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Antagonistic effect of unionized ammonia (UIA)  
and Aeromonas caviae on the hemato-biochemical 
and histological responses of Clarias magur

Abstract

Background and purpose: Clarias magur (Hamilton, 1822), the 
Asian or walking catfish, is a high-value fish species in India and Southeast 
Asia for its taste and nutritional value. The combined effect of ammonia 
and bacterial infection on C. magur has not been studied so far. Moreover, 
the mechanism of ammonia-induced toxicity and their adaptability in C. 
magur is poorly understood. Given this context, a systematic study was 
devised to examine the individual and combined exposure effect of un-
ionized ammonia and Aeromonas caviae on haemato-biochemical and 
histopathological changes of different tissues of C. magur.

Materials and Methods: A 14-day experiment was conducted to expose 
the fish to sublethal doses of UIA, A. caviae, and a combination of both. 
Initially, we have determined the 96-hr LC50 value for UIA in C. magur. 
During the experimental period, various hematological parameters were 
tested, such as total erythrocyte count, hemoglobin, packed cell volume, mean 
corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular 
hemoglobin concentration. Different biochemical parameters like blood 
glucose, serum, and tissue urea, serum glutamate pyruvate transaminase, 
and serum glutamate oxaloacetate transaminase levels and histopathological 
examination were performed.

Results: The 96-hr LC50 value for UIA in C. magur was 7.21 mgL–1. 
The 14th day exposure of UIA (2.4 mgL–1), A. caviae (1.53 × 105 CFU mL–1), 
and their combination resulted in significant decreases in various hemato-
logical parameters such as total erythrocyte count, hemoglobin, packed cell 
volume, mean corpuscular volume, mean corpuscular hemoglobin, and 
mean corpuscular hemoglobin concentration. Additionally, there were no-
table increases in blood glucose, serum and tissue urea, serum glutamate 
pyruvate transaminase, and serum glutamate oxaloacetate transaminase 
levels in all treatment groups compared to the control. Histological examina-
tion revealed significant changes in gill, kidney, and liver tissues, including 
lamellar fusion, edema, nodular enlargement of lamellar tips, lamellar 
congestion and curling in gill tissues, cytoplasmic vacuolation, pyknosis, 
karyorrhexis, karyolysis, and degeneration of renal tubule cells in kidney 
tissues, and increased vacuolation in hepatocytes, disorganization of he-
patic cords, and increased hemorrhage in liver tissues. Interestingly, the 
combined exposure to UIA and A. caviae resulted in fewer histological al-
terations than individual exposures. Furthermore, after the 14th day, the 
group exposed only to bacteria exhibited the lowest relative percent survival 
compared to those exposed to only UIA and the combination.
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Conclusions: This study signifies that there was a nega-
tive synergistic or antagonism effect in the fish after exposure 
to ammonia and bacteria in combination. This discrepancy 
indicates that elevated ammonia concentrations might have 
restricted the survival of A. caviae or disrupted the infection 
process. The present study's findings open a new avenue for 
further understanding the mechanism of ammonia exposure 
in the direction of an alternative method to combat bacte-
rial infections.

INTRODUCTION 

The aquaculture industry faces considerable setbacks 
due to disease outbreaks, with global losses estimated at 
approximately $6 billion each year and these losses stem 
from higher mortality rates and overall declines in animal 
health and productivity (1). A significant factor contribut-
ing to widespread of fish mortality is the interaction of 
three main elements: toxic substances or pollutants, envi-
ronmental conditions, and disease-causing pathogens (2). 
Unlike terrestrial environments, the aquatic environment 
provides a favorable breeding ground for pathogenic bac-
teria, irrespective of their host species (3). Changes in water 
chemistry can directly harm fish, while even sub-lethal 
changes may cause stress, rendering more susceptible to 
infections (4). Clarias magur (Hamilton, 1822), also 
known as the Asian or walking catfish, is a high value fish 
species in India and Southeast Asia for its taste and nutri-
tional value. Despite its commercial significance, it is now 
classified as 'endangered' on the IUCN Red List due to its 
significant decline in the wild population caused by various 
known and unknown factors, including environmental 
parameters and potentially harmful diseases (5). This cat-
fish, typically found in swampy water environments, used 
to face challenges such as hyper-ammonia and desiccation 
stresses that result in increased ammonia accumulation 
and toxicity. However, the specific mechanisms underlying 
this ammonia toxicity remain unclear (6, 7).

Ammonia is the primary nitrogenous compound ex-
creted by fish which can significantly impact fish produc-
tivity and enters natural water system through various 
pathways. The concentration of ammonia can escalate 
swiftly in confined water bodies and intensive fish farm-
ing systems due to the continuous buildup of feed wastes 
(8). Fishes naturally generate ammonia during the break-
down of organic substances like protein, releasing it pri-
marily through gill membranes and to a lesser extent 
through urine (9). Additionally, anthropogenic activities 
like sewage discharge, industrial waste, and agricultural 
runoff containing chemical fertilizers can also elevate am-
monia levels in aquatic environments (6). In aquaculture 
systems, ammonia exists in equilibrium between ionized 
(NH4

+) and unionized (NH3) forms, with the latter being 
more toxic as it can easily penetrate fish gills and convert 
to NH4

+ internally to establish an equilibrium between 
internal and external un-ionized ammonia concentra-
tions, leading to cellular damage (10).

Ammonia impedes oxygen transfer from gills to blood, 
resulting in immediate and prolonged gill damage. Fish 
affected by ammonia poisoning often exhibit sluggish 
behavior, appearing near the water surface and seemingly 
gasping for air (11). Ammonia can be acutely toxic to fish 
mainly due to its effects on the central nervous system, 
leading to "acute ammonia intoxication," which may in-
clude convulsions and death (12). 

Pathogens consistently release virulence factors as their 
strategy to evade host defenses, ultimately aiding in the 
establishment of infections (13). Magur catfish are sus-
ceptible to bacterial and fungal infections throughout 
their farming cycle. Several Gram-negative bacterial 
pathogens have been identified in magur, including 
Aeromonas hydrophila, Aeromonas veronii, Aeromonas ca-
viae, Flavobacterium spp, Edwardsiella tarda, Edwardsiella 
ictaluri, and Pseudomonas spp (14, 15). Most species be-
longing to the Aeromonas genus are pathogenic to C. ma-
gur including Aeromonas caviae. Recently A. caviae infec-
tion has been found to cause up to 70% mortality in the 
hatchery and grow-out culture of magur fingerlings (16).

