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Review article

Targeting ovarian cancer using high-dose
vitamin C therapy

Abstract

Ovarian cancer is one of the most common and deadliest tumors
among women. Despite recent clinical advances, the combination of
platinum-based chemotherapy and surgery remains the first-line thera-
peutic option. Due to frequent detection at an advanced stage and de-
velopment of therapy resistance, the disease prognosis is often poor, and
mortality rates remain high. Therefore, it is necessary to investigate new
therapeutic approaches that would contribute to increased survival and
higher life quality of ovarian cancer patients. One of these approaches
is the use of the pro-oxidant effect of certain drugs that can disrupt the
redox balance in tumor cells and lead to their death. Vitamin C (ascor-
bic acid or ascorbate) used in high concentrations suppresses cancer cell
growth and metastasis. There are several mechanisms by which vitamin
C exerts its antitumor function including pro-oxidant activity, epigen-
etic reprogramming and tumor environment oxygen sensing. The po-
tential use of vitamin C in combinatorial therapies (as a support to
standard therapies) should be reconsidered through more detailed
mechanistic and clinical studies. Finding new therapeutic approaches
would augment the available mechanisms in the fight against cancer
leading to the increase in patient welfare and overall survival of cancer
patients.

INTRODUCTION

Ovarian cancer is one of the most severe malignancies in women and
the deadliest among the gynecological tumors. In contrast to some
other cancer types, 5-year survival rates for ovarian cancer patients still
have not improved significantly, remaining below 30 % (7). Main factors
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that contribute to high mortality of ovarian cancer are
lack of effective early detection strategies, usual detection
at an advanced stage, tumor heterogeneity and develop-
ment of resistance to therapy (2). Most ovarian cancers
originate from epithelial cells; however, they show high
heterogeneity regarding the histological and molecular
characteristics. Among ovarian cancers the most frequent
and lethal is the high-grade serous ovarian carcinoma
(HGSOC) causing the death outcome in more than 70
% of women with this diagnosis (3).

First-line therapy for advanced ovarian cancer com-
prises cytoreductive surgery and adjuvant platinum- and
taxane-based chemotherapy (e.g., carboplatin/paclitaxel)
(4). As HGSOC:s often show deficiency in DNA damage
repair (DDR) mainly due to BRCA1, BRCA2 and RAD51
gene alterations, those tumors are usually sensitive to
initial chemotherapy (5). However, very often, the tumors
relapse after certain period post-therapy showing usually
even more aggressive and resistant phenotype. In spite of
emerging new therapies, like poly (ADP-ribose) poly-
merase (PARP) inhibitors (PARPI), antiangiogenic drugs
and immune checkpoint inhibitors, the improvement of
the overall survival (OS) of ovarian cancer patients is still
modest and unsatisfactory. Therefore, the investigation
and potential implementation of additional therapeutic
approaches that could improve patient welfare and disease
outcome is of major healthcare interest.

Reactive oxygen species (ROS) are continuously gener-
ated through aerobic metabolism in eukaryotic cells and
play important roles in different cellular processes (6).
Tumor cells produce higher levels of ROS due to their
intensive metabolism, genomic instability and hypoxic
environment, and in consequence they adopted more pro-
nounced antioxidant mechanisms (7). As exposure to
higher levels of ROS induces excessive damage that can
trigger cell death, pro-oxidant effect of different com-
pounds is intensively investigated as potential anticancer
therapy.

Vitamin C (ascorbic acid or ascorbate) was shown to
exhibit antitumor properties when used in high pharma-
cological doses. In addition to impairing redox balance,
vitamin C also targets epigenetic reprogramming and
oxygen-sensing regulation in cancer cells (8). In this re-
view, we will summarize known mechanisms by which
vitamin C exerts antitumor activity and discuss the po-
tential of its implementation in combinatorial therapeutic
approaches that could improve response of ovarian cancer
patients to therapy.

