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Why 3D in vitro cancer models are the future  
of cancer research?

Abstract

Tumors are three-dimensional (3D) entities characterized by complex 
structural architecture which is necessary for adequate intercellular, intra-
cellular and cell-to-matrix interactions among the aberrant cells in cancer. 
In the field of cancer research, 2D cell cultures are traditionally used for 
decades in the majority of experiments. The reasons for this are the vast 
benefits these models provide, including simplicity and cost effectiveness. 
However, it is now known that these models are exposed to much higher 
stiffness, they lose physiological extracellular matrix (ECM) on artificial 
plastic surfaces as well as differentiation, polarization and cell-cell com-
munication. This leads to the loss of crucial cellular signaling pathways and 
changes in cell responses to stimuli when compared to in vivo conditions. 
Moreover, they cannot adequately mimic the complexity and dynamic in-
teractions of the tumor microenvironment (TME) which is of great impor-
tance in anticancer drug treatments. 3D models seem more biomimetic 
compared to 2D cell monolayers because they offer the opportunity to mod-
el the cancer mass together with its environment which seems the key factor 
in promoting and directing cancer invasion. 3D cell culture with its ad-
ditional dimensionality makes the difference in cellular responses because it 
influences the spatial and physical aspects of the cells in 3D culture. This 
affects the signal transduction and makes the behavior of 3D-cultured cells 
more physiologically relevant and reflective of in vivo cellular responses. This 
review focuses on major differences between 2D and 3D cell cultures, high-
lighting the importance of considering bioengineering humanized 3D can-
cer models as the future in cancer research. Additionally, it presents diverse 
3D models currently used in cancer research, outlining their benefits and 
limitations. Precisely, this review highlights the differences between the 3D 
models with the focus on tumor stroma interactions, cell population and 
extracellular matrix composition providing methods and examples for each 
model from the studies done so far.

INTRODUCTION

Tissues are three-dimensional (3D) entities, just like the tumor that 
arises within them (1). Tumor is characterized by complex struc-

tural architecture which is necessary for adequate intercellular, intracel-
lular and cell-to-matrix interactions of aberrant cells in cancer (2). In the 
field of cancer research, especially anticancer drug testing, the majority 
of experiments are performed with 2D adherent cell cultures. However, 
2D models are considered too simple and do not adequately mimic the 
complexity and dynamic interactions of the tumor microenvironment 
(TME) (3).
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Therefore, to adequately study the complexity of tu-
mors, it is necessary to develop more realistic systems than 
the classical 2D monolayers used so far. Despite being 
traditionally used for decades because of the vast benefits 
they provide, 2D cell cultures do not realistically repre-
sent the immediate spatial, cellular, tensile and chemical 
environment of highly complex tumors and their stroma 
(4). 2D models cannot effectively represent complex cel-
lular signaling, angiogenesis, invasion and metastasis 
present in cancer (5). Furthermore, even though 2D mod-
els represent important features of certain cancers and 
have been useful in unraveling biochemical pathways, and 
often have different genetic profiles from those of the pri-
mary cell lines derived from patients (6,7). Additionally, 
2D cell lines have limitations due to cross-contamination 
with other lines and in long-term cultures are prone to 
genetic drift (1,8). Besides that, 2D cells are exposed to 
much higher stiffness which leads to exhibiting different 
growth conditions when compared to in vivo conditions. 
Equally important, 2D monolayers lose physiological ex-
tracellular matrix (ECM) on artificial plastic surfaces 
(9,10).  Cells grow on a flat plastic surface as a monolayer, 
which results in loss of crucial cellular signaling pathways 
and changes in cell responses to stimuli (11). This has been 
proven troublesome in identifying preventative anti-can-
cer treatments. In addition, 2D cell culture properties, 
such as differentiation, polarization and cell-cell commu-
nication are missing as well, while wound healing, inflam-
matory processes, and hyper-proliferation are artificially 
promoted. These occurrences lead to the fact that 2D 
monolayer only poorly represents tumor cell biology in 
vivo (12).

Taking into consideration that the composition of the 
tumor microenvironment (TME) and tumor-stromal in-
teractions exacerbate tumor growth and metastasis, with 
activated stroma being a disease-defining factor leading 
to poor clinical outcomes (13–17) much focus has been 
put on accurately modeling TME interactions in vitro and 
in vivo. 

The tumor stroma, which represents non-neoplastic 
part of the TME, is composed of extracellular matrix 
(ECM) and multiple support cells (14), including cancer-
associated fibroblasts (CAFs), endothelial cells, pericytes 
and immune cells, such as lymphocytes, neutrophils, den-
dritic cells (DCs), and monocytes. There are also some 
other less prevalent cell types such as myeloid-derived 
suppressor cells (MDSCs) and mesenchymal stromal cells 
(MSCs), as well as platelets (18,19). Stromal cells are in-
teracting with tumor cells and the ECM, and by secreting 
chemokines, growth factors (GFs), enzymes, extracellular 
vesicles, and miRNAs they influence metabolic pathways 
related to cancer (20) meaning that some cell types can 
either promote or suppress tumor growth depending upon 
the cellular context (21). This effect of ECM on cancer 
cells is also reciprocated the other way around, meaning 
that cancer cells effect ECM by initiating different pro-

cesses, like ECM deposition, degradation and remodeling 
which can impact tumor progression and invasiveness 
(22).