 Aeromonads are commonly present in freshwater cul-
tivation systems, and the rapid increase in ammonia level 
within the aquatic system poses a significant constraint 
in aquaculture production. The coexistence of these two 
factors can have a substantial impact on the health of fish. 
In some studies, it has been found that ammonia toxicity 
has increased the disease susceptibility of fish (17), where-
as, in some cases there has been found to decrease the 
susceptibility (18). A decrease in protection against bac-
teria (Streptococcus iniae) in ammonia-exposed trout was 
reported by Hurvitz et al. (18). Whereas there seemed to 
be no association between the concentration of unionized 
ammonia and in the mortality of tilapia fingerling as re-
ported by Zainal et al. (19). In contrast, ammonia limited 
the Flavobacterium columnare infection in channel catfish 
by interfering with the infection process thus causing an 
increase in protection (17). The Combined effect of am-
monia and bacterial infection together on Clarias magur 
has not been studied so far. Moreover, the mechanism of 
ammonia induced toxicity and their adaptability in C. 
magur is poorly understood. Given this context, a system-
atic study was devised to examine the individual and 
combined exposure effect of un-ionized ammonia and 
Aeromonas caviae on haemato-biochemical and histo-
pathological changes of different tissues of C. magur.

MATERIALS AND METHODS 

Collection and maintenance of the 
experimental fish

C. magur juveniles (length 12 ± 1.0 cm and weight 45 
± 2.0 g) were procured from a certified Magur hatchery 
in West Bengal, India and transported to the wet lab at 
ICAR-CIFE, Mumbai, in airtight polythene bags with 
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oxygen (100 fish per pack). Three hundred fish were used 
for the acute toxicity study and 100 for the combined 
toxicity study. Upon arrival, fish underwent a dip treat-
ment with potassium permanganate (5 mg L–1) as a pre-
caution and after that they were transferred to 200 L ca-
pacity plastic tank (20 fish in each tank) and being 
acclimatized in the wet laboratory complex of ICAR-
CIFE for 21 days. Adequate aeration was provided, and 
fish were fed with extruded floating pellets containing 
32% protein twice a day @ 3% body weight (w/w). Three 
hundred fish were used for the acute toxicity study and 
100 for the combined toxicity study. For toxicity tests, fish 
were placed in rectangular plastic crates (62 L capacity) 
with bore well water. The tanks were disinfected with 
alcohol, treated with KMnO₄ (4 mg/L), and rinsed. Wa-
ter volume was maintained at 22 L for acute toxicity and 
30 L for chronic toxicity studies. The handling of this 
particular endangered fish species has been performed 
according to the ethical guidelines of the institutional 
ethical committee of ICAR-CIFE, Mumbai.

Preparation of the toxicant stock 
solution and standard curve of ammonia

The test solution was made using ammonium chloride 
(NH4Cl) sourced from SRL, India, having a concentra-
tion of 33.37 gm of ammonium (NH4

+) per 100 gm of 
NH4Cl. The samples of known concentration of total am-
monia nitrogen (TAN) were analyzed using the phenate 
method of Eaton et al. (20) and a standard curve was 
prepared against the obtained values. The concentration 
of unionized ammonia was estimated based on water pH 
and temperature, following the method outlined by Em-
erson et al. (21). 

Bacterial strain and plotting of bacterial 
growth curve 

A virulent strain (BLBM-05) (Accession no – 
MT973994.1) of Aeromonas caviae, obtained from ICAR-
CIFE, Mumbai, was maintained in the Aquatic Animal 
Health Management Division. A growth curve for A. 
caviae was prepared by measuring the optical density (OD) 
of the bacterial broth culture in Brain Heart Infusion 
(BHI) broth at 600 nm at various time intervals over a 
period of 96 h.

Experimental design

Determination of median lethal concentration 
of unionized ammonia in Clarias magur

Fish acute toxicity experiment had been carried out 
following the Organization for Economic Co-Operation 
and Development (OECD) guideline no 203 (22). Bioas-
say experiments were conducted in 50-liter plastic crates 
filled with 30 liters of tap water. To determine the me-
dian lethal concentration of UIA in Clarias magur a 96-hr 
range finding test was conducted. This test was performed 

following the standard method outlined in APHA (23) 
and involved administering five different concentrations 
of UIA (with triplicates for each treatment group): 0, 20, 
40, 60, 80 and 100 mgL–1 of UIA at a water pH of 8.1±0.2 
and a temperature of 30±0.5°C.

Based on the range finding test result, the short-term 
(96 h) definitive acute toxicity test was designed and 
performed taking seven different test concentrations, i.e. 
0 mgL–1 (0 mgL–1 of TAN), 3 mgL–1 (36 mgL–1 of TAN), 
6 mgL–1 (72 mgL–1 of TAN), 9 mgL–1 (108 mgL–1 of 
TAN), 12 mgL–1 (142 mgL–1 of TAN), and 15 mgL–1 
(178 mgL–1 of TAN) and 18 mgL–1 (214 mgL–1 of TAN) 
unionized ammonia (UIA), along with a control. The 
dose-response curve of the test organism was determined 
by plotting probit transformed percent mortality against 
log concentration (24).

Sub-lethal toxicity test 

There after based on the obtained median lethal con-
centration of UIA in C. magur the sub-lethal toxicity test 
was planned for a period of 14 days (25). The study com-
prised of three subsets: the first subset received a concentra-
tion of 2.4 mgL–1 (one-third of the LC50 value) of ammo-
nia treatment, the second subset was exposed to 1.53 x 105 
CFU mL–1 (one-tenth of the LD50 value) (16) concentra-
tion of bacterial infection, and the third subset experienced 
the combined application of both ammonia and bacteria 
to evaluate combined effect in triplicate. Sampling oc-
curred on the 3rd, 7th, and 14th day of the experiment. 

Throughout the experimental period, various water 
quality indicators were carefully tested in accordance with 
the guidelines outlined by APHA (23). The parameters 
assessed included temperature, pH level, dissolved oxygen 
content, alkalinity, hardness, total ammonia nitrogen and 
unionized ammonia. 

Hemato-biochemical analysis 

Fish were anesthetized with eugenol (4-allyl2-me-
thoxyphenol) before blood collection and 1 mL tubercu-
lin syringe rinsed with a 2% EDTA solution was used for 
collecting the blood samples. Blood samples were divided 
into EDTA-containing vials for immediate hematological 
analysis and vials without EDTA for serum collection. 
Serum samples were obtained by centrifugation at 3500 
rpm for 5 min at 4°C and stored at –20°C until use. 