HISTOLOGICAL AND MOLECULAR
HETEROGENEITY OF EPITHELIAL
OVARIAN CANCER

More than 85 % of ovarian cancer cases are of epithelial
origin, however, epithelial ovarian cancer exhibits high
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heterogeneity based on histological properties, risk factors
and response to therapy (4, 9). Due to the existence of
multiple histological subtypes, it was necessary to estab-
lish a more simplified classification also considering recent
findings obtained by the molecular profiling of ovarian
cancer. According to recent classification, epithelial ovar-
ian cancers are divided into two groups: type I comprising
endometrioid, mucinous, clear cell and low-grade serous
carcinoma (LGSC), and type II comprising high-grade
serous ovarian carcinoma (9). Type I ovarian cancers gen-
erally have less severe clinical outcomes, whereas the type
II tumors show more aggressive phenotypes and have
worse prognosis. Type II tumors are considered to origi-
nate from the fallopian tube, which could be one of the
reasons of its usual detection at an advanced stage (10).

Most of the cancer subtypes from the type I group have
activating mutations in KRAS or BRAF genes (except
clear-cell carcinoma). Mutations in genes P/IK3CA,
PTEN, CTNNBI, and ARIDIA are also frequent, where-
as the pivotal tumor suppressor gene 753 is rarely mu-
tated in type I cancers (not referring to the mucinous)
(11-15). In contrast, almost all tumors of type II group
harbor 7P53 mutations. HGSOC:s in general show high-
er genomic instability compared to type I tumors, includ-
ing high frequency of germline and somatic mutations in
BRCAI and BRCA2 genes involved in homologous re-
combination (HR) and in general high frequency of copy
number alterations in numerous genes (5, 16). In addition
to high heterogeneity between ovarian cancers from dif-
ferent patients, the data obtained by next-generation se-
quencing also revealed high intra- and inter-tumor diver-
sity in the same patient. Latter are consequences of
subclonal tumor evolution and response to specific anti-
cancer therapy.

CURRENT THERAPEUTIC APPROACHES
FOR OVARIAN CANCER

In spite of novel targeted tumor therapies and immu-
notherapies, combination of surgery and standard chemo-
therapy still remains first choice treatment for ovarian
cancer (1, 4, 17). Recent ICONS clinical study revealed
better progression-free survival (PES) and OS for upfront
cytoreductive surgery and subsequent chemotherapy
compared to neoadjuvant chemotherapy (78). Standard
chemotherapy comprises carboplatin and paclitaxel ad-
ministered intravenously. Most of the ovarian cancers
initially respond efficiently to chemotherapy resulting in
tumor remission. Disease recurrence occurs in around
75 % of advanced ovarian cancer and it is the main cause
of cancer-related deaths. Platinum-sensitive tumors recur
after 6 or more months post-therapy, whereas platinum-
resistant ovarian cancers (PROCs) usually progress with-
in 6 months of chemotherapy (19). In such cases, extensive
secondary cytoreductive surgery and further chemo-
therapy are considered as therapeutic options. However,
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the efficacy and benefits of cytoreductive surgery in the
context of PROC are still being investigated (20). Lately,
intraperitoneal administration of platinum-based chemo-
therapy has been shown as beneficial and more efficient
than intravenous chemotherapy for advanced ovarian
cancer, particularly for large residual tumors (21, 22).