Taking all this into consideration, 3D models seem 
inherently more biomimetic compared to 2D cell mono-
layers cultured on tissue-culture plate (23). Therefore, 
there is an increased demand for bioengineering 3D mod-
els for better understanding of tumor growth. Three-di-
mensional systems offer the opportunity to model the 
cancer mass together with its surrounding stroma, evi-
dently the key factor in promoting and directing cancer 
invasion (23,24). 3D models can also be useful for co-
culturing various types of cells in one model. In addition, 
ECM of a 3D model reflects more suitable environment 
to access oxygen, nutrients and growth factor transport 
as well as drug uptake and response which is then affect-
ing the therapeutic potential and benefit of anticancer 
drugs (16,25). 3D models not only provide a useful plat-
form for the identification of the biological features of 
cancer cells but they offer a useful screening platform for 
novel antitumor agents and provide an interesting link 
between the 2D model and animal experiments (26). All 
these differences between 2D and 3D are quite crucial 
and represent difficulties in understanding complex 
mechanism in cancer development (27,28). 

As already stated, three-dimensional (3D) cell culture 
technology can better recapitulate the in vivo organization 
and microenvironment of in vitro cultured cancer cells. 
Cells in the 3D culture environment differ morphologi-
cally and physiologically from cells in the 2D culture 
environment therefore making the behavior of 3D-cul-
tured cells more reflective of in vivo cellular responses. 
Additional dimensionality of 3D cell cultures is the cru-
cial feature which makes the difference in cellular re-
sponses because it influences the spatial organization of 
the cell surface receptors engaged in interactions with 
surrounding cells, as well as it induces physical constraints 
to cells. These spatial and physical aspects affect the signal 
transduction from the outside to the inside of cells, influ-
encing gene expression and cellular behavior (29).  There-
fore, 3D cell culture systems have gained increasing inter-
est in drug discovery and tissue engineering due to their 
evident advantages in providing more physiologically 
relevant information and more predictive data for in vivo 
tests (29).

Even though all these facts became clear in the recent 
years, 2D cell cultures still remain the main model in 
cancer research, not only because they are cost-effective 
but also because many analyses are optimized for use with 
2D models, therefore leaving drug screening quite limited 
for certain cancers (30). This in particular includes the 
majority of imaging systems/protocols designed to be 
compatible with 2D culture plates, as well as a range of 
automated fluidic systems compatible with 2D culture 
systems (30). Latter features have not yet been efficiently 
integrated into 3D culture systems, so for instance, hy-
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drogel matrix-based 3D cultures are still costly, they face 
a problem of significant 3D tissue size heterogeneity, and 
harvesting from the gel is necessary for many forms of 
analysis (30,31).However, bioengineering humanized 3D 
models of cancer is the future in studying cancer and will 
eventually replace 2D monolayers and the need of animal 
models as well. This is in concordance with the 3R (re-
placement, reduction and refinement) goal to establish 
more humane animal research (1,23).

TYPES OF 3D CANCER MODELS

In the recent years, a variety of 3D culture systems has 
been developed and adopted in drug discovery, cancer 
and stem cell biology, engineering functional tissues for 
implantation, and other cell-based analysis (Figure 1) 
(29).

Today, there are a number of engineering approaches 
to generate 3D cancer models, with the specific goal to 
increase and accurately model the biomimetic complexity 
within the tumor microenvironment (TME) (32). Here 
the most crucial aim is to achieve accurate compartmen-
talization of both the tumor and the stroma with clear 
boundary for cellular crosstalk and migration between 
these two parts. In this fashion, it is important for ECM 
to mimic and reproduce the biomechanical properties of 
the native tissue or organ since this is essential for cell 
attachment within each specific compartment (23). In 
this sense, it is also necessary that there is no contact with 
tissue culture plate and optimal permeability of oxygen 
and nutrients should be provided (33–37).

Spheroids 

The simplest and most represented 3D models are 
spheroids. They are aggregates of cancer cells grown on 
low-attachment plates or in hanging drops which are in 
immediate proximity to one another in this 3D formation 

(23,38). They are the simplest 3D model, most often gen-
erated from a single cell type, which can be commer-
cially available cell lines or primary tumors cells from 
patients. They are one of the most used 3D models for the 
study of tumor biology, especially for testing of anticancer 
drugs (3). Their sizes, shapes and properties can vary de-
pending on the cells of origin. 

Spheroids accurately recapitulate important tumor 
features including cellular heterogeneity, cell signaling 
pathways, cell–cell/cell–ECM interactions, gene expres-
sion patterns similar to in vivo conditions, and a tumor 
morphology composed of different cell layers (39). These 
models are valuable in terms of low cost, ease of use, re-
producibility, and high throughput capabilities with flex-
ibility to integrate multiple cell types or different types of 
gradients (3,40). They exhibit oxygen and nutrient perme-
ability which is the highest at the surface. However, there 
is no space for stroma compartments and therefore the 
tumor-stroma interactions are limited. Other limitations 
are contact with surface plastic, no presence of the ECM, 
no collagen to attach to and furthermost no compartmen-
talization between cancer and stromal cells (41).

