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Recombinant therapeutic proteins produced  
in plants: towards engineering of human-type  
O- and N-glycosylation

Abstract

Background and Purpose: Recombinant DNA technology has allowed 
expression of different heterologous proteins in many host systems, ranging 
from prokaryotic to eukaryotic organisms. Therapeutic properties of recom-
binant proteins are very often affected by the composition and heterogeneity 
of their glycans. Conventional expression systems for recombinant pharma-
ceuticals typically do not address this problem and result with products that 
contain a mixture of glycoforms that are neither identical to human glycans 
nor optimized for enhanced biological activity. Over the last decade plants 
have been developed as production platforms for recombinant proteins with 
pharmaceutical or industrial applications. Namely, plant expression systems 
contain very small differences in the post-translational modifications, main-
ly glycosylation, which can partly be overpowered by glycoengineering, whose 
goal is production of recombinant proteins with highly homogenous glyco-
sylation that closely resembles the native system. This review attempts to 
present current accomplishments in the production of plant-derived glyco-
conjugates with humanized N- and O-glycans.

Materials and Methods: Main goal of N-glycoengineering is to reduce 
or eliminate plant-specific N-glycans, and at the same time to introduce 
mammalian-specific N-glycans through the several approaches. The easiest 
way is to change intracellular targeting of plant-made recombinant proteins 
and to ensure their retention in the ER; next approach is to eliminate the 
addition of plant-specific glycans; while the final step is engineering the plant 
glycosylation pathway to introduce mammalian glycotransferases into plants 
with generation of biantennary and multi-antennary structures on complex 
N-glycans. Due to significant differences in O-glycosylation between humans 
and plants, different approaches to engineering of O-glycosylation have been 
taken. Besides having their typical O-glycoslyation on Hyp-residues, plants 
in general miss the machinery for production of mammalian-type O-glyco-
sylation. Attempts have been made to mimic mammalian O-glycosylation 
in plants, specifically the mucin-type addition of GalNAc residues.

Result: Efficient generation of bisected tetraantennary complex N-gly-
cans without typical plant glycoepitopes on human erythropoietin (hEPO) 
and human transferrin (hTF) was obtained in Nicotiana benthamiana 
plants, thus demonstrating generation of recombinant proteins with hu-
man-type N-glycosylation at great uniformity. As for the O-glycosylation, 
attempts to produce mucin-type O-GalNAc and disialylated core 1 O-
linked glycan structures on hEPO in N. benthamiana transgenic plants 
proved to be successful. Moreover, although small amounts of Hyp residues 
were found on recombinant EPO, no plant-specific O-glycans were de-
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tected, which demonstrates that plants are eligible candi-
dates for production of recombinant therapeutics with fully 
humanized O- and N-glycans.

Conclusion: Plants and methods of plant molecular 
farming offer a powerful expression platform for the produc-
tion of a variety of recombinant proteins, which show similar, 
or even higher, biological activity then protein or native ho-
mologs in cultured mammalian cells currently used for large-
scale production.

Introduction

Recombinant DNA technology has allowed expression 
of different heterologous proteins in many host sys-

tems, ranging from prokaryotic to eukaryotic organisms. 
Recombinant microbial systems (mainly bacteria Esche-
richia coli) are in use for the last 30 years and they are now 
very important source of industrial and medicinal proteins 
(1, 2, 3). Yet, some classes of proteins cannot be produced 
in microbial systems due to low product quality, particu-
larly if post-translational processing is needed for stability 
and activity of proteins. Thus, yeast cells, insect cell lines 
and mammalian cell cultures have been utilized for eu-
karyotic protein production (4, 5), although the imple-
mentation of each of these expression systems has its short-
comings (6, 7). Interestingly, these conventional expression 
systems typically do not address the problem of glycan 
heterogeneity albeit they result with products that contain 
a mixture of glycoforms that are neither identical to human 
glycans nor optimized for enhanced biological activity (8).

Over the last decade plants have been developed as 
recombinant protein production systems in a methodol-
ogy called plant molecular farming (9). This methodol-
ogy exploits transgenic plants and plant cell cultures as 
production systems for recombinant proteins with com-
mercial, industrial or pharmaceutical applications. Com-
pared to conventional expression systems plant molecular 
farming has many advantages. Production costs are sig-
nificantly lower than those of cell-based production sys-
tems (10, 11) and plants are capable of performing eu-
karyotic-like post-translational modifications (PTMs) 
(12, 13), which allow the production of recombinant hu-
manized molecules that are highly similar or even identi-
cal to the native protein (14, 15). In addition, engineering 
of plant expression systems enables the production of re-
combinant proteins with specific and controlled modifica-
tions, which provide additional benefit for plant-made 
products that cannot be replicated in bacterial or yeast 
expression systems (6, 16, 17). Plants are particularly well 
suited for production of therapeutic recombinant prod-
ucts such as antibodies and vaccines (18, 19), since gener-
ally they do not carry human pathogens that can be as-
sociated with mammalian expression systems.

The main limitations of plant expression systems are 
differences in the glycosylation pathway, namely complex 

processing of glycan side-chains, including some host-
specific modifications that do not occur in humans and 
vice versa (20, 21, 22). These imperfections can partly be 
overpowered by glycoengineering, whose goal is produc-
tion of recombinant proteins with highly homogenous 
glycosylation that closely resembles the native system. The 
aim of this paper is to review the accomplishments of the 
attempts in production of plant-derived glycoconjugates 
with humanized N- and O-glycans with the emphasis on 
several approaches: (i) use of C-terminal endoplasmic re-
ticulum (ER) retention motif to prevent formation of 
plant-specific complex N-glycans and/or O-glycans; (ii) 
inactivation of plant-specific glycosyltransferases; and (iii) 
introduction of human-specific glycosyltransferases to 
obtain humanized N- or O-glycans.

