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MicroRNA regulators of cholinergic signaling link  
neuromuscular, cardiac and metabolic systems

ABSTRACT

The neurotransmitter acetylcholine (ACh) notably regulates many brain 
and bodily functions, including metabolic as well as heart and muscle ac-
tivities. Concordantly, acquired changes in ACh signaling lead to significant 
and widespread systemic effects. Those can be observed both when ACh 
signaling fails, as in the motor neuron disease amyotrophic lateral sclerosis 
(ALS) and when it over-reacts, as in the hyper-cholinergic excitation fol-
lowing organophosphate poisoning. To explore the corresponding molecular 
mechanisms, we focused on regulation of ACh signaling by microRNAs 
(miRs). Current research implicates miRs as post-transcriptional modulators 
of gene expression, playing pivotal, rapid and interactive roles across various 
systems. To interrogate the systemic role of ACh-regulating miRs (Choli-
nomiRs), we sought evidence for CholinomiRs with dual or triple roles in 
neuromuscular junctions (NMJ), heart development and functioning, and/
or metabolic systems. Here, we report key links between CholinomiRs with 
known cardiac and metabolic roles, including the nicotinic acetylcholine 
receptor-targeted miR-1 and the acetylcholinesterase-targeted miR-132, and 
NMJ-related metabolic regulating miRs such as the histone deacetylase 
4-targeted miR-206. Taken together, this information indicates a bridging 
role for CholinomiRs that may be relevant both for NMJ degeneration and 
the metabolic changes observed in ALS patients, and for the cardiac irregu-
larities and NMJ degeneration reported following organophosphate poison-
ing. Uncovering the potentially causal involvement of CholinomiRs in bal-
ancing neuromuscular, cardiac and metabolic functions might improve our 
understanding of the inter-tissue communication and the processes of reach-
ing homeostatic states which are essential for balancing between seemingly 
separate body systems, allowing a more encompassing look on disorders in-
volving impaired cholinergic signaling.

Cholinergic signaling impairments span 
multiple tissues

The neurotransmitter acetylcholine (ACh) has been the very first 
chemical neurotransmitter to be identified (1,2). ACh notably 

regulates numerous brain and bodily functions, including metabolic 
(3,4,5), cardiac (6) and muscle development and activities (7,8,9). Com-
patible with the crucial regulatory role of this neurotransmitter in many 
multi-tissue functions, acquired changes in ACh signaling lead to sig-
nificant and widespread systemic effects (10,11,12). Those can be ob-
served both when ACh signaling fails, as in the motor neuron disease 
amyotrophic lateral sclerosis (ALS) (13,14,15) and when it over-reacts, 
as in the hyper-cholinergic excitation following organophosphate poi-
soning (16,17). Based on this compelling evidence, we predicted the 
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existence of a rapid and efficient surveillance mechanism(s) 
which can send messages between different tissues when 
ACh signaling is imbalanced, and adjust its levels to the 
new needs for reaching homeostasis. In the following, we 
argue that miRs targeted to cholinergic genes and their 
upstream regulators may fit this description.

MiRs as a regulatory system

MiRs are small non-coding RNA molecules that are 
involved in post-transcriptional regulation of mRNA 
translation and stability. By partially binding to sequenc-
es primarily located on the 3’-untranslated region (3’-
UTR) of mRNA molecules, miRs can lead to simultane-
ous de-adenylation, translational repression and cleavage 
of those mRNA molecules that carry such complemen-
tary motifs (18). Functional studies indicate miRs in-
volvement in a broad range of cellular and developmental 
processes such as the cell cycle (19), learning and memory 
formation and maintenance (20), energy metabolism (21) 
and many others. The mRNA targets of miRs include a 
sequence of at least 7 nucleotides which is complemen-
tary to the ‘seed’ region of the miR, and recent evidence 
suggests that other characteristics add to the specificity of 
that pairing (22). While some miRs are tissue-specific, a 
significant amount of them is present in different tissues. 
One miR can thus simultaneously influence multiple 
pathways, and regulate different, yet specific targets. Fur-
thermore, miRs may be transported between tissues, for 
example by being packaged in exosomes (23,24,25), add-
ing inter-tissue communication to their surveillance 
power. Altogether, miRs provide a rapid and economi-
cally efficient regulatory step over gene expression as well 
as inter-tissue coordination of multi-organ functioning, 
precisely those features that one would predict for ACh 
controlling entities.