Due to the limited diffusion of nutrients and oxygen, 
larger spheroids (500 μm in diameter) accurately mimic 
the microenvironment of micro-metastases and avascular 
tumors representing a proper model for studying the ef-
fects of hypoxia on cancer development (42). In this way, 
three concentric zones are formed on a spheroid – an an-
oxic core which is in the center containing necrotic cells, 
a middle hypoxic zone with a low concentration of oxygen 
and nutrients, and an outer zone containing highly pro-
liferative cells (43). Despite being more time-consuming 
and more expensive than 2D cell culture, spheroids are a 
widely used 3D culture model which can be combined 
with 3D bioprinting technologies, microfluidics, and 
scaffold-based platforms to generate more physiologically 
representative tumor models (Figure 2) (3).

Figure 1. Types of 3D cultures, shown by increasing order of complexity: single-cell spheroid, heterotypic spheroid containing two cell types, or-
ganoid, and tumoroid. Spheroids are generally composed of a single population of tumor cells. If two cell types are combined within the same 
spheroid (e.g., tumor cells and stromal cells) it is called a heterotypic spheroid. Organoids are more complex structures which contain multiple 
cell types usually found within the tissue of origin and are usually generated from patient material. The most complex system is the tumoroid, 
which contains multiple cell types, vasculature and components of the immune system and the ECM.
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Tumor cell spheroids are especially useful for studying 
cancers that form tumor embolus, or a closely packed 
tumor cell cluster, as it happens in inflammatory breast 
cancer (43). They incorporate various levels of TME com-
plexity and can be useful to analyze the influence of ECM 
stiffness on cancer. In breast cancer, cancer cells inter-
acted with stromal cells and inhibited preadipocyte dif-
ferentiation and maturation only in high-stiffness tissue 
which could not be replicated in a 2D monolayer culture 
system. This example again highlighted the importance 
of a 3D environment to mimic TME interactions (44). 
Another example are the macrophages that play a crucial 
role within the TME. Their natural ECM remodeling 
behavior has been particularly challenging to integrate 
into spheroid-based models so far, however, different strat-
egies have been applied in the recent years to better un-
derstand the role of macrophages in the TME using 
spheroids (45–47). These examples showed that the inter-
play between the ECM, tumor, stromal and immune cells 
promotes the activation of TAMs, thus mimicking ag-
gressive tumor stages (3).

Another important feature to mention when talking 
about spheroids are cancer stem-like cells (CSCs) which 
have the ability to form multicellular three-dimensional 
(3D) spheres in vitro (24,25). In general, stem cells are 
undifferentiated cells that provide the source of all types 
of specialized cells in the body (48). They can self-renew 
and differentiate into different downstream cell lineages. 
Similar to this, CSCs are small sub-population of poorly 
differentiated cancer stem-like cells, identified in most 
tumors, also known as cancer initiating cells, that are 
responsible for the recurrence, metastatic potential, and 
resistance of different tumors (48,49). First such sub-
population was identified in acute myeloid leukemia 
(AML) in 1994 (3). This has given a possibility to isolate 
similar tissue-specific CSCs and progenitor cells from 
other tumors (5). Tumor growth is dependent on CSCs, 
giving rise to more differentiated tumor cells, similar to 
the role of stem cells in normal tissue (9). Along with that, 
another important feature of CSCs is their resistance to 
cytotoxic chemotherapy and ionizing radiation (10,11). 
Taking into consideration all their characteristics, it is 
essential to assess the presence and self-renewal ability of 
CSCs in different tumors. Therefore, in vitro models to 
investigate the properties of CSCs are highly required. 
Sphere-formation assay is one of the in vitro methods 
commonly used to identify CSCs and study their proper-
ties (48). This model is based on the ability of stem cells 
to grow in non-adherent serum-free gel matrix, and it has 
been proven reliable to assess the presence and self-renew-
al ability of CSCs in different tumors. This is a useful tool 
to evaluate the effect of conventional or novel agents on 
the initiation and self-renewing properties of different 
tumors. The effects can be directly evaluated through as-
sessment of the sphere-forming efficiency (SFE) over five 

generations or other downstream assays such as immuno-
histochemical analysis of the generated spheres (48).

Just growing the cell lines as spheroid cultures results 
in enrichment of cancer stem cell population, so spheroid 
cultures can be used as a method for their preparation 
(50). Such spheroids are more resistant to therapeutics 
compared to the same cells grow as a monolayer (51).

Overall, spheroids proved to be useful models in un-
derstanding tumor biology. However, they exhibit some 
limitations related to reproducibility because of poor uni-
formity in size/morphology and/or low throughput and 
difficulty in retrieving cells for analysis, which prevents 
the development of standard models (52). 