Initial sensitivity to chemotherapy in around half of
the HGSOC cases can be mainly explained by homolo-
gous recombination deficiency (HRD) as a result of ge-
netic or epigenetic changes in genes that are important
for this process. As already mentioned, the most frequent
among them are germline and somatic mutations in
BRCAI and BRCA2 tumor suppressots (23). Moreover,
germline mutations in BRCAI or BRCA2 genes increase
the risk of developing certain types of cancer, including
ovarian, as they contribute to genomic instability. BRCA2
protein has important role in DNA repair as it binds to
and regulates RAD51, which is crucial factor in HR (24).
Additional modifications that result in HRD are epigen-
etic silencing of BRCAI and RADS5IC, as well as modifi-
cation of BRCAI, BRCA2 and RAD5I levels by increased
expression of specific microRNAs (19). The existence of
BRCAI/2 mutations in ovarian cancer can be considered
as prognostic factor for the initial response to platinum-
based therapy. Although BRCA 1/2-deficient tumors show
initial sensitivity to platinum compounds, eventually
those tumors develop resistance to therapy. One of the
mechanisms of the acquired therapy resistance are sec-
ondary intragenic mutations in BRCA2 that result in
rescuing its function in DNA damage repair, making the
tumors resistant to therapy-induced DNA damage (25).
In addition, acquired resistance to chemotherapy in
HGSOC is accompanied by inactivation of the RBI,
NFI, RAD51B and PTEN tumor suppressor genes, and
amplification of the CCNNEI gene, a positive regulator of
the cell cycle. In part of patients with the recurring disease
increased expression of the ABCBI gene, which encodes

for the multidrug resistance protein 1 (MDR1) was found
(26).

‘The implementation of PARPI in patients with tumors
that have already deficient DDR makes these tumors
more sensitive to DNA damage, being an example of syn-
thetic lethality. The usage of PARPI in parallel with plat-
inum-based chemotherapy leads to stronger synergistic
response (27). The mechanism of sensitivity of HR-defi-
cient tumors to PARPI is still not completely elucidated.
The initial model proposed that PARP inhibitors caused
impairment of base-excision repair (BER) leading to ac-
cumulation of single strand breaks (SSBs) that are subse-
quently converted to replication-related double strand
breaks (DSBs). This model has been challenged and
complemented by the following discoveries: presence of
the trapped PARP-1 on the SSB intermediate during
BER, the role of PARP at stalled replication forks, inhibi-
tion of PARP-1-POL6-mediated alternative-end-joining
and hyperactivation of PARP in HR-defective cells (23,
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28). First PARPI therapy approved for ovarian cancer was
olaparib in 2014, and since then several other inhibitors
have been registered for the treatment of recurring ovar-
ian cancer such as rucaparib and niraparib (29). However,
the development of resistance to PARPi occurs frequent-
ly. The mechanisms contributing to resistance to PARPi
are mostly related to restoration of the functional homol-
ogous recombination repair (HRR) as a result of somatic
restoration of the mutated BRCAI, BRCA2 and RAD51
or reversion of BRCAI and RADS5I hypermethylation
(30-33). Novel therapeutic approaches should focus on
inhibition of HRR to induce “BRCAness” in tumors with
acquired resistance and those that gained resistance by
restoration of the functional HRR.

Another targeted therapy approved for the treatment
of advanced ovarian cancer previously treated by chemo-
therapy is antiangiogenic agent bevacizumab which is an
anti-vascular endothelial growth factor (VEGF) antibody
(34). The heterogeneity of ovarian cancer reflects also on
the response of different tumor types to immunothera-
pies. Platinum-sensitive and platinum-resistant recurrent
ovarian cancer exhibit different immune microenviron-
ment characteristics which results in different potential
to respond effectively to immunotherapies. Although the
platinum-sensitive cancers have more potential to benefit
from immunotherapies due to higher mutational burden
and higher expression of programmed cell death ligand 1
(PD-L1), combinations of different immunotherapies and
other therapeutic approaches could contribute to more
effective ovarian cancer treatment (35—-37).

Alterations in MAPK pathway are frequent in LGSCs
and endometrioid ovarian cancers, which opens the pos-
sibility of implementation of the targeted MAPK inhibi-
tor therapies. The most frequent mutations that impact
the activity of the MAPK pathway in LGSC are those in
KRAS, NRAS, BRAF and NFI genes. KRAS-mutated
LGSCs show good response to MEK-inhibitor therapy
(38, 39). Mutations in the genes that are part of the PI3K/
Akt/mTOR pathway (e.g., PTEN, PIK3CA) have been
found in both type I and II ovarian cancer, therefore,
therapies that target specific components of this pathway
have been considered as a potential therapy for ovarian

cancer (12, 40).