Overview of post-translational 
modification of PLANT proteins

Glycosylation is the best-studied PTM of plant-made 
recombinant proteins but other types of protein process-
ing and modification also co-occur and are important in 
production of high-quality recombinant proteins. After 
translation, the majority of plant proteins experience co-
valent modifications that change their tertiary and qua-
ternary structures. PTMs are known to affect almost ev-
ery aspect of protein activity, from protein function, 
localization, stability to interaction dynamics with other 
molecules (23). These modifications are very diverse, and 
they range from very simple chemical changes, such as the 
addition of small phosphate or acetate functional groups, 
to complex changes that are enormous in size and by mass 
exceed protein part (e.g. proteoglycans) (24, 25). A single 
type of modification or various combinations of PTMs 
can modify one protein. These modifications may be in-
fluenced by developmental stage, location or by some bi-
otic or abiotic factors, mainly by stress and disease state of 
a plant (23). In all this cases, PTMs are highly regulated 
and specific to cellular requirements. In addition, some 
PTMs (cleavage of a signal peptide or glycosylation) are 
permanent changes of a protein structure, unlike others 
(phosphorylation) that are rapidly reversed. The relation-
ship between structure and function is understood for 
many PTMs but remains incomplete for others, particu-
larly in the case of complex PTMs, such as glycosylation 
(26 ). To conclude, PTMs represent mechanism for expo-
nential diversification of a genome and act to extend the 
repertoire of proteins available to facilitate the complex 
interactions of proteins in multiple cellular pathways (23).

N-glycosylation

Differences of N-glycosylation between 
humans and plants

Glycosylation is a very prominent PTM in all eukary-
otic cells. It is estimated that at least 50% and as high as 
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70% of human proteins are glycosylated (27). Moreover, 
40% of the currently approved protein therapeutics as 
well as many other clinically useful proteins are glycosyl-
ated (28). In N-glycosylation, complex glycan chains are 
covalently attached to the amide nitrogen in the side 
chain of asparagine (Asn) residues on newly synthesized 
proteins. This modification strongly influences many 
properties of proteins, including folding, self-association, 
resistance to proteolytic degradation, solubility, protein 
sorting within the cell, volume and charge of glycopro-
teins and all that can be important for efficiency of ligand 
binding and conformational stability or protein half-life 
(29). Thus, the ability of recombinant expression systems 
to efficiently and accurately glycosylate proteins is vital to 
the production of efficient recombinant protein that will 
be used in clinical applications.

The N-glycosylation pathway in plants is highly ho-
mologous with other eukaryotic systems, including the 
site-occupancy, frequency of glycosylation and the struc-
ture and composition of the core high-mannose type gly-
can added in the ER (23). Glycosylation pathway starts 
when the core glycan structure is assembled in the ER as 
a mannose (Man)-rich lipid precursor, Glc3Man-

9GlcNAc2, which is transferred by oligosaccharyltransfer-
ase complex to the Asn residue in the N-glycosylation 
consensus sequence Asn-X-Ser ⁄Thr (where X is any amino 
acid except Pro) (30, 31). Common N-glycan core struc-
ture Man3GlcNAc2 is composed of N,N’-diacetylglucos-
amine dimmer (GlcNAc-GlcNAc) called chitobiose, a 
b-Man residue attached to the chitobiose and two a- 
Man residues linked to hydroxyl 3 and 6 of the b-Man 
(32, 33). Once transferred onto the nascent protein and 
while the glycoprotein is transported along the secretory 
pathway, the N-glycan undergoes several maturation 
steps. The first step includes the removal of three glucose 
(Glc) residues in ER (34) to generate high-mannose type 
N-glycans that are common to human, animals and 
plants (33). Trimming of Man residues occurs after the 
glycoprotein is transported to Golgi apparatus (GA), 
which yields oligomannose glycan structures (35). These 
structures are further extended with GlcNAc residues to 
form a base for complex-type N-glycans (36 ). These N-
glycans differ between humans and plants (Figure 1), as 
will be described below. Third type of N-glycans are 
called hybrid N-glycans, in which glycoepitopes of a(1,3)-
fucose (Fuc) and/or b(1,2)-xylose (Xyl) are linked to the 
GlcNAcMan5-GlcNAc2 core.

Figure 1. Biosynthesis and processing of N-glycans in plant and human cells. An oligosaccharide precursor assembled onto a lipid carrier is trans-
ferred on specific Asn residues (in Asn-X-Ser/Thr motif) of the nascent growing polypeptide in ER. A first class of high-mannose type N-glycans 
is made after a trimming of Glc and most Man residues. Processing of high-mannose into complex N-glycans occurs during the transport of 
glycoproteins from the cis- (mannose trimming and addition of two GlcNAc residues), through the medial- (addition of the b(1,2)-Xyl and 
a(1,3)-Fuc on plant, and up to four GlcNAc residues on human N-glycans), to the trans-GA (addition of the b(1,3)-Gal and a(1,4)-Fuc on 
terminal GlcNAc residues of plant, and b(1,4)-Gal and Neu5Ac on terminal GlcNAc residues of human N-glycans). Differences in the process-
ing of plant and human complex N-glycans are late GA maturation events. Modifications of complex into paucimannosidic N-glycans are 
typical for plant vacuole.
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Formation of complex glycans varies between mam-
mals and plants (Figure 1). First, plant-specific complex 
N-glycans are made by addition of a a(1,3)-Fuc and/or 
b(1,2)-Xyl by a(1,3)-fucosyltransferase (FucT) and b(1,2)-
xylosyltransferase (XylT), respectively (37, 38), while 
animal and human N-glycans have a-(1,6)-Fuc attached 
to the proximal GlcNAc and do not contain any xylose 
residues (33). Biological relevance of this specific a(1,3)-
Fuc and/or b(1,2)-Xyl additions to allergic reactions in 
humans are not so straightforward and they are still a 
matter of debate because of regular exposure to plant ma-
terials (in this case specific glycans) in our diets and envi-
ronment; therefore, the potential of allergenicity in hu-
mans may be low. However, there are some findings 
which suggest that typical plant glycoepitopes may induce 
rapid clearance from circulation and cause a strong al-
lergic reaction because of the presence of IgE antibodies 
directed against these epitopes (22, 36 ). Even the mouse-
produced monoclonal antibody (mAb) in clinical use, 
Cetuximab, can trigger anaphylactic reactions in atopic 
patients by producing IgE antibodies against non-primate 
N-glycans (galactose-a-1,3-galactose) present on the Ce-
tuximab heavy chain (39). Furthermore, mammals have 
some specific modifications on N-glycans, which do not 
occur in plants, such as addition of b(1,4)-galactose (Gal) 
(40). This limitation can be problematic for production 
of antibodies since these Gal residues facilitates comple-
ment-dependent cytotoxicity and complement binding 

(41). In addition, plants lack homologs of mammalian 
N-acetylglucosaminyltransferase (GnT) -III, -IV and -V 
(11), which are involved in the addition of GlcNAc resi-
dues to create branched N-glycans. As a result, plant N-
glycans carry only two antenna structures, while mam-
malian N-glycans commonly contain multi-antennary 
glycans with two or more terminal branches (42). These 
multi-antennary structures are important for increasing 
the serum half-life of recombinant proteins (11). In plant 
proteins complex bi-antennary N-glycans have been iden-
tified; however, they contain one or two terminal anten-
nae of a(1,4)-Fuc and b(1,3)-Gal linked to the terminal 
GlcNAc units called Lewis a (Lea) (43, 44, 45) and are 
plant-specific glycoepitopes, as we previously mentioned.