Self-Assembled Organoids

Unlike spheroids, organoids represent a more complex 
3D architecture. They are generated from the progenitor 
cells and can closely mimic the 3D structure and archi-
tecture of the tissue from which they are derived (53). 
Tumor organoids are usually developed from a single cell 
into a 3D construct, and follow different development 
stages of natural tumors, therefore they are capable of 
retaining the natural cancer cell heterogeneity of the na-
tive tumor to a greater extent, preserving the pathophysi-
ology of the tumor in vitro (54). Unlike spheroids that are 
formed by the forced aggregation of multiple cells into a 
3D construct, tumor organoids develop a 3D shape on 
their own based on their genetic programming, which 
more closely represents the actual development of a tumor 
and gives them an advantage over spheroids or other 3D 
cultures (55). Working with organoids has some draw-
backs because the process is more time-consuming, there 
is difficulty in reaching in vivo-like maturity, the vari-
ability can be high between the experiments, and there is 
a lack of vasculature and stroma (56). However, organoids 
can be efficiently cultured from the patient’s own cells  
(57–60) and they are more cost-effective.

By combining multiple cell types together, multicel-
lular heterotypic spheroids can be generated which pro-
vide advantage over organoid models that usually only 
contain progenitor cells of epithelial origin, leaving the 
organoid model without an immune-competent micro-
environment and stromal components (61,62). Neverthe-
less, there are studies where co-culture with stromal cells 
was established and activation of CAF was observed 
(63,64). Additionally, it was demonstrated that organoids 
derived from cell lines cultured in a monolayer or pas-
saged as mouse xenografts are phenotypically distinct 
from primary organoids which retain the tumor architec-
ture, cell–cell interactions, stemness, and cellular hetero-
geneity. This once again demonstrates the advantages of 
directly culturing cells in 3D models over 2D cultures 
with loss of the native tissue phenotype. 3D bioprinting 
can also be used with organoids to form sophisticated 
organoid culture systems which then can be generated by 
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combining cancer cells and a self-gelling hydrogel derived 
from ECM of different origin (decellularized rat or hu-
man mammary tissue for instance) (36). In these dECM 
hydrogels, structural and signaling profiles were retained 
eliciting distinct responses when cultured with normal 
cancer cells. This is important because usually the dispo-
sition of cells without any predetermined organization 
typically leads to uncontrollable cellular behaviors (36). 
In this way, the combination of 3D bioprinting and or-
ganoids has the potential to promote the adequate spatial 
arrangement of cells in complex 3D system while still 
maintaining the hierarchical-like architecture of TME 
and increasing the reproducibility of the model (3). 

Tumoroids 

The terms organoid and tumoroid are sometimes used 
as synonyms in the literature (65, 66). However, there is 
a difference between organoid and tumoroid in the sense 
that organoids lack the full complement of cells and fac-
tors found in the patient’s tumor, while tumoroids retain 
the full architecture of the TME and ECM. These mod-
els can recapitulate the cancer mass itself but also the 
stromal environment. The tumor boundary is accurately 
modeled by implanting a cancer mass within a stromal 
compartment. The distance of invasion can be measured 
directly from the origin (67). Whilst these models can be 
high cost depending on the tumor type, they have a high 
level of reproducibility and oxygen and nutrient perme-
ability is sufficient. Within such models the diffusion 
coefficient of both glucose and oxygen are high (68, 69). 
Modeling and validation of oxygen consumption shows 
this measure to be cell-specific, signaling the distinct 
metabolic profile of different cell populations (70). The 
tumoroid model can be used in combination with other 
systems to increase stromal biomimicry. 

Microfluidic Models

Stromal biomimicry can be achieved by using micro-
fluidic models. They are platforms consisting of a network 
of microfluidic channels which permit the continuously 
perfused cell culture. With this model it is possible to 
design complex 3D culture systems in which various pa-
rameters can be modified and controlled independently 
(3). This system has revolutionized the ability to mimic 
the natural biophysical/chemical conditions of cells in in 
vitro models with the goal to model the (patho)physiolog-
ical functions of tissues and organs – so-called organ-on-
chip devices.

These microfluidic organ-on-a-chip models have been 
used with increasing popularity. In the case of these mod-
els, the contact between the cells and tissue-culture plas-
tic cannot be eliminated, but these models are beneficial 
because they have exceptionally high permeability to 
oxygen and nutrient flow. In a number of organ on-a-chip 
models, the distance of invasion can be measured between 

tumor and stromal cells. Cost is still relatively low and 
high throughput outcome can be set up, however, these 
models can lack ECM components unless gels such as 
collagen or Matrigel R are injected into the channels as 
well (71).

Various factors can be specifically controlled in these 
models, including the mechanical forces applied, the ori-
entation of tissue interfaces, the types and localization of 
cells, and the chemical gradients, thus allowing optimized 
levels of cell survival (72). Additionally, these devices use 
microscale volumes which is less expensive while still 
high-throughput screening compared to other 3D culture 
methods and bioreactors (13,16,39,73). Nevertheless, it 
should be taken into account that the specialized skills 
are necessary to fabricate chips (72) so the fast develop-
ment of new fabrication techniques, such as 3D bioprint-
ing, has helped in this regard (74–76).

Some additional limitations include lower reliability 
and robustness, edge effects and high shear stress which 
can also affect the performance and consistency of the 
device by hindering laminar flow in channels, which can 
harm cells and/or affect their distribution, resulting in 
inconsistent results. (77). Finally, there is a need for new 
materials for the chip fabrication because polydimethyl-
siloxane (PDMS), the most used material, can nonspe-
cifically absorb small molecules (78,79).