As already mentioned, almost all type II ovarian can-
cer cases harbor mutations in the 7°53 gene which is
important regulator of various pathways involved in cel-
lular response to therapy, such as cell cycle arrest, apop-
tosis, senescence and DNA repair (41). Several therapeutic
approaches aim to utilize the p53 status in ovarian cancer.
Cells with mutant p53 have inefficient Gl cell cycle arrest
after DNA damage, therefore, additional impairment of
G2 arrest (e.g., by using Weel inhibitors), will make them
more prone to cell death in consequence of chemotherapy
(42, 43). Another potential approach could be reactiva-
tion of p53 or removal of the mutated p53 by, for example,
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inhibition of the Hsp90, which normally prevents its deg-
radation (44).

To conclude, although several molecular pathways
have been thoroughly investigated and implemented as
targets for therapies against advanced ovarian cancer, un-
satisfactory outcomes still urge for opening novel poten-
tial therapeutic approaches.

TARGETING REDOX HOMEOSTASIS AS
ANTICANCER THERAPY

During the aerobic metabolism ROS are produced
including superoxide, hydroxyl radicals and hydrogen
peroxide. Balance between oxidized and reduced cellular
states (redox homeostasis) is maintained by oxidant and
antioxidant processes. Cancer cells produce higher levels
of ROS than normal cells due to their stronger metabo-
lism and defective mitochondria (7). In consequence,
cancer cells have adapted to conditions of increased ROS
by developing higher antioxidant capacity than normal
cells. In spite that, due to extremely high ROS produc-
tion, cancer cells are being close to their oxidative stress
limit (Figure 1).
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Endogenous ROS are mainly produced during oxida-
tive phosphorylation in mitochondrial electron transport
chain complexes 1 and IIT and NADPH oxidase complex
(45, 46). First, oxygen is reduced into superoxide, which
is then converted to hydrogen peroxide by superoxide
dismutase (SOD) in the intermembrane or mitochon-
drial matrix. Ultimately, hydrogen peroxide can be trans-
formed into hydroxyl radicals in the presence of Fe* ions.
In case of exogenously induced ROS, the cellular redox
homeostasis can be perturbed leading to excessive cellular
damage and possibly cell death (Figure 1). The role of
oxidative stress in tumor progression is dual, depending
on the level of the stress and tumor stage (47). It was
found that increased ROS promotes tumorigenesis
through stimulation of cellular proliferation and genetic
instability. Therefore, antioxidant agents have been exam-
ined as potential anticancer therapies. However, recent
studies have not provided strong evidence of the efficacy
of antioxidants in cancer prevention and suppression. In
contrast, in some cancer types antioxidant treatment even
promoted cancer progression (48). On the other side, the
potential of pro-oxidant agents came into focus as a pos-
sible therapeutic option by using specific vulnerability of
redox imbalance in cancer cells. Oxidative stress-inducing
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Figure 1. Redox homeostasis and the effect of external pro-oxidant stimuli in normal and cancer cells. (A) In normal cells reactive oxygen species
(ROS) are normally produced as byproducts of oxidative metabolism. Redox homeostasis is maintained by various antioxidant pathways, also
under external stimuli resulting in increased ROS. (B) Cancer cells regularly produce higher level of ROS compared to normal cells due to in-
tensive metabolism and mitochondrial and genomic defects. In spite of strong antioxidant activity, cancer cells are challenged with their almost
maximal tolerable ROS levels. In case of exposure to higher levels of exogenously-induced ROS, the redox balance in cancer cells can be perturbed
and cells are being pushed beyond their oxidative stress limit leading to excessive cellular damage and death.
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cancer therapies, such as radiation and certain chemo-
therapies further increase ROS accumulation in cancer
cells impairing redox homeostasis and causing excessive
cellular damage that can subsequently lead to cell death

47, 49).