Standard methods were employed to evaluate hemato-
logical indices. The Total Erythrocyte Count (TEC) or 
Red Blood Cell (RBC) count was performed following 
Schaperclaus et al. (26). Blood was drawn into an RBC 
pipette up to the 0.5 mark, then Hayem’s solution (Qual-
igens, India) was added to the 101 mark (1:200 dilution). 
The mixture was rotated for 1 minute and a small drop 
was introduced into the counting chamber via capillary 
action. After 3 minutes for cell settling, erythrocytes were 
counted using a trinocular microscope at 40X magnifica-
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tion across 5 group squares, and the TEC was calculated 
using a standard formula:

( )− × ×
=3 No. of cells dilution factor total area

TEC mm
Area count

Where, dilution factor = 200, depth factor = 10, total 
ruled area = 25, area count = 5.

The White Blood Cell (WBC) or Total Leucocyte 
Count (TLC) was conducted following Schaperclaus et 
al. (26). Blood was drawn into a WBC pipette up to the 
0.5 mark, then WBC diluting fluid (Himedia) was added 
to the 11 mark (1:20 dilution). The mixture was gently 
rotated for 1 minute. A small drop of diluted blood was 
introduced into the counting chamber by capillary action 
and left for 3 minutes to allow the cells to settle. WBCs 
were counted in the large squares at the four corners, with 
cells on two adjacent margins included and the others 
discarded.

( )− × ×
=3 No. of cells dilution factor depth factor

TLC mm
Area count

The Packed Cell Volume (PCV) or hematocrit (Hct) 
was measured according to Schaperclaus et al. (26). Blood 
was drawn into a heparinized capillary tube up to the 100 
mark, sealed with wax, and centrifuged at 3000 rpm for 
3 minutes. After centrifuging, the capillary tube was 
placed on a reading device, and the volume was recorded. 
The PCV or hematocrit value was expressed as the per-
centage fraction of whole blood cells (volume %).

Hemoglobin was estimated by Drabkin's cyanmethe-
moglobin method (27). The technique employed stan-
dardized hemoglobin pipettes. Twenty milliliters of blood 
were added to 5 mL of Drabkin's solution, thoroughly 
mixed, and set aside for 5 min. In the spectrophotometer, 
readings were taken at 530 nm. The hemoglobin values 
were calculated using the hemoglobin standard and a he-
moglobin curve.

MCV expressed as femtoliters (10–15 L) was calcu-
lated using the following formula (27):

( ) ( )
( )= ×

Packed cell volume %
MCV fL  10

RBC count EC in a million per cubic mm

The average hemoglobin mass per erythrocyte in a 
blood sample is known as mean corpuscular hemoglobin 
(MCH). The absolute amount of hemoglobin in an average 
red blood cell in a sample was represented by this value. The 
MCH was calculated from the Hb and RBC (28):

( ) ( )= ×
Hemoglobin (g / dL)

MCH pg   100
RBC Count  EC in a million per cubic mm

MCHC was calculated using the following formula: 
grams of hemoglobin per 100 mL packed cells (27):

( ) ( )
= ×

Hemoglobin (g / dL)
MCHC %  100

Packed cell volume %

Blood glucose, serum total protein, serum albumin 
and globulin, serum glutamic-oxaloacetic transaminase 
(SGOT), Serum glutamic pyruvic transaminase (SGPT), 
urea (serum and tissue) of different experimental fish 
groups were measured spectrophotometrically as per the 
diagnostic protocol of Erba kit (Germany). 

Histopathology of gill, kidney and liver 
tissues

Histopathological observation was carried out follow-
ing the standardized method outlined in Roberts (29). 
Gill, liver, and kidney tissues were promptly collected and 
fixed in NBF solution. After a series of steps, including 
fixation, dehydration, embedding, sectioning, and stain-
ing, Inspection of the prepared slides of gill, liver, and 
kidney tissues was conducted under the Leica DM 750 
light microscope at ×10, ×40 and ×100 magnifications. 

Relative percentage survival

The Relative percentage survival (RPS) was calcu-
lated by following formula (30) as given below: 

 
= ×  

Number of surviving fish after exposure 
100

Number of fish being exposed
RPS

Statistical analysis

Statistical software, IBM SPSS Statistics for Windows, 
Version 22.0 (Released 2013. IBM Corp., Armonk, NY), 
was used to analyze all the data. All the data were ex-
pressed mean ± SE of three replicates (n=3). The data were 
subjected to one-way ANOVA and Duncan post hoc for 
significant differences at a p value of p < 0.05. 

RESULTS 

LC50 value of unionized ammonia in 
Clarias magur

The standard curve obtained from different graded 
concentration of total ammonia nitrogen has been de-
picted in Figure 1 yielding an R-squared value of 0.998. 

Figure 1. Standard curve of TAN (total ammonia nitrogen) of dif-
ferent graded concentrations.
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The 96-hr LC50 value of unionized ammonia in C. magur 
was found to be 7.21 mgL–1 (Figure 2).

Bacterial growth curve

Upon plotting the growth curve for Aeromonas caviae, 
it was observed that the bacterial growth entered the ex-
ponential phase between 12 and 24 hr (Figure 3).

Physico-chemical parameters of water

Physico-chemical parameters of water were recorded 
(Table 1) pre and during 14-day experimental period of 
unionized ammonia in C. magur. The pH, DO, temp, 
ammonia, hardness, and alkalinity levels in all the condi-
tions were recorded in the optimum range for rearing C. 
magur.

Hematological responses

TEC, TLC, Hb, PCV, MCV, MCH, and MCHC 
concentration of C. magur exposed to different concentra-
tions of sub-lethal UIA, bacteria and both ammonia and 
bacteria have been presented in Figures 4A–G. A signifi-
cant (p < 0.05) decrease in the hematological parameters 
was observed in all the treatment groups as compared to 
the control throughout the 14-day exposure period. On 
the 14th day of experiment maximum reduction in TEC 
(1.198±0.1×106 uL–1) and PCV (22.8±0.2 uL–1) was ob-

Figure 2. LC50 value of UIA (Unionized ammonia) in Clarias ma-
gur by exposing fishes to different concentrations of unionized am-
monia (UIA) viz. 0, 3, 6, 9, 12, 15 and 18 mg L–1.

Figure 3. Growth curve of Aeromonas caviae over a period of 96 hr.

Ta
bl

e 
1.

