TGF-b activity in PRAD cells, and in-
creased HN1L level promotes stem cell-like properties 
and cancer progression by targeting FOXP2 in a TGF-b 
dependent manner (4). Indeed, although TGF-b signal-
ing promotes cell cycle arrest in the normal prostate cells, 
it induces survival, migration, and invasion mechanisms 
in the PCa cells (43). However, it seems that these events 
are independent of EMT-inducing transcription factors 
such as Slug, Twist1, and Snail which are mostly under 
the control of TGF-b signaling (3). Furthermore, the role 
of HN1L as a signal transducer in the NAADP signaling 
has been reported (9). It was shown that HN1L interacts 
with Ryanodine Receptor (RYR) and thereby connects 
NAADP to Ca2+ microdomain formation on the RYR, 
and consequently enables NAADP to activate Ca2+ release 
from the endoplasmic reticulum through RYR (9,10,44). 
Although the effects of abnormal Ca2+ signaling have 
been shown in the development and progression of cancer, 
the molecular basis of these effects are not fully under-
stood (45,46). Therefore, increased HN1L dependent 
promoting of malignant behaviors in cancer cells may be 
also related to increased activation of Ca2+ signaling.

CONCLUSIONS

HN1L seems to be involved in the DNA replication 
and DNA damage response/repair mechanisms, in addi-
tion to its previously identified functions such as regula-
tion of TGF-b, LEPR-STAT3, and Ca2+ signaling. Fur-
thermore, the results presented in this study indicated 
that HN1L expression increases in many types of cancer, 
and elevated HN1L level is associated with malignant 
behaviors in cancer cells.
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