Multiple cell types can be cultured in a microfluidic 
chip to analyze specific interactions, which is particularly 
interesting when investigating communication between 
cancer and stromal cells with several examples being 
available so far, for instance in breast cancer–immune cell 
interactions (80). In this example greater T cell infiltra-
tion was observed when monocytes were present in the 
culture, and also when higher levels of hypoxia were 
emulated by using tumor spheroids instead of dispersed 
cancer cells (80). These findings demonstrate the impor-
tant role of microfluidics in generating heterotypic 3D 
models to study different cell types and specific tumor–
stroma interactions.

Stroma-driven ECM remodeling is a crucial conse-
quence of tumor–stroma activation that sustains cancer 
progression. There have been several studies in this direc-
tion which provided a unique way to monitor the switch 
between healthy and pathological stroma in vitro and 
represents an alternative to the ectopic in vivo experiments 
that are typically used to analyze such events. The design 
of the microfluidic chip also allowed precise control of cell 
confinement and interaction, continuous perfusion, and 
assembly of cell produced ECM (3). 

Recently, innovative models have been produced that 
combine tumor organoids/spheroids and microfluidic 
chip systems. By incorporating organoids into a microflu-
idic device, organoids-on a-chip inherit the combined 
benefits of both microfluidics and 3D organoid models, 
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thus providing a unique way to study tumor–stroma in-
teractions and their systemic effects (78, 81–83). From 
the studies done so far it was visible that cells displayed 
morphological features similar to in vivo conditions, con-
trasting to poorly aligned cells grown in 2D cultures or 
deprived of flow. Microfluidic device promoted the per-
fusable culture of different cells types and also proved to 
be an appropriate platform for monitoring cancer cell 
extravasation in real time showing how distinct microen-
vironments can influence cancer progression (3).

BIOPRINTING SCAFFOLDS AND 
CELLULARIZED BIO-INKS

Matrigel R and Hydrogels

More complex 3D models include decellularized ma-
trices, Matrigel R and collagen which are used to provide 
an extracellular matrix for the cancer cells to populate in 
order to achieve biomimicry for the initial cancer mass 
(37). Together with collagen hydrogels, there are other 
options of biomaterials to recreate the ECM, such as de-
cellularized human tissue, 3D bioprinted hydrogels (36), 
hyaluronan printed hydrogels (34) and self-assembling 
peptide hydrogels (35). These are beneficial for co-culture 
with stromal cells, incorporating chemical factors and 
extracellular matrix proteins and good oxygen/nutrient 

permeability (84–86). These models are also useful be-
cause they allow compartmentalization and generation of 
a tumor-stroma boundary (87). However, they are costly 
and prone to variability in terms of added ECM compo-
nents. Some synthetic polymers such as poly(ethylene 
glycol) (PEG), poly(n-isopropylacrylamide) (pNIPAAm), 
and poly(caprolactone) (PCL) which are less variable can 
serve as an alternative approach (88).

Scaffolds

Another more complex 3D environment is provided 
with scaffolds. Ideal scaffold offers an appropriate envi-
ronment for cell adhesion, proliferation/differentiation, 
and migration to allow the generation of in vitro tumor 
models that closely recapitulate essential cell–ECM inter-
actions. Tumor cells can be cultured within biomaterials, 
including decellularized native tissues, or on 3D scaffolds 
based on ceramics (89,90) or synthetic and/or natural 
polymers (3). Hydrogel-based scaffolds are preferred be-
cause their mechanical properties closely mimic the tu-
mor ECM, while scaffolds produced from synthetic poly-
meric biomaterials including polyethylene glycol (PEG), 
polycaprolactone (PCL), poly(hydroxyethylmethacrylate) 
(PHEMA), poly(lactic-co-glycolic acid) (PLGA), and ce-
ramics (such as hydroxyapatite or bioglass) (89,90) allow 
more controlled environment and the ability to modulate 
them as required.

The surface of synthetic polymers can be modified to 
incorporate peptides or fibrinogen, that promote protein 
adsorption and cell adhesion (17). Hybrid scaffolds can 
combine soft hydrogels with polymeric scaffolds and cells 
(91). Therefore, the choice of biomaterials as well as the 
physical/chemical conditions of the scaffold determine 
how the cells will react to the substrate and what will be 
the experimental outcome.

Natural biomaterials originated from tissues and cells 
would include collagen, fibrin, alginate, and chitosan (92-
94). An alternative choice would be decellularized ECM 
(dECM), which does not compromise the tissue-specific 
architecture and the ECM, and offers the advantage of 
recreating natural biochemical environments, generating 
scaffolds that have biochemical and structural cues simi-
lar to those present in vivo (95,96). The most commonly 
used ECM substitutes, such as Matrigel, incorporate un-
defined and highly variable factors that can affect the 
experimental results and the reproducibility of the model 
(53) so because of close resemblance to the native matrix 
structure, cell–ECM interactions can be more easily rep-
licated in dECM-based models after cellularization and 
are also promising alternatives to better control the TME 
in vitro. They have advantages over scaffolds that focus 
only on individual ECM components and not on the 
ECM environment as a whole (97). However, the decel-
lularization process has its limitations because it is chal-
lenging to ensure tissue intactness after treatment with 
detergents and enzymes (3). 