 P
hy

sic
o-

ch
em

ica
l p

ar
am

et
er

s o
f w

at
er

 w
er

e r
ec

or
de

d 
du

rin
g t

he
 ex

pe
rim

en
ta

l p
er

io
d.

Pa
ra

m
et

er
 

C
on

tr
ol

 
A

m
m

on
ia

 
Ba

ct
er

ia
 

A
m

m
on

ia
 a

nd
 b

ac
te

ria
 

3r
d 

7t
h 

14
th

 
3r

d 
7t

h 
14

th
 

3r
d 

7t
h 

14
th

 
3r

d 
7t

h 
14

th
 

pH
8.

17
±0

.0
9

8.
07

±0
.0

7
7.9

7±
0.

29
7.

86
±0

.1
6

7.9
6±

0.
20

8.
16

±0
.1

1
8.

19
±0

.0
6

8.
09

±0
.1

0
8.

29
±0

.0
5

7.7
1±

0.
03

7.
81

±0
.0

2
8.

01
±0

.0
4

Te
m

pe
ra

tu
re

 (°
C

)
31

.2
1±

0.
51

31
.5

1±
0.

58
31

.2
1±

0.
58

31
.0

±0
.2

5
31

.5
5±

0.
24

32
.0

±0
.3

5
32

.4
7±

0.
27

31
.4

7±
0.

22
32

.4
7±

0.
29

30
.8

9±
0.

55
31

.8
9±

0.
60

32
.8

9±
0.

15

H
ar

dn
es

s (
m

gL
–1

)
18

3.
79

±0
.5

9
18

0.
79

±0
.5

9
17

5.
79

±0
.5

9
18

7.1
0±

0.
44

18
9.

10
±0

.4
9

18
3.

10
±0

.9
4

18
7.

69
±0

.8
4

18
2.

69
±0

.8
9

17
9.

69
±0

.8
3

18
8.

90
±0

.3
3

18
6.

90
±0

.1
4

18
9.

90
±0

.9
3

A
lk

al
in

ity
 (m

gL
–1

)
13

2.
25

±1
.3

6
13

0.
25

±1
.3

6
13

5.
25

±1
.3

6
14

7.1
4±

1.
18

14
4.

14
±1

.1
1

14
0.

14
±1

.1
1

13
3.

54
±1

.2
3

13
0.

54
±1

.2
3

13
9.

54
±1

.2
3

14
2.

67
±0

.5
2

14
7.

67
±0

.3
2

14
3.

67
±0

.5
9

D
O

 (m
gL

–1
)

5.
03

±0
.0

9
5.

03
±0

.0
4

4.
93

±0
.0

9
4.

77
±0

.0
9

4.
70

±0
.0

6
4.

87
±0

.1
0

4.
87

±0
.0

7
4.

73
±0

.0
9

5.
17

±0
.1

7
4.

73
±0

.0
8

4.
63

±0
.1

8
4.

63
±0

.3
8

TA
N

 (m
gL

–1
)

0.
21

±0
.0

4
0.

31
±0

.0
9

0.
41

±0
.0

1
40

.7
9±

0.
23

39
.7

9±
0.

28
42

.7
9±

0.
93

0.
25

±0
.0

3
0.

45
±0

.0
5

0.
29

±0
.0

9
41

.5
6±

0.
76

40
.5

6±
0.

75
41

.5
6±

0.
46

U
IA

 (m
gL

–1
)

0.
06

±0
.0

2
0.

06
±0

.0
3

0.
06

±0
.0

5
2.

44
±0

.0
4

2.
24

±0
.0

4
2.

34
±0

.1
0

0.
25

±0
.0

3
0.

35
±0

.0
1

0.
25

±0
.0

1
2.

50
±0

.0
5

2.
40

±0
.15

2.
60

±0
.0

9



T. Bhowmik et al.	 Antagonistic effect of unionized ammonia (UIA) and Aeromonas caviae on the hemato-biochemical ...

164	 Period biol, Vol 126, No 3–4, 2024.

served in the ammonia exposed group & maximum de-
crease in Hb and MCH was observed in the bacteria ex-
posed fish group. Notably white blood cell (WBC) count 
reduced significantly (p<0.05) in ammonia exposed fish 
group (43.5± 0.34×103 μL-1) as compared to the control 
group (80. 19± 0. 09×103 μL-1) on the 3rd day of exposure 

and reduced significantly till the 14th day. But in the case 
of bacteria & combined exposed fish group there has been 
found a little increase in TLC initially on the 3rd day but 
a gradual decrease at the later stage. While in the case of 
MCV and MCHC values, no significant differences have 
been observed between the different treatment groups.

Figure 4A. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on total erythrocyte count (TEC) (×106 
mm–3) of C. magur. Data is shown in mean ± SE of three replicates 
(n=3). Different letters indicate significant differences among the 
treatment groups within the same exposure period at levels of p < 
0.05.

Figure 4B. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on total leucocyte count (TLC) (×103 mm–

3) of C. magur. Data is shown in mean ± SE of three replicates 
(n=3). Different letters indicate significant differences among the 
treatment groups within the same exposure period at levels of p < 
0.05.

Figure 4C. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on hemoglobin content (g dL–1) of C. ma-
gur. Data is shown in mean ± SE of three replicates (n=3). Differ-
ent letters indicate significant differences among the treatment 
groups within the same exposure period at levels of p < 0.05.

Figure 4D. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on packed cell volume (%) of C. magur. 
Data is shown in mean ± SE of three replicates (n=3). Different 
letters indicate significant differences among the treatment groups 
within the same exposure period at levels of p < 0.05.

Figure 4F. Effect of ammonia, bacteria and combined (ammonia and 
bacteria) exposure on mean corpuscular hemoglobin (MCH) (pg) 
of C. magur. Data is shown in mean ± SE of three replicates (n=3). 
Different letters indicate significant differences among the treat-
ment groups within the same exposure period at levels of p < 0.05.