Recent studies suggest that oxidative stress could have
an important role at different stages of ovarian cancer
development. ROS can promote proliferation and metas-
tasis of ovarian cancer having pro-oncogenic activities,
whereas higher level of oxidative stress can have anti-on-
cogenic activity by promoting cancer cell death in conse-
quence of excessive cellular damage (50, 51). Anti-tumor
chemotherapy and radiotherapy are shown to increase the
level of oxidative stress, and their pro-oxidative activity is
used for cancer treatment by induction of excessive ROS
generation leading to ROS-induced cell death (52). As
current pro-oxidant agents used as anticancer therapy
regularly have serious detrimental side effects, it would be
of clinical benefit to explore additional less toxic pro-ox-
idants that could circumvent this problem.

BIOLOGICAL ACTIVITY OF VITAMIN C
AND ITS USE AS POTENTIAL
ANTICANCER THERAPY

Vitamin C, also known as ascorbate, is a natural com-
pound that shows antioxidant properties crucial in de-
fending normal cells from oxidative stress. Due to innate
inactivation of GULO gene that encodes L-gulonolactone
oxidase, an enzyme essential for vitamin C synthesis, pri-
mates and therefore humans need to supply vitamin C
exogenously from diet. For humans, the recommended
daily consumption ranges from 75-90 mg yielding plasma
concentration of 30-80 pM. However, plasma levels un-
der 10 pM can be an indication of reduced dietary intake
of vitamin C or even malnutrition which can cause scur-
vy, the disease associated with vitamin C deficiency that
leads to different serious symptoms which if left untreat-
ed can result in death (53). Although vitamin C defi-
ciency is uncommon in general population, it is frequent-
ly observed in patients with advanced cancer (54).
Interestingly, if plasma levels reach millimolar range, vi-
tamin C can potentially be used as a strategy to fight
cancer (8).

The use of vitamin C as an anticancer therapy has a
controversial history because of conflicting results of
early clinical trials which were carried out around 50 years
ago. In 1970s, several clinical studies and case reports
described the influence of vitamin C on cancer patients
when administered both intravenously and then orally.
High doses of vitamin C led to tumor growth inhibition
and cell proliferation impeding metastasis. In two clinical
studies that enrolled mostly terminal cancer patients,
Cameron and Pauling reported prolonged survival of
ascorbate-treated patients compared to controls (8, 55).
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Prolonged survival was also detected in independent
clinical trial study reported few years later in Japan (56).
However, survival benefit was not detected in patients
enrolled in the clinical study that was supervised by Crea-
gan and Moertel at the Mayo Clinic which cast doubt on
the antitumor effects of high-dose vitamin C (57, 58).
Although none of the studies measured plasma levels of
vitamin C, the conflicting study results can potentially
be explained by differences in pharmacokinetics that de-
pends on the route of vitamin C administration (59). The
important property of vitamin C is that it acts as an elec-
tron donor, which defines its biological activities. When
applied orally, as physiological ascorbate, vitamin C
reaches peak plasma concentration in micromolar range
while when applied intravenously, vitamin C can reach
pharmacological concentrations that yield peak plasma
concentrations in millimolar range. The anticancer capac-
ity of vitamin C can be achieved by intravenous admin-
istration of vitamin C, known as pharmacological ascor-
bate, which exhibits pro-oxidant activity. Currently,
several active clinical trials are using pharmacological
ascorbate as anticancer therapy mostly applied as adjunc-
tive therapy to chemo- or radiotherapy for treating differ-
ent cancer types, such as pancreatic and lung cancer,
glioblastoma, sarcoma, leukemia and lymphoma (60-66).
Understanding the molecular mechanisms of vitamin C
anticancer activity is crucial for the identification of pre-
dictive biomarkers for the purpose of stratifying patients
who will benefit the most from the use of pharmacologi-
cal ascorbate, e.g., by prolonging their survival and caus-
ing cancer remission.