Another major drawback of plant N-glycosylation is 
the lack of sialic (neuraminic) acid (Neu5Ac) on the ter-
mini of complex N-glycans, although synthesis of Neu5Ac 
has been documented in some plant species (46, 47). 
Nonexistence of this modification presents an obstacle 
because addition of Neu5Ac is common in mammalian 
systems and it is known to be important in preventing 
clearance of recombinant therapeutic proteins (48). Fi-
nally, additional modifications may occur in plants dur-
ing transport of glycoproteins to their final destinations 
and this usually involves the trimming of terminal sugars 
from complex N-glycans, leaving a core glycan with 
a(1,3)-Fuc and/or b(1,2)-Xyl attached to the Man residue 

Figure 2. Differences in O-glycan structures between human and plant cells: a) Eight known core structures of mucin-type O-glycans, the most 
abundant class of O-glycosylated proteins in human cells, b) Structures of O-glycans added to Hyp in Hyp-rich glycoproteins (HGRPs), the most 
abundant and plant-specific class of O-glycosylated proteins. Extensins and arabinogalactan proteins (AGPs) are the most common members of 
this group.
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of the core structure Man3GlcNAc2. This plant-specific 
glycans are called paucimannosidic N-glycans, and are 
commonly found in plant vacuoles (36 ). In conclusion, 
plant N-glycans can be classified in four groups: high-
mannose type, complex type, hybrid type and pauciman-
nosidic type N-glycans (for review see Balen and Krsnik-
Rasol 2007(33)).

Modifying N-glycosylation by 
glycoengineering

Main goal of glycoengineering in the field of molecu-
lar farming is to reduce or eliminate plant-specific N-
glycans, and at the same time to introduce mammalian-
specific N-glycans. One of the key advantages of 
plant-specific expression systems is that plants are very 
tolerant to glycoengineering (23). However, it is impor-
tant to note that in contrast to the N-glycan profile of 
mammalian cell-derived recombinant proteins, where a 

mixture of N-glycans is present, the plant-produced coun-
terparts exhibit generally a largely homogeneous glycosyl-
ation profile with a single dominant N-glycan species (6, 
49, 50). Recombinant proteins that are secreted by plant 
cells typically carry two types of N-glycans, complex or 
paucimannosidic type, and glycosylation profile cannot 
be predicted in advance. Nevertheless, it is known that 
two factors that can affect this process are (i) final destina-
tion of accumulation and route along the secretory path-
way and (ii) intrinsic character of the recombinant protein 
(23). Currently, the mechanisms and effects of both fac-
tors are poorly understood and some examples of current 
knowledge are shown later in the text.

The easiest way is to change intracellular targeting of 
plant-made recombinant proteins. This was initially used 
to increase yields of target proteins but, as we mentioned 
previously, it may also have an effect on the glycosylation 
state of the protein. The most common approach for ex-

Figure 3. Schematic presentation of the humanized N- and O-glycosylation pathways in GA of N. benthamiana ΔXF plants obtained by glyco-
engineering (modified from Strasser (8)). Expression of mammalian N-acetylglucosaminyltransferase IV (GnTIV) and N-acetylglucosaminyl-
transferase V (GnTV) is essential for building-up of the multi-antennary complex N-glycans (these enzymes are illustrated in blue). Heterologous 
expressed enzymes for the formation of disialylated O-glycans are UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), 
N-acetylneuraminic acid phosphate synthase (NANS), CMP-N-acetylneuraminic acid synthetase (CMAS) and CMP-Neu5Ac transporter 
(CST) (these enzymes are illustrated in red). For sialylation of complex N-glycans two additional mammalian glycosyltransferases, b1,4-galac-
tosyltransferase (GalT) and a2,6-sialyltransferase (ST), are required (these enzymes are illustrated in blue). Enzymes illustrated in black rep-
resent endogenous plant glycosidases and glycoslytransferases that are involved in reactions of early N-glycan modification, Golgi-a-mannosidase 
I (MNS1/2), N-acetylglucosaminyltransferase I (GnTI), Golgi-a-mannosidase II (GMII) and N-acetylglucosaminyltransferase II (GnTII), as 
well as enzymes required for conversion and transport of nucleotide sugars for formation of O- and N-glycans, (UDP-GlcNAc 4 epimerase, 
UDP-GalNAc transporter and Neu5Ac-9-phosphate phosphatase (NANP)).
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pression of recombinant proteins in plants is their reten-
tion in the ER by addition of C-terminal retention/re-
trieval signals (H/KDEL) (51,52) or its extended version 
(e.g. SEKDEL) (53). Protein retention in ER avoids plant-
specific N-glycan maturation (a(1,3)-Fuc and/or b(1,2)-
Xyl addition) and results in formation of only high-man-
nose type N-glycans. For example, when recombinant 
antibody light and heavy chains, produced in transgenic 
tobacco, were tagged with KDEL sequence they con-
tained exclusively high-mannose N-glycans (54, 55). 
Moreover, Loos et al. reported that a KDEL-tagged anti-
HIV antibody (2G12) was deposited in protein storage 
vacuoles that bypass the GA carrying mainly high-man-
nose N-glycans (56 ), while Triguero et al. showed that 
plant-derived mouse IgG mAb, fused to KDEL ER-reten-
tion signal, was N-glycosylated homogeneously through-
out the plant with mostly high-mannose-type N-glycans 
(57). Therefore, plant-specific modifications are reduced, 
consequently reducing induction of allergic reaction. The 
drawback of this procedure is that protein is susceptible 
to increased clearance rates and consequently decreased 
serum half-life (58). Additionally, some studies suggest 
that fusion of KDEL sequence to the recombinant glyco-
therapeutic does not always sufficiently reduce plant-
specific N-glycans and the process is dependent on the 
nature of the recombinant protein (36 ). He et al. showed 
that when the human enzyme a-L-iduronidase (IDUA) 
was expressed with C-terminal ER-retention sequence 
(SEKDEL) in Arabidopsis thaliana plants, only a moderate 
proportion of the recombinant protein was retained in ER 
and decorated with high mannose N-glycans; the remain-
ing fractions were directed to protein storage vacuoles and 
contained complex/hybrid type, thus suggesting protein 
transit through the GA (53). Expression of IDUA with 
the same ER-retention signal in Brassica napus and to-
bacco seeds showed that the presence of the SEKDEL 
sequence greatly diminished the molar ratio of typical 
plant glycoepitopes, Xyl and Fuc (59). These somewhat 
contradictory results indicate that the extent of the ER-
retention of a recombinant protein varies also on the plant 
species and on the type of cell or tissues used as an expres-
sion system (60). Moreover, N-glycosylation pattern of 
the same plant protein is clearly dependent on the level of 
plant tissue organization and can be related to the spe-
cific developmental status (45, 61, 62), while oligosac-
charide structures of glycoproteins were found be impor-
tant determinants of plant tissue morphology (63), which 
indicates that protein trafficking seems to be changing 
during the plant development (64, 65). Therefore, this 
approach for the production of therapeutic proteins ap-
pears very unpredictable.