Figure 4E. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on mean corpuscular volume (MCV) (fL) 
of C. magur. Data is shown in mean ± SE of three replicates (n=3). 
Different letters indicate significant differences among the treat-
ment groups within the same exposure period at levels of p < 0.05.
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Biochemical parameters

Blood glucose, total protein, serum albumin, serum 
globulin, SGPT, SGOT, serum and tissue urea concentra-
tions of C. magur exposed to individual and combined 
exposure effect of UIA and bacteria are presented in Fig-
ures 5A–H. During our experiment, serum blood glucose 

levels were observed to rise significantly (p < 0.05) across 
all treatments group, with the bacterial treatment group 
displaying the highest glucose content of 71.67±0.55 
mgdL–1 on the 14th day of experiment as compared to the 
control group (20.7±0.15 mgdL–1). Total protein, serum 
albumin, and globulin experienced a significant (p < 
0.05) decline across all experimental groups in compari-
son with the control. Initially serum total protein level 
was found to increase in the bacteria and combined ex-
posed fish group with a highest value of 1.8±0.008 gdL–1 
in the combined exposed group. But at later stage it sig-
nificantly (p < 0.05) got reduced in all the treatment 
groups with lowest value of 2.48±0.09 gdL–1 in the bac-
teria exposed group. Total albumin and globulin content 
got reduced gradually in all the treatment groups until the 
14th day of experiment. Conversely, the activities of 
SGOT and SGPT in serum displayed a significant in-
crease (p < 0.05) in all experimental groups compared to 
the control. Regarding urea concentration in both serum 
and tissue samples, the highest accumulation of 
19.21±0.29 mgdL-1 urea in serum and 8.38±.17 mgdL-1 

urea in tissue sample was observed in fish exposed to only 
ammonia.

Figure 4G. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on mean corpuscular hemoglobin concentra-
tion (MCHC) (%) of C. magur. Data is shown in mean ± SE of 
three replicates (n=3). Different letters indicate significant differ-
ences among the treatment groups within the same exposure period 
at levels of p < 0.05.

Figure 5B. Effect of ammonia, bacteria and combined exposure (am-
monia and bacteria) on total protein concentration (g dL-1) of C. 
magur. Data is shown in mean ± SE of three replicates (n=3). 
Different letters indicate significant differences among the treat-
ment groups within the same exposure period at levels of p < 0.05.

Figure 5A. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on blood glucose concentration (mg dL-1) of 
C. magur. Data is shown in mean ± SE of three replicates (n=3). 
Different letters indicate significant differences among the treat-
ment groups within the same exposure period at levels of p < 0.05.

Figure 5C. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on serum albumin (g dL-1) of C. magur. 
Data is shown in mean ± SE of three replicates (n=3). Different 
letters indicate significant differences among the treatment groups 
within the same exposure period at levels of p < 0.05.

Figure 5D. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on serum globulin (g dL-1) of C. magur. 
Data is shown in mean ± SE of three replicates (n=3). Different 
letters indicate significant differences among the treatment groups 
within the same exposure period at levels of p < 0.05.
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Relative percentage survival (RPS)

In our present study there has been found a significant 
(p<0.05) decrease in fish relative percent survivability as 
compared to control. In case of bacteria exposed fishes, 
the lowest survivability was observed (60%) then the 

combined (75%) and ammonia exposed (60%) fish group 
as compared to the control (Figure 6).

Histopathological alteration in gill, 
kidney and liver tissue

Figures 7A–E, 8A–F, and 9A–F illustrate histopatho-
logical observations in fish gill tissues of control and 
treated groups. Initially exposure to ammonia alone leads 
to mild atrophy, epithelial shortening, and infiltration of 
immature erythrocytes and leucocytes in primary lamel-
lae, progressing to lamellar hyperplasia, fusion, clubbing 
of lamellar tips, fluid accumulation, loss of lamellae and 
other degenerative changes at later stages. Bacterial expo-
sure causes deformation, hyperplasia, and fusion of sec-
ondary lamellae, progressing to curling, sloughing, and 
increased cellularity. Combined exposure results in epi-
thelial hyperplasia, lamellar fusion, and eventual necrosis 
and disruption of gill epithelium after prolonged expo-
sure.

Figures 10A, B, 11A–C, and 12A–C depict histologi-
cal changes in fish kidney tissues exposed solely to am-
monia, solely bacteria, and both ammonia and bacteria. 
Ammonia exposure results in cellular pyknosis, nuclear 

Figure 5E. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on serum glutamate pyruvate transaminase 
(IU L-1) of C. magur. Data is shown in mean ± SE of three repli-
cates (n=3). Different letters indicate significant differences among 
the treatment groups within the same exposure period at levels of p 
< 0.05.

Figure 5F. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on serum glutamate oxaloacetate trans-
aminase (IU L-1) of C. magur. Data is shown in mean ± SE of three 
replicates (n=3). Different letters indicate significant differences 
among the treatment groups within the same exposure period at 
levels of p < 0.05.

Figure 5G. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on serum urea (mg dL-1) of C. magur. Data 
is shown in mean ± SE of three replicates (n=3). Different letters 
indicate significant differences among the treatment groups within 
the same exposure period at levels of p < 0.05.

Figure 5H. Effect of ammonia, bacteria and combined (ammonia 
and bacteria) exposure on liver tissue urea (mg dL-1) of C. magur. 
Data is shown in mean ± SE of three replicates (n=3). Different 
letters indicate significant differences among the treatment groups 
within the same exposure period at levels of p < 0.05.

Figure 6. Effect of ammonia, bacteria and combined (ammonia and 
bacteria) exposure on relative percentage survival (%) of C. magur. 
Data is shown in mean ± SE of three replicates (n=3).
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Figure 7. Histological changes observed in gill tissue after 3rd day (A, B) and after 14th day (C, D, E) of only ammonia exposure. (A) Desquama-
tion and necrosis (green arrow), mild atrophy and shortening in the epithelial lining of the secondary lamellae (black arrows) (H&E; X40). (B) 
Infiltration of erythrocyte and leukocyte (green arrow) (H&E; X40), Lymphocyte (yellow arrow), immature erythrocyte (blue arrow) (H&E; 
X100). (C) Clubbing the tips of secondary lamellae (thick black arrow) (H&E; X40), Hyperplasia (blue arrow) (H&E; X100). (D) Fusion of 
secondary lamellae (green arrow) (H&E; X40). (E) Degeneration and vacuolation of cartilaginous bar (green arrow), epithelial lifting and 
edema (thin arrow), deformed (irregular shape) secondary lamellae (thick black arrow), Sloughing of epithelial cells (SE) and loss of lamellae 
(L) (thick black arrow) (H&E; X40).