THE MECHANISMS OF ANTICANCER
ACTIVITY OF VITAMIN C

Mechanisms related to sensitivity of cancer cells to
vitamin C, while in the same time normal/healthy cells
remain resistant to vitamin C, are still not completely
understood. Since vitamin C can influence various cel-
lular processes, there is a possibility that the activity of
vitamin C depends on specific characteristics of cancer
cell types. It is proposed that in high-doses vitamin C can
target three main characteristics, i.e., redox imbalance,
epigenetic regulators and HIF1 signaling thereby influ-
encing cancer metabolism (8, 67).

In the presence of intracellular ROS, vitamin C acts as
an electron donor and shifts between different oxidation
states that include ascorbate, a reduced state, and dehy-
droascorbic acid (DHA), an oxidized state (68—71). The
switch between ascorbate and DHA is facilitated by ferric
ion, Fe3* that is converted to ferrous iron, Fe?* which in
the presence of oxygen forms superoxide radical (68). In
the presence of superoxide dismutase (SOD), superoxide
radical is converted to O, and H,O, where the latter re-
acts with Fe?* and forms reactive hydroxyl radical which
is extremely dangerous and toxic to cells (68). These Fen-
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ton reactions are maintained by the switch of ascorbate
to DHA that facilitates recycling of Fe’* to Fe?* eventu-
ally generating more ROS in the cells (8, 68). Due to
structural resemblance to glucose, DHA competes with
glucose for uptake via glucose transporters (GLUTS) (70,
72) which have increased expression in highly glycolytic
cancer cells (73). Once inside the cells, DHA can switch
to ascorbate and cause decrease in intracellular antioxi-
dants by depleting the reduced glutathione (GSH) and
NADPH ultimately generating oxidative stress (70). Con-
sequently, elevated intracellular ROS levels inhibit GAP-
DH (glyceraldehyde 3-phosphate dehydrogenase) causing
energy crisis in very glycolytic cancer cells. Increased ROS
levels also induce genotoxic stress by generating DNA
damage that results in the activation of PARP1 which in
turn consumes intracellular NAD* levels that are crucial
for GAPDH activity ultimately leading to cancer cell
death (74). These effects are not only attributed to KRAS-
or BRAF-mutated colorectal cancer (CRC) cells, since
gastric cancer cells that exhibits high GLUT1 expression
and are dependent on glycolysis have shown to be sensitive
to high-dose vitamin C treatment (75). Therefore, cancer
cells with high GLUT1 expression are prone to oxidative
stress upon high-dose ascorbate treatment.