Targeting of recombinant proteins to other intracel-
lular locations, such as GA, oil bodies, chloroplasts, pro-
tein storage bodies or vacuole can also have an effect on 
the degree and type of N-glycosylation, which can be 
important for protein function and/or stability (66 ). For 

example, N-glycans of paucimannosidic type are often 
regarded as the most typical for vacuoles, but analysis of 
proteins that are deposited in vacuoles revealed the pos-
sibility of complex and high-mannose types as well. In-
terestingly, paucimannosidic N-glycans are needed for in 
vivo efficiency of glucocerebrosidase (GCD), enzyme used 
in the replacement therapy to cure Gaucher disease. 
When GCD enzyme was fused with C-terminal vacuolar 
targeting signal, a recombinant enzyme that carried pauc-
imannosidic N-glycans was produced in transgenic carrot 
cells (15) and it exhibited enhanced in vivo efficiency com-
pared with currently available drug Cerezyme® produced 
in Chinese hamster ovary (CHO) cells (67,68). Targeting 
to the vacuole in these glycoengineered cells resulted in 
more than 90% of its N-glycans being terminated with 
Man residues (15). This is very important since Man end-
ings are necessary for the biological uptake of GCD by 
macrophages, whose lysosomes are deficient for this en-
zyme in patients treated for Gaucher disease. Food and 
Drug Administration (FDA) has approved this carrot-
produced enzyme, also known as Elelyso™ in March 2012 
for treatment of Gaucher disease in humans and is com-
mercially available in the United States (69). This work is 
obviously a milestone in industrial production of plant-
made recombinant proteins since it is the first and at the 
moment the only recombinant plant-derived human 
therapeutic protein approved on the market.Next ap-
proach in glycoengineering is to eliminate the addition of 
plant-specific glycans; specifically a(1,3)-Fuc and b(1,2)-
Xyl. This can be done by targeting the genes which encode 
FucT and XylT enzymes. Strasser et al. generated A. thali-
ana lines in which two genes of the functionally active 
FucT (FuctA and FuctB) and XylT have been knocked 
out (KO), and this triple KO line did not exhibit any 
phenotypic changes under standard growth conditions 
(70). Mass spectrometry analysis of N-glycans from en-
dogenous proteins extracted from the triple KO line failed 
to detect any a(1,3)-Fuc and b(1,2)-Xyl and glycan com-
position also became more homogenous since GlcNAc-
2Man3GlcNAc2 accounted for 42% of the glycans popu-
lation. Efficiency was also tested by introducing mAb 
against HIV (2G12) into triple KO and it was shown that 
this antibody was devoid of a(1,3)-Fuc and b(1,2)-Xyl. 
The same group of authors used alternative approach by 
expressing interfering RNA (iRNA) constructs, which 
targeted the FucT and XylT genes for down-regulation 
and >80% reduction in expression of these genes was 
achieved (50). Expression of 2G12 mAb in glycoengi-
neered ΔXT/FT Nicotiana benthamiana mutant line, 
lacking plant-specific glycosylation, exhibited negligible 
amounts of a(1,3)-Fuc and b(1,2)-Xyl. In addition, sig-
nificant increase in the homogeneity of glycan composi-
tion was achieved, as over 80% of N-glycans were of a 
single type, GlcNAc2Man3GlcNAc2 (50). Cox et al. have 
modified the aquatic plant Lemna minor with an RNA 
interference construct targeting expression of the endog-
enous genes for FucT and XylT in order to produce a mAb 
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against human CD30 (14). The resultant mAbs contained 
a single major N-glycan species without detectable plant-
specific N-glycans and had better antibody-dependent 
cell-mediated cytotoxicity and effector cell receptor bind-
ing activities than mAbs expressed in cultured CHO 
cells. In addition to a(1,3)-Fuc and b(1,2)-Xyl epitopes, 
many plant species display a(1,4)-Fuc and b(1,3)-Gal 
linked to terminal GlcNAC, so-called Lea structures (43, 
44, 45). Even though Lea structures are detected in a 
much lower proportion on plant N-glycans compared to 
highly prevailing a(1,3)-Fuc and b(1,2)-Xyl residues 
(44,71,72), they were still detected in recombinant hu-
man erythropoietin (hEPO) expressed in both moss (73) 
and N. benthamiana (74). Since Lea epitopes are rarely 
present in healthy humans and elevated in cancer patients 
(75) and antibodies against Lea are frequent (76 ), it is 
advisable to remove respective glycosyltransferases, b(1,3)-
galactosyltransferase and a(1,4)-fucosyltransferase, from 
host plants for production of recombinant proteins. The 
disruption of galt1 gene resulted in the absence of the 
complete Lea epitope in the N-glycans of endogenous 
moss glycoproteins as well as on the moss-produced-hE-
PO with the remarkable homogeneity in glycosylation 
(77).