Figure 8. Histological changes observed in gill tissue after 3rd day (A, B, C) and 14th day (D, E, F) of only bacterial exposure. (A) Deformed 
secondary lamellae (thin arrow), complete fusion of Secondary lamellae (thick arrow) (H&E; X40). (B) Congestion (thin arrow) (H&E; X40). 
(C) Gill tissues with curling of primary lamellae (cu) and distal clubbing (dc) of secondary lamellae in the gills (H&E; X40). (D) Curling of 
secondary lamellae (thin arrow) (H&E; X40). (E) Complete fusion of secondary Lamellae (black arrow), incomplete fusion of secondary lamel-
lae (green arrow) (H&E; X40). (F) Nodular enlargements of the lamellar tips with increased internal cellularity (arrow) (H&E; X40).
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Figure 9. Histological changes observed in gill tissue after 3rd day (A, B, C) and 14th day (D, E, F) of combined exposure (both ammonia and 
bacteria). (A) Epithelial lifting (orange arrow), complete fusion (green arrow) and in complete fusion (black arrow) of gill lamellae (H&E; 
X40). (B) Epithelial hyperplasia leading to complete lamellar fusion (arrow head) and necrosis (arrow) (H&E; X40). (C) Separation of epithe-
lial surface on Lamellae (arrow), incomplete lamellar fusion (arrow head) & hyperplasia (H&E; X40). (D) Incomplete fusion (green arrow) 
and complete fusion (black arrow) of gill lamellae (H&E; X40). (E) Separation of gill filament from mucosal epithelium and basement membrane 
(arrow) (H&E; X40). F. Fusion of gill lamellae (arrow head), gill epithelium was disrupted owing to degeneration (green arrow) and necrosis 
(red arrow) (H&E; X40).

Figure 10. Histological changes observed in kidney tissue after 3rd day (A) and 14th day (B) of ammonia exposure. (A) Cytoplasmic vaculation, 
pyknosis (yellow arrow) and karyorrhexis (blue arrow), karyolysis (red arrow) (H&E; X40). (B) Degeneration of the epithelium of the renal 
tubule (arrow) (H&E; X40).

   

Figure 11. Histological changes observed in kidney tissues after 3rd day (A, B) and 14th day (C) of bacterial exposure. (A) Lymphocyte (thin 
arrow), monocyte (green arrow), neutrophil (yellow arrow), immature erythrocyte (red arrow), ruptured RBC (hemolysis) (H&E; X40). (B) 
Degeneration of the epithelium of the renal tubule (thin arrow), infiltration of erythrocytes (star) (H&E; X40). (C) Degeneration of the renal 
tubule cell (thick arrow) and epithelium of the renal tubule (arrow) and (H&E; X40).
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fragmentation, and hepatocyte degeneration initially, pro-
gressing to renal tubule epithelium degeneration with 
prolonged exposure. Bacterial infection alone leads to 

heavy inflammatory cell infiltration, immature erythro-
cyte formation, and tubular degeneration over time. Com-
bined exposure induces erythrocyte infiltration, leukocyte 

   

A B C 

Figure 12. Histological changes observed in kidney tissue after 3rd day (A) and 14th day (B, C) of combined exposure (both ammonia and bacteria). 
(A) Infiltration of erythrocyte (thin arrow), sloughing of epithelium from the basement membrane of renal tubule (red arrow), hyperplasia of he-
matopoietic leukocyte cells (star) (H&E; X10). (B) Large lymphocyte: irregularly round, with many projections on the surface (thinblack arrow), 
Small lymphocyte: elliptic, with minimal cytoplasm, and some microvilli protuberances at the margin (green arrow), Monocyte: intended shaped 
nucleus (yellow arrow), Immature erythrocyte (arrowhead): round, with a round nucleus, Thrombocyte: spindle-shaped with an oval and mostly 
centered nucleus (blue arrow), Qualitative changes in erythrocytes (elongated shape), poikilocytosis (thick black arrow) (H&E; X40). (C) Sloughing 
of epithelium from the basement membrane of renal tubule (thin arrow), pyknosis (green arrow) and karyorrhexis (blue arrow) (H&E; X40).

   

A B C 

Figure 13. Histological changes observed in liver tissue after 3rd day (A) and 14th day (B, C) of only ammonia exposure. (A) Erythrocyte infiltra-
tion into blood sinusoids (blue arrows), increased vacuolation in hepatocytes (black arrows). (B) Disarrangement of hepatic cords (star), necro-
sis of hepatocytes (black arrows). (C) Increased hemorrhage (black arrow), infiltration of sinusoids with erythrocyte and leukocytes (blue arrow).
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Figure 14. Histological changes observed in liver tissue after 3rd day (A, B, C) and 14th day (D, E, F) of only bacterial exposure. (A) Increased 
vacuolation in hepatocytes (black arrows), erythrocyte infiltration into blood sinusoids (blue arrow). (B) Pyknotic nuclei (thin arrow), vaculation 
and necrosis of hepatocytes (thick black arrow). (C) Increased vacuolation in hepatocytes (black arrows), erythrocyte infiltration (blue arrow). (D) 
Degeneration of connective tissue and serous epithelium (yellow arrow), erythrocyte infiltration (black arrow). (E). Dilatation and congestion in 
sinusoids (arrow heads). (F) Hemorrhage (thin arrow), erythrocyte infiltration (thick arrow), vacuolar degeneration of hepatocytes (blue arrow).
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hyperplasia, and epithelial sloughing initially, with further 
degenerative changes in response to prolonged stress.

In Figures 13A–C, the liver tissues of fish exposed 
solely to ammonia exhibit immediate exposure-induced 
increased vacuolation in hepatocytes and erythrocyte in-
filtration into blood sinusoids. Prolonged exposure results 
in hepatic cord disorganization, hepatocyte necrosis, and 
heightened hemorrhage in the liver tissues. Figures 14A–
E illustrates histological changes in liver tissue caused by 
bacterial infection alone. Brief exposure shows pyknotic 
nuclei, vacuolation, hepatocyte necrosis, heightened vacu-
olation, and erythrocyte infiltration. Extended exposure 
results in connective tissue and serous epithelium degen-
eration, along with liver sinusoids dilation and conges-
tion. In Figures 15A–E, histological changes due to the 
combined exposure of ammonia and bacteria in C. magur 
liver tissues are depicted. Combined exposure leads to 
increased vacuolation, erythrocyte infiltration, hepatic 
cord disarrangement, and hemorrhage in the short term. 
Prolonged exposure results in vascular degeneration in 
hepatocytes and other effects in kidney tissue.