Figure 2. 3D cultures can be cultivated using different approaches 
and methodology. The simplest systems are the cultivation in non-
adherent plastic dishes and the hanging drop method, followed by 
the use of scaffolds. The more complex systems include microfluidic 
chips, bioprinting and the use of bioreactors for large-scale cultiva-
tion.
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Taking all this in mind, multiple modifications of 
scaffold-based cell culture supports have been optimized 
for tumor modeling. One of the examples is a tissue ma-
trix scaffold (TMS) which uses native ECM (91) and 
consists of a multilayered tissue culture platform prepared 
from decellularized mouse mammary tissue. Cancer and 
stromal cells are cultured in a compartmental fashion that 
induces the expression of intracellular and extracellular 
biomarkers of breast cancer cells, thereby confirming cor-
rect tumor growth and proliferation. This example of 
TMS mimics the structure of the mammary tissue while 
providing a simple-to-use tool for screening specific tu-
mor biomarkers (91).

Another approach used the anisotropic collagen scaf-
folds seeded with adipocytes and tumor cells. In this 
model, culturing breast cancer cells in collagen pores 
aligned perpendicular to the surface allowed examination 
of adipocytes in the tumor stroma. This example reflected 
the in vivo microenvironment and 3D spatial configura-
tion. The invasion of tumor cells into the stroma was then 
monitored. The presence of adipocytes increased the mi-
gration of cancer cells and promoted cancer cell invasion, 
while reducing the overall number of migratory cells, 
which demonstrated the heterogeneity of cellular behavior 
in this model (94).

To summarize, scaffolds provide an inexpensive and 
easily analyzable platform which has tunable and instruc-
tive properties that can recapitulate relevant biochemical 
and structural cues (91), offering a proper ECM-mimick-
ing environment for culturing cells. Scaffolds can be in-
tegrated in most current 3D in vitro models and have been 
used to produce complex 3D bioprinted models (98, 99), 
to induce the assembly of cell spheroids, and to promote 
the 3D culture of cells in microfluidic platforms. There-
fore, scaffolds have advantages over 2D models and in vivo 
models.

Decellularized Scaffolds 

Decellularized scaffolds are of porcine, bovine and hu-
man origin and can be stripped of all animal components, 
thus avoiding the trigger of an immune reaction (100-
102). Additionally, decellularized scaffolds model the na-
tive tissue more closely than a tissue-engineered one, 
however the limitation lies in a number of decellulariza-
tion methodologies which may alter the stiffness and po-
rosity of the native tissue, which in turn affects cellular 
response. Some of the methods for decellularization in-
clude the use of harsh chemicals and enzymes, which ef-
fectively strip the cellular components within tissues, thus 
leaving behind intact matrix (103). The limitation here is 
the impossibility to remove some of these chemicals from 
tissues which leads to either physical alteration of the ma-
trix or trace amounts of these chemicals affect the viabil-
ity of newly added cells. However, some methods like the 
vacuum-assisted osmotic shock have been proven effective 

in removing cellular components an in the same time 
maintaining ECM integrity and allowing for the new 
highly viable cell infiltration (104).

3D Bioprinting

As mentioned before, 3D bioprinting is a novel tech-
nique that uses scaffolds in the fabrication of more com-
plex models with well-defined architecture, composition, 
and high reproducibility (105). Cell bioprinting is a 
unique approach for 3D cancer cell patterning that fa-
cilitates the control of spatial and temporal distribution 
of cells (15). 3D bioprinting techniques include extru-
sion-, inkjet-, and stereolithography-based bioprinting, as 
well as laser-assisted and electrospinning-based bioprint-
ing (106). The choice of biomaterial largely depends on 
its biocompatibility, the shape-fidelity of the material, and 
the level of instructiveness required and the process gener-
ally must avoid damaging pressure/heat sensitive fluids, 
especially when printing living cells (15). Some recent 
examples of bioprinted 3D model enabled the incorpora-
tion of cancer cells into a complex microenvironment 
where interactions between tumor and stromal cells, 
ECM deposition, and self-organization of the tissue could 
be observed (106). 

3D printed models now also allow 4D manipulation 
of variables where the time represents a fourth dimension 
which is crucial for evaluating the dynamics or kinetics 
of GFs, drugs, or the metastatic spread of tumor cells over 
time. One of the good examples of this attempt was bio-
printed 3D tumor constructs developed to recapitulate 
the TME that leads to metastatic dissemination of lung 
cancer (107) which enabled precise placement of cells and 
spatiotemporal control of molecular gradients that lo-
cally modulate dynamic cellular events. 

In general, spatially defined 3D in vitro models have 
been improved by 3D bioprinting techniques. The mi-
croscale resolution, high precision in forming 3D con-
structs, the ability to use multiple materials, and com-
mercial availability have potentiated utilization of the 3D 
bioprinting techniques. However, there are some limita-
tions which include slow printing speeds, development of 
nontoxic and printable bioinks, and insufficient reproduc-
ibility to create standard models (106,108).