The subsequent step in engineering the plant glycosyl-
ation pathway was to introduce mammalian glycotrans-
ferases into plants in order to generate recombinant pro-
teins with mammalian-specific N-glycan composition. 
First attempts introduced the human b1,4-galactosyl-
transferase (GalT), enzyme that adds b-(1,4)-Gal to the 
penultimate position of the N-glycan chain, into plants 
(78, 79). In vitro b(1,4)-galactosylation of a recombinant 
human antibody in tobacco was to 30% efficient (80), but 
due to the overall difference and the heterogeneity of the 
glycans found in tobacco (81), the mAb could not be 
considered humanized and represented a complex mix-
ture of different glycoforms. In the next attempt, Bakker 
et al. (2006) combined introduction of mammalian spe-
cific glycotransferases with reduction in levels of plant-
specific N-glycans (82). They altered the intracellular lo-
cation of the recombinant human GalT enzyme by 
expressing a chimeric gene encoding the cytoplasmic tail, 
transmembrane domain and stem region (CTS) from A. 
thaliana b(1,2)-XylT gene located in GA fused to the 
catalytic domain of human GalT. The results indicated 
that expression of the hybrid enzyme in tobacco caused 
high-level galactosylation of N-glycans and a steep de-
crease in the level of N-glycans with core-bound Xyl and 
Fuc, presumably due to the premature addition of a ter-
minal sugar in the ER. Second approach applied by Stras-
ser et al. generated a chimeric human GalT fused to the 
cytoplasmic, transmembrane, and stem (CTS) regions of 
rat a(2,6)-sialyltransferase, which has been used to target 
proteins to a trans GA in plants (16 ). This highly active 
modified version of human b(1,4)-GalT was used to 
transform ΔXT/FT N. benthamiana line and progeny was 

screened for efficient protein b(1,4)-galactosylation. 
Screening was done in such way that anti-HIV antibodies 
(2GI and 4E10) were expressed in progeny of transgenic 
chimeric GalT+ line and ΔXT/FT line. Gal was present 
on ~80% of the N-glycans of the anti-HIV antibodies, 
which were also devoid of a(1,3)-Fuc and b(1,2)-Xyl. 
However, targeting of Gal-T in different GA compart-
ments can significantly change N-glycosylation of recom-
binant proteins (83). Namely, incomplete N-glycan pro-
cessing was reported when human Gal-T were targeted to 
early/medial GA (80, 82), while the amount of galactosyl-
ated structures significantly increased when the Gal-T was 
directed to trans GA compartments (84).

Successful attempts of in planta addition of b(1,4)-Gal 
to N-glycans represent a step toward terminal sialylation 
of plant made glycoproteins, since b(1,4)-Gal residues 
serve as the acceptor substrate for Neu5Ac. This nega-
tively charged sugar affects the biological activities and 
half-lives of many therapeutic glycoproteins (85, 86 ). Al-
though sialic acid was detected in some plant species free 
or protein-bound (46, 47, 87), the first attempts to facili-
tate sialylation of endogenous or recombinant proteins in 
plants were unsuccessful. The reason for that was the fact 
that plants contain negligible amounts of Neu5Ac and its 
activated form, cytidinemonophospho-N-acetylneur-
aminic acid (CMP-Neu5Ac) (88, 89), which is being 
transferred to a b(1,4)-Gal-terminus of the complex N-
glycan. Castilho et al. performed simultaneous expression 
in A. thaliana plants of three enzymes required for the 
synthesis of CMP-Neu5Ac in mammals: mouseUDP-
GlcNAc 2-epimerase/N-acetylmannosamine kinase 
(GNE), human N-acetylneuraminic acid phosphatesyn-
thase (NANS), and human CMP-sialic acid synthetase 
(CMAS), which resulted in the generation of significant 
amounts of Neu5Ac and CMP-Neu5Ac (90). Further-
more, six enzymes from the mammalian biosynthetic 
pathway are necessary to achieve substrate biosynthesis, 
nucleotide sugar activation, transport and Neu5Ac trans-
fer to N-glycans in planta (17). Therefore, six mammalian 
proteins comprising the sialic acid pathway (GNE, 
NANS, CMAS, CMP-Neu5Ac transporter (CST) and 
2,6-sialyltransferase (ST-Gal)) were co-expressed togeth-
er with a mAb in N. benthamiana ΔXT/FT transgenic 
line. Nearly all of the available acceptor substrates (i.e. 
galactosylated glycans), present in the glycosylation mu-
tants, were sialylated on the Fc domain of the antibody. 
It was shown that sialylated 2G12 exhibits similar in vitro 
HIV neutralization potency to other glycoforms derived 
from plants and CHO cells, demonstrating full integrity 
of the protein (17). Moreover, functionally active sialylat-
ed hEPO was expressed in N. benthamiana plants (91).

Finally, in planta generation of biantennary and multi-
antennary structures on complex N-glycans has also been 
achieved. The goal was to express the human N-acetylglu-
cosaminyltransferase genes, mainly b1,4-mannosyl-b1,4-
N-acetylglucosaminyltransferase (GnT-III) enzyme that 
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is responsible for the addition of bisecting GlcNAc resi-
dues to central Man of the core structure, thus creating 
antennary glycan structures. Additionally, it was impor-
tant to express a1,3-mannosyl-b1,4-N-acetylglucosami-
nyltransferase (GnT-IV) and a1,6-mannosyl-b1,6-N-
acetylglucosaminyltransferase (GnT-V) that also transfer 
GlcNAc residues to Man, but the resulting structures are 
tri- and tetra-antennary N-glycans. Nagels et al. reported 
production of complex multiantennary N-glycans of en-
dogenous proteins after introduction of GnT-IVa, -IVb 
and -Va in ΔXT/FT N. benthamiana plants, lacking plant-
specific N-glycosylation (11). In the following work, GnT-
III, -IV and -V were co-expressed in ΔXT/FT N. ben-
thamiana plants with the recombinant hEPO and human 
transferrin (hTF) (6 ). This approach resulted in the effi-
cient generation of bisected tetraantennary complex N-
glycans without typical plant glycoepitopes on both 
hEPO and hTF, thus demonstrating generation of recom-
binant proteins with human-type N-glycosylation at great 
uniformity.