The anticancer activity of vitamin C is also attributed
to its function as cofactor for many enzymes such as Fe**-
containing and a-ketoglutarate (¢KG)-dependent dioxy-
genases (¢KGDDs) (68). By functioning as cofactor, vi-
tamin C can bind to the catalytic domains of TET
(ten-cleven translocation) enzymes and positively regulate
enzyme activity thus impacting DNA methylation (76).
As an electron donor to Fe**, vitamin C can generate Fe**
which is necessary for TET enzyme activity. TET en-
zymes belong to @KGDD:s that through multiple oxida-
tion reactions catalyze cytosine demethylation by first
converting 5-methylcytosine (5mC) to 5-hydroxymeth-
yleytosine (5ShmC) which is further oxidized to 5-form-
yleytosine (5fC) and 5-carboxylcytosine (5caC). After-
wards, both 5fC and 5caC are efficiently recognized and
removed by thymine DNA glycosylase (TGD), the en-
zyme involved in BER machinery (77). Cancer aggres-
siveness and increased metastatic potential of numerous
cancers were shown to be associated with dysregulation
of TET enzymes. Frequently, TET loss of function occurs
either due to genetic mutations or epigenetic dysregula-
tion which is recognized in hematological malignancies
or different solid tumors (78—80). Consequently, DNA
hypermethylation of numerous tumor suppressor genes is
detected. Interestingly, high-dose ascorbate treatment can
increase TET activity, cause DNA demethylation and
reactivation of tumor suppressor genes as well as enhance
chemosensitivity in lymphoma cells (81). In addition,
ascorbate treatment enhances T-cell recruitment, pro-
motes antigen presentation in TET-dependent manner
and immunotherapy response of melanoma cells (82, 83).
Vitamin C can also remodel epigenetic reprograming by
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regulating Jumonji-C domain-containing histone de-
methylases (JHDMs) which belong to aKGDDs and
catalyze histone demethylation by removing methyl
groups from lysines in histones. Vitamin C is necessary
for the optimal activity and demethylation capacity of
diverse JHDMs thereby regulates chromatin state and
gene expression (84). Next to TET and JHDMs, HIF
hydroxylases also belong to aKGDDs whose activity is
also positively regulated via vitamin C (68). HIF hydrox-
ylases include proline hydroxylase domain proteins 1-3
(PHD1-3) and asparagine hydroxylase (factor-inhibiting
HIF, FIH-1) that negatively regulate transcription factor
HIF-1. HIF-1 activates the transcription of numerous
genes involved in crucial aspects of cancer biology, includ-
ing cell survival, angiogenesis, glucose metabolism and
invasion. In hypoxic conditions, cancer cells overexpress
HIF-1 subunit, HIF-1at which is associated with cancer
progression and worse patient outcome. Under normoxic
conditions, hydroxylation of specific proline residues in
HIF-1a is dependent on PHD1-3 which facilitates the
binding of prolyl-hydroxylated HIF-1ot to von Hippel-
Lindau (VHL) E3-ubiquitin ligase that targets HIF-1ar
for proteasomal degradation. On the other hand, aspara-
gine hydroxylated HIF-1¢r is unable to interact with a
coactivator p300 resulting in the inhibition of HIF-1
transcriptional activity (85). By functioning as both co-
factor and co-substrate, ascorbate can increase the levels
of HIF hydroxylases leading to proteasomal degradation
of HIF-1a (86, 87).

THE ROS-INDUCING EFFECTS OF
VITAMIN C IN OVARIAN CANCER

Several studies have shown different anticancer activi-
ties of vitamin C in ovarian cancer that can be attributed
to increased ROS levels in the cells causing activation or
inactivation of numerous proteins associated with geno-
toxic or metabolic stress (Figure 2). In the pharmacologi-
cal dose, vitamin C can increase both cell membrane
permeability and apoptosis in ovarian cancer cells. Cyto-
toxic effect of high-dose vitamin C treatment is evident
via decreased cancer cell proliferation that can be influ-
enced by reduced levels of CDK2 and increased levels of
CDK inhibitor p21 and p53. At pharmacological dose of
1 mM, vitamin C can decrease the expression of PARP
enzyme. These cytotoxic effects of vitamin C were ob-
served in OVCAR-3 ovarian cancer cells and not in non-
cancer cells (88). In murine ID8 ovarian cancer model,
vitamin C significantly reduces the number of tumor
nodules and prevents spheroid formation compared to
control mice. Reduced level of vimentin and increased
level of E-cadherin was observed in ID8 tumor nodules
isolated from mice treated with vitamin C compared to
untreated control mice which is an indication of EMT
inhibition upon vitamin C treatment in ovarian cancer
cells. In vitro, vitamin C can prevent multicellular spher-
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Figure 2. Mechanism of action of pharmacological ascorbate in ovarian cancer cells. Switch of vitamin C to DHA results in generation of ROS
which cause genotoxic and metabolic stress evident by increased expression/activation (green) or reduced expression/inactivation (blue) of numer-
ous markers that either enhance (green) or decreaselinhibit (blue) different cellular processes (for details see the text).

oid formation, reduce migration, inhibit proliferation and
induce apoptosis as well as cell cycle arrest at S stage in

1D8 cells (89).