3D bioprinting, as well as a wide range of bio-inks such 
as alginate and polyvinyl alcohol (PVA) have been estab-
lished for the printing of scaffolds to desired structures. 
There is also the possibility of high manipulation of these 
bio-inks, leading to tuning of the concentration (34), po-
rosity and stiffness and provide 100% viability of the cells 
seeded onto the scaffolds for up to 12 days (109). There 
are also bio-inks with pre-mixed cells in blends of agarose, 
gelatin and collagen (110). These systems have a number 
of benefits, although cell viability and attachment can be 
low whatsoever.
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Patient Derived Xenograft (PDX)

Lastly, there are two models to be discussed: patient-
derived xenografts (PDX) and patient derived organoids 
(PDO), both derived from a patient’s cancer cells. Patient-
derived xenografts (PDX) are models in which the tissue 
or cells from a patient’s tumor are implanted into an im-
munodeficient or humanized host animal, usually mouse. 
The advantage of this model is that the ECM is biomi-
metic and intact with the achieved compartmentalization 
of tumor and stromal tissue, whilst oxygen and nutrients 
are readily available through the host’s circulatory system 
(23). However, the disadvantage lies in the fact that only 
limited amount of stromal cells can be explanted togeth-
er with the tumor sample taken from the patient. Those 
are usually cancer associated fibroblasts and endothelial 
cells and over time they are replaced by the host cells (111). 
Additionally, taking into consideration that the implant-
ed explants/fragments are generated in immunodeficient 
mice in which the inherent immune response is not fully 
functional (112), the adaptive immune response cannot 
be accurately modeled, even though there are some recent 
attempts which now incorporate immune cells to allow 
for this process (113). PDX model, even though, not en-
tirely in vitro model, is a good example of the thin line 
between 3D in vitro and in vivo models and the possible 
combination of the two.

Patient derived organoid (PDO) or 
Patient-derived tumor organoid (PDTO)

Patient derived organoids (PDOs), or Patient-derived 
tumor organoids (PDTOs) are described as a miniature 
three-dimensional (3D) cell cultures derived from a pa-
tient’s cancer cells that stably retain key characteristics of 
the respective organs (114). These models are generated 
from surgically resected tumor specimens, biopsied tissues 
or circulating tumor cells from the patient, and they are 
grown into tumor organoids after embedding into a 3D 
matrix (115). They have been subjected to extensive invest-
ment and experimental validation to understand patient-
specific drug responses and investigate cancer cell growth 
(114). 

As mentioned before, patient-derived xenograft (PDX) 
models are models in which tumor biopsies are injected 
into an animal. They were developed to improve the pre-
dictive capacity of preclinical animal models. Patient-
derived organoids (PDO) on the other hand, use patient 
tumor samples to create in vitro models that represent 
conservation of the cellular composition and maintain 
aspects of tumor structure and heterogeneity (116). Their 
main advantage when compared to PDX is that this 
method does not rely on animals for propagation and it 
is more human-relevant approach for understanding hu-
man diseases, therefore the support for new research proj-
ects using PDO is gradually increasing (116). When com-
paring PDX and PDO, there are several improvements 

when using PDOs. Firstly, unlike PDX which are rather 
expensive, PDOs offer moderate, acceptable cost. They 
are suitable for high-throughput drug screening which 
was not achieved with PDX. PDOs in clinical trials have 
served as a tool for personalized medical decisions to pre-
dict patients’ responses to therapeutic regimens and po-
tentially improve treatment outcomes (117). They recon-
stitute tumor-stroma interactions and are suitable for 
clinical application, since there are no ethical concerns in 
question when compared with PDX (115). 

Also, there have been some improvements in using 
complex immune-organoid systems as testing platforms 
to facilitate precision cancer immunotherapy. Maintain-
ing the TME and ECM is of great importance especially 
in drug testing studies because it provides the true re-
sponse to conventional chemotherapeutic and targeted 
therapies (118). It is of great importance to retain the full 
architecture of the tumor microenvironment (TME) and 
extracellular matrix (ECM). It is necessary to mimic the 
natural growth of cancer more closely, and in this sense 
cancer masses should be engineered separately as well as 
biomimetic stromal compartments containing appropri-
ate cell populations (e.g., fibroblasts, endothelial cells, 
immune cells and other ECM components). Therefore, 
heterotypic organoids are models of increasing complex-
ity which take into account the contribution of ECM and 
supporting cell populations as well. Moreover, there have 
been some intriguing applications of tumor organoids 
with novel multi-omics in preclinical cancer research, us-
ing genetic editing, proteomics, and liquid biopsy. (119).