O-glycosylation

Differences of O-glycosylation between 
humans and plants

Linkages in which the sugar is attached to an amino 
acid containing a hydroxyl group occur in great variety of 
proteins (92). Therefore, every amino acid with a hydrox-
yl functional group, serine (Ser), threonine (Thr), tyrosine 
(Tyr), hydroxylysine (Hyl) or hydroxyproline (Hyp) can 
be O-glycosylated. O-glycosylation is one of the most 
complex regulated PTMs, which, dependent on the size 
and composition of O-glycans, might affect protein con-
formation and activity (93). In mammals, O-glycosyl-
ation is a common post-translational modification of se-
creted and membrane-bound proteins (94) and it is 
fundamentally different from N-glycosylation, as a typi-
cal consensus amino acid sequence has not been clearly 
identified yet (95). However, O-glycosylation can influ-
ence protein function and structure equally as the N-
glycosylation (29). In addition, process is highly regu-
lated and varies depending on tissue type and cell state 
(96, 97). O-glycosylation has been shown to contribute 
many biological processes in mammals such as inflam-
mation, coagulation, cancer and viral infections. For ex-
ample, the presence of O-glycans can mask recognition 
sites for receptors and other interacting proteins or protect 
them from degradation by proteases (98).

O-glycosylation in humans and plants are significant-
ly different processes, and differences include sites of gly-
can addition, structure and composition of glycans (Fig-
ure 2). In mammals, the most common O-glycosylation 
sites are Ser and Thr residues decorated with either one 
sugar molecule such as N-acetylgalactosamine (GalNAc), 
Fuc, and Gal, or several sugars linked to GalNAc attached 
to Ser/Thr residues. The most abundant class of O-glyco-

slyated proteins are the mucin-type glycoproteins. The 
highly conserved process of mucin-type glycosylation 
starts with the addition of GalNAc onto the hydroxyl 
groups of Ser or Thr, which is performed by enzymes from 
a multigene family known as N-acetylgalactosaminyl-
transferases (GalNAc-Ts) located in GA. Unlike co-trans-
lational and one-step addition of oligosaccharide precur-
sor on Asn residue in N-glycoslation, in O-glycoslyation 
additional sugars are added step by step post-translation-
aly by incorporation of Gal, Fuc, GlcNAc and NeuAc 
residues in different linkages (99). This process results 
with complex heterogeneous O-glycans that are classified 
according to the structure of the glycan core (36 ), as il-
lustrated in Figure 2A. In principal, plants do not perform 
GalNAc O-glycosylation (42, 95, 100). Mammalian 
mucin-type O-glycans have been reported only for rice 
glutelin (101) and prolamines (102). In plants, O-glycans 
are commonly attached to hydroxyl group of Ser residues 
(Solenaceous lectin-type glycosylation), Hyp residues, and 
rarely Thr residues. Hydroxylation of Pro residues in ER 
by prolyl 4-hydroxylase (P4H) is often a prerequisite for 
protein O-glycosylation in plants and Hyp-rich glycopro-
teins (HGRPs), in which O-glycans are added to the hy-
droxyl group of Hyp, are the most abundant class of O-
linked plant glycoproteins. Extensins and arabinogalactan 
proteins (AGPs) (Figure 2B) are the most common mem-
bers of this group (102). In plants, O-glycosylation pro-
cess starts in GA with enzymatic addition of Gal or 
arabinose (Ara). It can be made on contiguous sequences 
of Hyp (for example Ser-Hyp4), when short unbranched 
Ara-oligosacharides are added, or on clustered non-con-
tiguous Hyp sequences that are decorated with branched 
arabinogalactan polysaccharides, consisting of Gal and 
Ara (36 ). Much of the recent work on AGPs has focused 
on their biosynthesis and several of the biosynthetic gly-
cosyltransferase (GT) enzymes responsible for AG poly-
saccharide production have been identified (103, 104) 
and have been grouped into families based on primary 
structure (http://www.cazy.org/). Wu et al. (2010), Liang 
et al. (2013) and Tryfona et al. (2014) identified and 
cloned two a-1,2-fucosyltransferases (FUT4 and FUT6), 
which are members of the carbohydrate active enzymes 
(CAZy) GT-37 family (105, 106, 107). Qu et al. (2008) 
reported a presence of b-1,3- galactosyltransferase, a 
member of GT-31, in the GA of Arabidopsis thaliana 
(108), while Geshi et al. (2013) have identified an Arabi-
dopsis b-1,6-galactosyltransferase of the same CAZy fam-
ily GT-31 (AtGALT31A) that galactosylates AGP side 
chains and indicated an essential role for AGP proteogly-
cans in either specification of the hypophysis or orienta-
tion of the asymmetric division plane (109). Dilokpimol 
et al. (2014) identified in Golgi stacks an enzyme from 
the CAZy family GT-29, AtGALT29A, which is a b-1,6-
galactosyltransferase and can interact with AtGALT31A 
(110). The complex can work cooperatively to enhance the 
activities of adding galactose residues 6-linked to b-1,6-
galactan and to b-1,3-galactan. These results provided 
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new knowledge of the glycosylation process of arabinoga-
lactan proteins and the functional significance of protein-
protein interactions among O-glycosylation enzymes 
(110). Three b-1,6-glucuronosyltransferases, the members 
of glycosyltransferase family 14 (GlcAT14A, GlcAT14B, 
GlcAT14C), were found to have an important role in the 
biosynthesis of type II AGP (111, 112). Knoch et al. 
(2013) have characterized a b–glucuronosyltransferase 
(AtGlcAT14A) from Arabidopsis thaliana and presented 
evidence that the enzyme is a glucuronosyltransferase that 
modifies both the b-1,6- and b-1,3-galactan present in 
type II AGP with a biological role during seedling growth 
(111). Moreover, Dilokpimol and Geshi (2014) reported 
the enzyme activities for other two of the Arabidopsis 
GT14 isoforms, AtGlcAT14B and AtGlcAT14C, which 
were also found to possess the glucuronosyltransferase 
activity adding glucuronic acid residues to b-1,3- and 
b-1,6-linked galactans (112). Gille et al. (2013) identified 
one member of the GT-77 family, Reduced Arabinose 
Yariv1 (RAY1), which seems to catalyze the addition of 
an arabinosyl residue to a side chain containing multiple 
arabinosyl residues rather than single arabinosyl residues, 
and therefore may facilitate the synthesis of an extensin-
like module in an AGP (113). The authors proposed that 
RAY1 encodes a b-arabinofuranosyltransferase that cata-
lyzes the addition of a b- arabinofuranose residue onto a 
b-galactosyl residue of a Yariv-precipitable wall polymer. 
In the studies of Basu et al. (2013) and Basu et al. (2015) 
two hydroxyproline-O-galactosyltransferases (GALT2 
and GALT5), which are members of GT-31 and contain 
a galectin domain, were identified and it was demonstrat-
ed that both enzymes are members of a small multigene 
family and encode Hyp-GALTs (114, 115). Moreover, 
extensive phenotypic characterization of allelic galt2 and 
galt5 single mutants and galt2galt5 double mutants, 
which was performed at the biochemical and physiologi-
cal levels, corroborated the roles of these two enzymes in 
AG biosynthesis and elucidated the contributions of AG 
polysaccharides to AGP function. In the recent study, the 
same group of authors performed the characterization of 
the remaining GALT members (i.e., GALT1, GALT3, 
GALT4, and GALT6) of this small six-membered gene 
family, which are distinguished by encoding a GALT 
domain as well as a GALECTIN domain (116 ). Genetic 
mutant analysis provided additional in vivo evidence that 
GALT3, GALT4, and GALT6 function as Hyp-GALTs, 
similar to GALT2 and GALT5. Allelic galt knock-out 
mutants for all these genes exhibited reduced Hyp-GALT 
activity and contained considerably less glycosylated 
AGPs. Moreover, AGP profiling of the galt3, galt4, and 
galt6 mutants indicated that their activity is not limited 
to a particular AGP or a small subset of AGPs, but instead 
broadly acts on co-expressed AGPs (115), similar to that 
previously reported for galt2 and galt5 (116 ). Three other 
hydroxyproline-O-galactosyltransferases (HPGT1-HP-
GT3), which are members of GT-31, but lack a galectin 