DISCUSSION

LC50 value of unionized ammonia (NH3-N)

In this study, the 96-hr median lethal concentration 
(LC50) of Unionized ammonia(UIA) in C. magur was 
found to be 7.2 mgL-1, which is quite higher than the 
values reported for other fish species like Curimbata ju-
veniles (0.62 mgL-1) (31), GIFT Tilapia (0.98 mgL-1) (32), 
shortnose sturgeon (0.58 mgL-1) (33), juvenile burbot 
(0.58 mgL−1) (34) and zebrafish (2.07 mg L−1) (35). How-

ever, it is comparable to the 48-hr LC50 of UIA in Oreo-
chromis niloticus fingerling (7.4 mgL-1) (36), hybrid tilapia 
species (6.6 mgL-1) (37) and double of the 96-hr LC50 
value of UIA in Tra catfish (3.52 mgL-1) (38) exposed to 
ammonia. The variation in LC50 values is attributed to the 
factors such as fish species, size, weight, sex, and biological 
behavior (39). In this case the higher LC50 value of C. 
magur is linked to the larger size of the fish, as larger fish 
tend to be less sensitive to ammonia compared to young-
er ones (36, 37).

Hematological parameters

The presence of harmful substances in aquatic environ-
ments can influence fish blood characteristics, including 
TEC, TLC, Hb, PCV, MCH, MCHC and MCV, serving 
as indicators of prevailing health and stress condition. In 
the present study on sublethal ammonia toxicity, a sig-
nificant decrease in erythrocyte count suggests potential 
anemia in fish (40, 41). Similarly, in fish groups exposed 
to bacteria, a significant decline in erythrocyte count was 
observed, may be due to impaired hemopoiesis (42) and 
anemia with subsequent erythroblastosis (43). The de-
crease in total erythrocyte count observed could also be 
attributed to a hindered ability of the kidney to generate 
red blood cells (44), or it could be linked to blood dilution 
due to disruptions in osmoregulation across the gill mem-
brane (45). A significant decline in total leucocyte count 
(TLC) in ammonia-exposed fish indicates a weakened 
general immune response in fish, as leukocytes play a cru-
cial role in immune defense (46). This decline in count 
could likely be linked to an increase in reactive oxygen 
species (ROS) resulting from prolonged ammonia toxic-
ity (47). Conversely, both bacteria and combined exposed 
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Figure 15. Histological changes observed in liver tissue after 3rd day (A, B, C) and 14th day (D, E) of combined exposure (both ammonia and 
bacteria). (A) Increased vacuolation in hepatocytes (black arrows), erythrocyte infiltration (blue arrow). (B) Hemorrhage (thin arrow), eryth-
rocyte infiltration (thick arrow). (C) Disarrangement of hepatic cords (star), nucleated hepatocyte (thin arrow). (D) Increased vacuolation in 
hepatocytes (blue arrows), vacuolar degeneration (thin arrow) (E) Hepatocytes have nuclei with prominent nucleoli (black arrow), condensed / 
pyknotic nucleus (yellow arrow).
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treatment groups initially showed an increase in TLC. The 
initial increment in total leucocyte count may be the in-
dication that fish immune systems have been activated 
(48). Although at later stage due to prolong exposure it got 
reduced as immunity got compromised (49). A gradual 
decrease in Hb content in ammonia-exposed fish may be 
linked to oxygen deficiency resulting from weakened he-
matopoietic function (50–52) and in bacteria and com-
bined-exposed fish may be due to impaired hemopoiesis 
(42). Similarly, in case of hematocrit value also there was 
a consistent decrease in hematocrit values, akin to findings 
in ammonia-exposed Pacu fish (53), Atlantic salmon (54), 
and sheat fish infected with Edwardsiella tarda (55) sug-
gesting potential hematopoietic tissue exhaustion or dam-
age (56). MCV, MCH, and MCHC values also declined 
steadily until the 14th day across all experimental groups 
indicating a possible increase in immature red blood cells 
and a decrease in total erythrocyte counts (57), similarly 
noted in studies on S. schlegelii (58) and O. belangeri (59). 
This reduction could indicate either hemodilution or de-
ficiencies in hemoglobin production (60), consistent with 
observations in A. hydrophila-infected Labeo rohita (61).

Biochemical parameters

In our study, the elevation in blood glucose level in all 
the experimental groups is likely due to stress-induced con-
version of liver-stored glycogen into glucose, meeting the 
heightened energy demand caused by increased cellular 
metabolism triggered by stress (62). In our experiment a 
significant decline in serum protein levels consistent with 
the findings in fish exposed to other toxic substances (63), 
is attributed to the nephrotoxic effects of total ammonia 
nitrogen (TAN), leading to substantial protein loss through 
renal excretion (64). This initial rise in serum protein level 
in bacteria & combined exposed group may stem from the 
release of cell contents from destroyed red blood cells (65). 
The significant decrease in Albumin (a vital protein es-
sential for immune function) content in our experimental 
groups is similar to the finding in infected Atlantic salmon 
(66), Cyprinus carpio (67) and heavy metal exposed Chan-
na punctatus (68). The decrease in albumin content is 
likely linked to pathogen-induced hemolysis (69). In all our 
experimental groups the initial rise in globulin content 
indicated an active humoral immune response in infected 
fish. Nonetheless, the subsequent significant reduction on 
the later stage may be due to prolonged stress compromis-
ing immunity (70). The impact of toxic substances like 
ammonia on liver and kidney tissue can be evaluated by 
measuring SGPT and SGOT levels in blood serum (71). 
In this study, significant increases in SGPT and SGOT 
levels were observed in all treatment groups (ammonia, 
bacteria, and combined exposure) across the sampling pe-
riods (3rd, 7th, and 14th days). Similar increase in SGOT 
and SGT were reported in rockfish and turbot exposed to 
ammonia (58, 72), as well as in rainbow trout (73). These 
elevations are probably due to tissue necrosis and increased 

transaminase activity (74). Moreover, significant SGPT 
and SGOT increases were noted in rohu fish infected with 
Acinetobacter pittii (75), consistent with findings in other 
bacterial infections like Vibrio harveyi (76) and Aeromonas 
hydrophila (77). In this study, ammonia and combined 
treatment of fish showed increased urea levels in both se-
rum and liver tissue, with the highest accumulation on day 
14. Although bacteria-infected fish group showed no sig-
nificant change due to low ammonia levels in the water. 
The ammonia-exposed fish group had a 101% increase in 
serum urea and a 6.5-fold rise in liver tissue. Similar find-
ings were observed by Chew and Ip, (78) in African lung-
fish, due to detoxification of ammonia into urea. The rise 
in urea levels may be due to ineffective ammonia excretion 
in the presence of environmental ammonia, leading to de-
toxification via the Ornithine-urea cycle (OUC) (79). In 
some previous studies (80, 81), it has been found that ma-
gur catfish have developed several adaptive mechanisms to 
cope with HEA exposure, such as allowing greater am-
monia buildup in various tissues, converting some of the 
accumulated ammonia into non-essential amino acids, and 
transforming it into urea through the activation of key 
OUC enzymes. Similarly, Banerjee et al. (82) have also 
observed that hyper-ammonia stress triggered the expres-
sion of various OUC genes. This suggests that catfish like 
magur has higher ammonia tolerance compared to other 
fish species. However, despite its ability to convert ammo-
nia into urea, their physiology is still getting affected in the 
first few days of exposure, indicating the OUC cycle takes 
some time to efficiently excrete the excess ammonia as urea 
from the body though further research needs to be done 
to confirm the underlying mechanism.