Moreover, living organoid biobanks encompassing 
several cancer types have been established, providing a 
representative collection of well-characterized models that 
will facilitate drug development. There are several at-
tempts to include these models into the cancer research. 
One of them is an example of the colorectal cancer liver 
metastasis (CRLM) where there is no effective method to 
predict chemotherapy response and postoperative prog-
nosis of CRLM patients (120). Patient-derived organoid 
(PDO) has become an important preclinical model which 
has shown that organoid platform for CRLM could cap-
ture intra- and interpatient heterogeneity. Also, it has 
been shown that PDOs could be used to predict chemo-
therapy response and clinical prognosis of CRLM pa-
tients, leading to a potential application for personalized 
medicine (120). Another, quite relevant example is the 
application of PDO in ovarian cancer which is the leading 
cause of death from gynecological malignancies (121). 
Despite great advances in treatment strategies, therapeu-
tic resistance and the gap between preclinical data and 
actual clinical efficacy remain the main problem in OC. 
Therefore, the role of PODs in the assessment of high-
grade serous OC (HGSOC) cells-of-origin, illustrate their 
use as promising preclinical OC models and highlight the 
advantages of organoid technology in terms of disease 
modelling and drug sensitivity testing (121). 
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DISCUSSION

Cancer studies are mainly relying on in vitro models, 
and continuous improvement of these models is crucial 
for the further development of cancer research. Without 
any doubt, 3D models represent a big step in the right 
direction. However, some improvements are much need-
ed. On-line resources are being developed to facilitate 
interpretation of experimental conditions and results, 
such as the MISpheroID database (122). In the future it 
would be important to develop more physiologically rel-
evant cancer environment within 3D model systems (Fig-
ure 3). This would indicate that both the extracellular 
matrix and stroma should be programmed to mimic na-
tive tissue in the more realistic manner (123, 124). 

Even though there is an increasing interest in conduct-
ing studies on cancer using 3D models, some features 
regarding stiffness, stromal complexity and compartmen-
talization remain limited (23). The problem of low col-
lagen density and the ECM stiffness, which is directly 
impacted by its concentration, is present in almost every 
3D model discussed in this review. Moreover, native tu-
mor tissue is characterized by the gradient of stiffness and 
collagen concentration during tumor development which 
could not be achieved in 3D models so far. However, 
some improvements have been done in this regard con-
cerning scaffolds (125) and tumoroids (126), while micro-
fluidic devices (127), spheroids and hanging drops (128) 
still either do not have any or have very limited collagen 
concentration. From the 3D models discussed so far, only 
tumoroids are able to achieve physical stiffness and a 

level of biomimetic ECM adequate to promote cellular 
growth and invasive phenotype. Also, it should be noted 
that stiffness is not only dependent on collagen itself, but 
rather on a combination of all ECM components as a 
whole (129). Therefore, other ECM components essential 
for cell growth will have to be included within 3D set-ups 
as well. They include various surrounding cells such as 
laminins and fibronectin, as well as additional collagen 
subtypes, the stromal cell population such as fibroblasts 
or the highly differentiated cancer associated fibroblasts 
(CAFs) (130) and even endothelial cells (131). This is im-
portant for studying cellular cross-talk between cancer 
and stromal cells as well as for studying vascular network 
formation, remodeling and disruption in relation to a 
growing tumor mass. This is crucial in understanding the 
cancer’s ability for nutrient acquisition and metastasis 
(132) as well as in identifying future drug targets  (133). 
Other factor often missing in this 3D modeling is im-
mune cell population which is rather important to under-
stand further cancer progression (23).

Additional important feature that is missing within a 
number of 3D models of cancer is the compartmentaliza-
tion between cancer mass and stroma and often these cells 
are mixed together in co-cultures, and expected to self-
aggregate (134). It is of high importance to have this 
physical, chemical and cell barrier since in number of 
invasive cancers, it often signifies the staging and aggres-
siveness of the cancer (135). Human tissue is well defined 
by barriers and compartments (organs) and a number of 
cancers arise at these borders where cells change from one 
type to another or tissue environments change (136). 

Figure 3. 3D cultures consist of the outer layer of proliferating cells (orange), middle region of quiescent live cells (yellow), and the hypoxic/ne-
crotic core (grey). Due to this structure, there is a gradient of molecules and nutrients through the structure, resulting in different bioavailabil-
ity of these molecules depending on the depth. The concentration of oxygen, glucose, nutrients, growth factors, cytokines and drugs is higher on 
the surface of the structure and drops with the depth, while waste products such as carbon dioxide, lactate and cell debris accumulate in the 
middle of the structure.
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CONCLUSION 

So far, only tumoroid models can be considered as 
matrix relevant models, with controlled density and com-
position. It is of great importance to mimic the natural 
growth of cancer more closely and in this sense it is neces-
sary to engineer separate cancer masses and biomimetic 
stromal compartments containing appropriate cell popu-
lations (e.g., fibroblasts, endothelial cells, immune cells 
and other ECM components) and then bring them to-
gether (134).

It is also crucial to include patient samples in all 3D 
models (130). Further attention should be given to the 
primary cancer cells because this could lead to the devel-
opment of personalized drug-screening platforms. The 
future of 3D cancer research lies not only in investigation 
of tumor growth but also in studying invasion, migration, 
cancer stem cell’s plasticity and cancer cell dormancy 
which can model the interaction between cancer and stro-
mal cells more accurately. Finally, a physiologically rele-
vant ECM regarding composition and stiffness will allow 
for more defined barrier between the cancer mass and 
surrounding stroma. With all these improvements in 
mind, 3D models as a pre-clinical tool could lead to a 
more ethical approach to research with limited need for 
animal studies (23).
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