domain, were identified by Ogawa-Ohnishi and Matsub-
ayashi (2015) (117).

O-linked glycosylation in plants was found to have 
roles in plant growth, development, wound healing and 
plant-microbe interactions. For example, reagents that 
bind arabinogalactans have effects on the growth of pol-
len tube tips, somatic embryogenesis and cell expansion 
and/or division (118) and probably constitute the plant 
‘homologues’ of animal proteoglycans (119). However, 
unlike N-glycosylation, O-glycosylation is not so well 
understood in plants and its complexity in plant expres-
sion systems remains to be completely elucidated.

Modifying O-glycosylation by 
glycoengineering

Due to significant differences in O-glycosylation be-
tween humans and plants as well as to limited number of 
studies investigating the presence or absence of O-glycans 
on recombinant plant-made proteins, different approach-
es to engineering of O-glycosylation have been taken.

Sequence requirements necessary for conversion of Pro 
residues of mammalian proteins to Hyp residues by plant 
P4Hs are not well understood, but studies have shown 
that plants convert the proline residues to Hyp and attach 
Ara residues to recombinant proteins (120, 121). When 
peptides of mucin 1 glycoprotein (MUC1) were expressed 
in N. benthamiana, Hyp residues were detected regardless 
of presence or absence of the O-glycosylation machinery 
necessary for the transfer of GalNAc (97). It is still un-
clear whether the Hyp plant-specific glycosylation and 
mammalian glycosyltransferases compete for neighboring 
acceptor sites (97, 121, 122). Immunological potential of 
plant-specific O-glycosylation in recombinant proteins is 
poorly understood, although it has been shown that even 
a single Ara residue linked to Hyp can constitute an IgE 
binding epitope and provoke allergic reaction (123). This 
suggests that non-human O-glycans can seriously hinder 
the broad use of plant-made therapeutics and that their 
removal would be necessary. To accomplish that, addi-
tional studies have to be performed and inactivation of 
plant P4H enzyme would be a first logical step. Namely, 
in silico analysis of human proteome revealed that 30% of 
human proteins carry recognition sequence for plant P4H 
(36), thus representing potential sites for non-human Pro-
hydroxylation on recombinant protein expressed in plant 
systems. Recently, several members of the A. thaliana 
P4H family have been characterized (124), which allows 
screening for P4H candidates that hydroxylate specific 
Pro residues on recombinant glycoproteins in order to 
eliminate them from expression hosts. Such a strategy 
very likely requires the elimination of several P4Hs with 
overlapping substrate specificities and due to the possible 
effects on cell wall assembly (124) it might be necessary 
to perform tissue-specific knockouts or knockdowns to 
avoid problems with biomass formation and overall 
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growth of the plants (94). Besides inactivating P4Hs ex-
pression, another approach would be to block hydroxyl-
ation of Pro residues using inhibitors. Moriguchi et al. 
reported that the ferrous chelator 2,2’-dipyridyl, a potent 
inhibitor of P4Hs, reduced arabinogalactosylation of en-
dogenous proteins in tobacco seedlings (125). Such a 
chemical inhibition strategy could be quite useful for 
transient expression but is less suitable for the stable ex-
pression of O-glycosylated recombinant proteins (94).