Ma and colleagues observed cytotoxic effect of the
pharmacological ascorbate using larger panel of ovarian
cancer cells (OVCAR10, SKVO3, OVCAR3, A2780,
OVCARS5, OVCARS and SHIN3) which was reversed by
the addition of catalase prior to vitamin C treatment in
SHINS3 cell line. The authors have shown that in milli-
molar range, vitamin C induces DNA damage and meta-
bolic stress which were evident by the activation of mark-
ers of DNA damage (YH2AX) and cellular response to
DNA damage (ATM and ATR) as well as energy sensor
AMPK most probably due to ROS production and/or
intracellular ATP depletion. Vitamin C also reduced the
mTOR pathway activity by inducing metabolic stress.
Furthermore, the additive to synergistic effect for high-
dose vitamin C and carboplatin was observed in OV-
CARS5, OVCARS and SHINS3 cell lines. Combined treat-
ment of vitamin C and carboplatin/paclitaxel was more
effective in reducing tumor burden in mice xenograft
model compared to monotreatment. Authors also report-
ed the results of clinical study conducted in patients di-
agnosed with stage ITI or IV ovarian cancer. Patients were
randomized in two study groups where one group re-
ceived conventional carboplatin/paclitaxel treatment
while other group included high-dose vitamin C intrave-
nously injected beside conventional chemotherapy. The
reduction of chemotherapy-associated toxicities and trend
toward overall survival improvement were observed in
high-dose vitamin C treated patients compared to che-
motherapy only treated patients (90).

Few years later, the same group reported that the phar-
macological ascorbate sensitizes BRCA1/2-wt ovarian
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cancer cell lines (SHIN3 and OVCARS5) to PARP; treat-
ment. The combined treatment of pharmacological ascor-
bate with either olaparib or veliparib significantly de-
creased cell viability compared to monotreatment. The
authors also observed the activation of PARP after vita-
min C treatment, most probably due to ROS-induced
DNA damage, which was inhibited upon PARPi treat-
ment. In addition, the authors observed reduced levels of
BRCA1 and BRCA2 as well as RAD51 upon high-dose
vitamin C treatment which would suggest that vitamin
C inhibits HR and causes “BRCAness” phenotype in
BRCA1/2-wt ovarian cancer cells. Dependent on the cell
line, the authors also observed reduced expression of
DNA-PKcs, Ku70 and Ku80, proteins involved in non-
homologous end joining (NHE]) DNA repair mecha-
nism. The above-mentioned results imply that vitamin C
impedes with two main DNA DSB repair mechanisms,
HR and NHE], promoting further DNA damage to oc-
cur. The authors also reported that combined treatment
of pharmacological ascorbate and PARPi increases the
level of DSBs in vitro and reduces tumor burden in mice
xenograft model (91).

In the study reported 20 years ago, vitamin C was used
as an adjunctive therapy to conventional chemotherapy
and was first applied orally then intravenously (60 g twice
a week) which resulted in cancer remission and normal-
ization of CA-125 three years and more in two ovarian
cancer patients (92).

CONCLUSION

In this article, we have summarized the latest thera-
peutic approaches in the treatment of ovarian cancer. Due
to the unsatisfactory response of many tumors to available
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therapies, it is necessary to investigate new adjunctive

therapeutic approaches that could improve the response
of ovarian cancer to standard therapies. One of these ap-

proaches is the application of high pharmacological doses
of vitamin C, which has already shown promising effects

in several in vitro and in vivo studies. Further investiga-
tion and elucidation of more precise molecular mecha-

nisms of vitamin C anticancer activity could lead to the
improvement of the ovarian cancer patient welfare and
overall response to anticancer therapy.
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