Histopathological changes in gill, kidney 
and liver tissue

In our study, significant changes in gill tissues were evi-
dent. In consistent with our findings Peyghan and Takamy 
(83) also observed lamellar deformities and edema in gill 
tissues of sublethal ammonia exposed fish group, while 
Pane et al. (84) noted acute edema in response to heavy 
metals. Our findings suggest that gill hyperplasia results 
from increased epithelial thickness, and lamellar fusion oc-
curs due to gill epithelium thickening via cell proliferation 
(85). The observed histopathological changes, including 
partial fusion of secondary lamellae, hyperplasia, and epi-
thelial lifting, serve as defensive responses in exposed fish, 
preventing toxicant entry by increasing the diffusion dis-
tance between the external environment and blood, there-
by disrupting oxygen intake (86). Grizzle and Kiryu (87) 
documented similar histopathological changes, including 
hyperplasia, hemorrhage, congestion, and necrosis in gold-
fish gills infected with A. hydrophila. Likewise, Maftuch et 
al. (88) also observed gill damage in Myxobolus sp. infected 
Koi carp (Cyprinus carpio) characterized by congestion and 
blood accumulation leading to swelling. The redness ob-
served in our study may be due to reduced venous blood 
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flow, leading to increased blood volume in vessels within 
the gill lamellae (89).

The teleost kidney plays a vital role in eliminating 
toxic substances and is the first organ to be affected by 
toxicants (90). The histological findings of our study were 
similar with the findings of Das and Mukherjee (91) who 
had observed necrotic changes, including karyorrhexis 
and karyolysis, in rohu fish treated with hexachloro cy-
clohexane. Vacuolation and degeneration in the tubular 
epithelium were also observed after exposure to ammo-
nia-N (92). In the current study, a decline in mature 
erythrocyte count, altered shape, and increased lympho-
cyte populations suggested hematopoiesis failure (91). At 
the same time, an increase in immature red blood cells in 
the peripheral blood suggested a compensatory erythro-
poietic response (44). Akin to our findings, Cengiz (93) 
also documented intracytoplasmic vacuoles, pyknotic 
nuclei in hematopoietic tissue, and degeneration of renal 
tubule epithelial cells in fish exposed to toxicants. Like-
wise, Gill et al. (94) documented degeneration of tubular 
epithelium and nuclear damage, including karyorrhexis 
and karyolysis, in cadmium-exposed Puntius conchonius. 

The liver organ, which plays a key role in numerous 
metabolic functions, is highly susceptible to the toxic effects 
of chemicals. Ammonia, entering the liver through the he-
patic portal vein, participates in metabolic pathways (95). 
Exposure to ammonia results in liver glycogen vacuolation, 
disrupting energy production and causing degenerative 
changes like hydropic degeneration, cloudy swelling, vacu-
olization, and focal necrosis in fish liver tissue (96). Similar 
to our findings, histopathological alterations in liver of 
Aeromonas hydrophila infected Labeo rohita lead to con-
gested portal vessel rupture, pyknosis, mild necrosis, and 
hepatocyte vacuolation. Additionally, hepatocyte vacuola-
tion attributed to blood cell release was noted (97). In con-
sistent with our findings, A. hydrophila infected Oreochromis 
niloticus exhibited significant blood vessels and sinusoids 
congestion, perivascular mononuclear leukocytic infiltra-
tions (lymphocytes, macrophages, and plasma cells), endo-
thelial lining injury leading to perivascular hemorrhage, 
and thrombosis in the portal blood vessels. The hepatic 
parenchyma showed scattered hemorrhage, hepatocyte 
vacuolation, bile duct lining proliferation with periductal 
fibrosis, coagulative necrosis with pyknotic nuclei, tissue 
architecture retention, pancreatic acinar cell necrosis, and 
peripancreatic leukocytic infiltrations (98).

Relative percentage survival (RPS)

In our current investigation, the fish exposed to bacte-
ria exhibited the lowest survival rates, followed by the 
combined (ammonia and bacteria) and ammonia-exposed 
groups, in comparison to the control. In the present study, 
the combined exposure group showed relatively higher 
survival than the bacteria-exposed group may due to the 
reason as mentioned by Farmer et al. (17) in columnaris 

infected channel catfish where higher Total Ammonia 
Nitrogen (TAN) concentrations led were linked to less 
severe infections and increased survival rates compared 
to lower TAN concentrations. This could be attributed 
to the potential improvement in survivability due to 
ammonia exposure. The findings suggest that elevated 
ammonia concentrations may either hinder bacteria 
survival or disrupt the infection process (17). Morris et 
al. (99) similarly found that increased levels of unionized 
ammonia in the water led to significantly improved 
survival rates when lost River suckers were exposed to 
Flavobacterium columnare.

CONCLUSION

The overall findings of the present study revealed that 
the hemato-biochemical and histopathological parame-
ters were affected significantly higher in the case of only 
bacteria-exposed fish as compared to the combined ex-
posed fish and only ammonia exposed fish group. Fur-
thermore, the fish group exposed exclusively to bacteria 
displayed the lowest rates of survival, followed by the 
groups exposed to both ammonia and bacteria, as well as 
the group exposed solely to ammonia, when compared to 
the control. Pronounced histopathological alterations 
were also observed in the treatment group exposed to only 
to bacteria. However, urea content was higher in the 
ammonia exposed fish group, indicating ammonia was 
being converted into urea. So, from this study we can 
conclude that there was a negative synergistic effect or 
antagonism effect in the fish after exposure to ammonia 
and bacteria in combination. This discrepancy indicates 
that elevated ammonia concentrations might have re-
stricted the survival of A. caviae or disrupted the infection 
process. It's evident that ammonia has the potential to 
impede the growth and survival of A. caviae. The findings 
of present study open a new avenue for further under-
standing of the mechanism of ammonia exposure in the 
direction of an alternative method to combat bacterial 
infections.
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