Besides having their typical O-glycoslyation on Hyp-
residues, plants in general miss the machinery for produc-
tion of mammalian-type O-glycosylation (122). Analysis 
of recombinant hEPO produced in N. benthamiana 
plants failed to show any O-linked GalNAc residues (6 ), 
thus suggesting that for initiation of mucin-type O-gly-
can formation, the corresponding mammalian GalNAc-
transferase that transfers a single GalNAc residue to Ser/
Thr residues has to be expressed in plants. Study by Das-
kalova et al. investigated the possibility of mimicking 
mammalian O-glycosylation in plants, specifically the 
mucin-type addition of GalNAc residues (122). Trans-
genic N. benthamiana plants expressing the human N-
acetylgalactosaminyltransferase 2 (GalNAc-T2) enzyme 
were used, and after enhancing the amount of UDP-
GalNAc and ensuring its efficient transfer to GA, the 
majority of model antigen LTB-MUC1 (B subunite of E. 
coli heat labile toxin fused to human mucin 1 glycopro-
tein) was glycosylated with GalNAc residues. Efficiency 
was increased by transforming N. benthamiana line with 
UDP-GlcNAc 4-epimerase, a UDP-GlcNAc/UDP-Gal-
NAc transporter and the GalNAc-T2 enzymes. However, 
authors indicate that recombinant protein may also carry 
Ara-containing plant-specific O-glycans. In a different 
study performed on N. benthamiana, transient expression 
of a Pseudomonas aeruginosa Glc(NAc) C4-epimerase and 
a human polypeptide GalNAc-transferase resulted in 
GalNAc O-glycosylation of co-expressed human O-gly-
coprotein substrates (97). However, Hyp modifications 
observed in a MUC1-based substrate indicated that use 
of plants for production of recombinant O-glycoproteins 
requires additional strategies to eliminate the endogenous 
proline hydroxylases. Yang et al. obtained efficient Gal-
NAc O-glycosylation of two stably co-expressed substrate 
O-glycoproteins in A. thaliana plants and tobacco BY2 
cell culture, although a high degree of Pro hydroxylation 
and Hyp-linked Ara on a mucin-derived substrate was 
observed (126 ). Castilho et al. succeeded in an attempt 
to produce mucin-type O-GalNAc and disialylated core 
1 O-linked glycan structures on hEPO in N. benthamiana 
ΔXT/FT transgenic plants by transient expression of hu-
man GalNAc-T2, Drosophila melanogaster core 1 b-1,3-
galactosyltransferase (C1GalT1), human a2,3-sialyltrans-
ferase (ST3Gal-I) and Mus musculus a2,6-sialyltransferase 
(ST6GalNAc-III/IV) along with the machinery for si-
alylation of N-glycans (127). Moreover, although small 
amounts of Hyp residues were found on recombinant 

EPO, no plant-specific O-glycans were detected. This 
study demonstrated that N. benthamiana plants are eli-
gible candidates for production of recombinant therapeu-
tics with fully humanized O- and N-glycans (Figure 3).

Interestingly, plant specific O-glycosylation can be 
used as a tool for enhancing protein stability (increasing 
serum half-life of recombinant proteins), by providing 
resistance to proteolytic degradation in vivo and has been 
proposed as an alternative to the covalent attachment of 
polyethylene glycol (PEG) to purified proteins (PE-
Gylation). PEGylation is widely used on number of FDA-
approved pharmaceuticals because it increases the mo-
lecular mass of the proteins and protects them from 
proteolytic degradation of endogenous proteases. How-
ever, PEGylation has some disadvantages: it is time con-
suming, can result in increased molecular heterogeneity 
and can negatively affect activity of recombinant proteins 
in vivo (128). In the several studies, Hyp-glycosylation tag 
(Hyp-Glyco), which consists of repeating sequences of Ser 
and Pro residues [(SO)n, n=2,10 or 20 and O=Hyp] (129), 
was fused to recombinant proteins (115, 116 ). Substan-
tially greater quantities of proteins, with up to 1400-fold 
increase in yields, have been reported when the Hyp-
Glyco tag was fused with human interferone a2b (hIFN 
a2b), enhanced green fluorescent protein (EGFP) and hu-
man growth hormone (130, 132, 133) expressed in BY2 
tobacco and Arabidopsis cell culture. Hydroxylation of 
Pro residues was limited only to Hyp-Glyco tag with vari-
able arabinogalactosylation of each Hyp residue. When 
hIFN a2b and human growth hormone were fused with 
larger tags, (SO)10,20, significant increases in the in vivo 
serum half-life have been reported (129, 133). Fusion pro-
teins also retained most of their natural activity, while 
overall heterogeneity of protein species was significantly 
lowered compared to heterogeneity following PEGylation 
(129). The whole impact of internally located plant-spe-
cific O-glycans on the stability and biological activity of 
recombinant proteins is still under investigation. How-
ever, a potential advantage of the addition of plant-specif-
ic O-glycans via a protein tag is that they may be removed 
during downstream processing of proteins (23).

The drawbacks of engineering plant 
glycosylation pathway on plant 
development

The absence of any growth phenotype in Arabidopsis 
cgl1 mutant, which lacks proper N-glycan maturations 
because of the defect in Golgi localized GnTI (134), laid 
the foundation for N-glycan engineering of other species 
like Nicotiana benthamiana and Lemna minor (14, 50), 
which extended to the O-glysoylation as well (97, 126, 
127). Majority of these studies reported that in glycoen-
gineered plants no obvious changes in phenotype were 
observed (14, 50, 11, 127, 90), thus suggesting that plants 
tolerate a variety of glycoengineering approaches and are 
highly convenient for production of glycoproteins with 
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humanized glycosylation (135). However, some new find-
ings indicate that unfavorable phenotypical modifications 
may appear as a result of stable non-native glycosyltrans-
ferases expression in transformed plants (84, 136 ). Sch-
neider et al. revealed that N. benthaminana and A. thali-
ana transgenic plants that stably express a modified 
version of human b1,4-galactosyltransferase (STGalT) 
show differences in phenotype (84). Namely, while some 
transgenic plants grew normally, other lines exhibited 
stunted growth and developmental retardation even 
though no differences were observed between their N-
glycosylation profiles. Moreover, recent studies from rice 
reported adverse phenotypes linked with extensive N-
glycan remodeling, thus indicating that glycoengineering 
in some plant species might require new strategies and 
implementation of more elaborate tools (136). These find-
ings should be taken into consideration in respect to 
stable glycan engineering in plants and further studies are 
necessary to investigate in detail the consequences on 
growth, development, reproduction and stress response of 
stable engineered plants that carry human-type complex 
N-glycan modifications.

Conclusions

It is now becoming apparent that plants and methods 
of plant molecular farming offer a powerful expression 
platform for the production of a variety of recombinant 
proteins, which show similar, or even higher, biological 
activity then protein or native homologs in cultured 
mammalian cells currently used for large-scale produc-
tion. Substantial achievement has been made in produc-
tion of plant-made glycoproteins using glycoengineered 
plant expression systems. As our understanding of struc-
tural and functional implications of diverse PTMs in-
creases, we can assume that development of safer and 
more efficient next-generation biotherapeutics, with opti-
mized glycoforms, will also improve in years to come. 
Approaches aiming to engineer plant-produced recombi-
nant proteins with enhanced pharmacological properties, 
although in its infancy, show significant promise. How-
ever, the drawbacks of methods applied for engineering 
plant glycosylation pathway on plant development should 
also be considered in further studies.
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