MiRs in the neuromuscular 
junction

The great majority of miR studies primarily focus on 
their impact on tumor biology and/or the nervous system. 
Nevertheless, an increasing amount of research provides 
evidence for miRs involvement in muscle development 
and maintenance. We predicted that CholinomiRs, those 
miRs which regulate ACh-related functions (1) in one or 
more systems would also be involved in ACh roles in 
other tissues. A prominent example is that of miR-1, 
which was initially discovered in nematodes as a regulator 
of two subunits of the nicotinic ACh receptor nAChR 
(UNC-29 and UNC-63) (26) and has more recently been 
shown to be important for post-mitotic growth of larval 
muscle in a fly model (27). In this experiment Drosophila 
miR-1 (DmiR-1) knock-out mutant lethality was rescued 
when a DmiR-1 transgene was expressed in the mesoderm 
and muscle. It was further suggested by the researchers 
that miR-1 essentially maintained muscle cell identity and 

survival by inactivating the expression of non-muscle 
genes. This is corroborated by evidence showing that miR-
1 operates as a down-regulator of the histone deacetylase 
HDAC4, which is known to inhibit muscle cell differen-
tiation (28,29). Furthermore, miR-1 was shown, along-
side miR-206 which is also targeted to HDAC4, to pro-
mote the differentiation of skeletal muscle satellite cells in 
favor of proliferation, allowing growth and repair of post-
natal skeletal muscle (30,31). Via HDAC4-targeting, 
miR-206 promotes muscle regeneration and re-innerva-
tion following injury (32,33). Also, increases in the levels 
of miR-132, a known regulator of Acetylcholinesterase 
(AChE), potentiate ACh signaling in brain and body alike 
(34,35). MiR-132 has further been proposed as a bio-
marker for the moto-neuron disease spinal muscular at-
rophy (SMA), showing significantly higher levels in pa-
tients as opposed to controls (36). Thus, several known 
miRs play significant roles in various events along the life 
span of motor neurons, NMJs and muscles across multiple 
organisms, such as development, differentiation, func-
tional maintenance, and regeneration after injury.

MiRs in heart development and 
function

Multiple miRs have been identified in cardiac tissue at 
all stages of development. Cardiac-specific knockout of 
Dicer, a gene encoding an RNase III endonuclease that is 
essential for miR processing, leads to rapid heart failure 
and postnatal lethality, showing the importance of car-
diac miRs (37). For the purpose of this review, we will 
focus mainly on miR-1 and miR-132 in cardiac function-
ing. Importantly, miR-1 promotes pluripotent progenitor 
cells or stem cells to adopt cardiac characteristics during 
cardiogenesis (38). Furthermore, miR-1 is causally in-
volved in the electrophysiological functioning of the 
heart, via regulating levels of the GJA1 and KCNJ2 chan-
nels that are believed to contribute to the arrhytmogenic 
potential (39). In mouse models, miR-1 over-expression 
impairs cardiac contractile function, most likely by tar-
geting cMLCK and CaM, as well as by inducing anterior-
ventricular block (40, 41). CaM is an upstream activator 
of CaMKII (42). A decrease in CAMKII activity has been 
reported to initiate changes in myofibril thick filament 
structure, resulting in decreased interaction of myosin 
heads with actin thin filaments (43). The cMLCK kinase 
phosphorylates regulatory light chains in the heart, and a 
decrease in RLC phosphorylation has been shown to pro-
mote myocyte hypertrophy in vivo (44). MiR-1 is also 
dysregulated in mouse ventricles during development of 
severe hypertrophic cardiomyopathy and heart failure 
(45). Thus, accurate miR-1 levels are important for correct 
cardiac functioning.

MiR-1 is not the only miR involved with cardiac ac-
tivities. Rather, miR-132, apart from its neural and im-
mune role, is also involved in heart functioning, along 
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with its tandem miR-212. Mir-132 is highly expressed in 
rat hearts and aortic wall following hypertension and car-
diac hypertrophy (46). In addition, miR-132 and miR-212 
levels are upregulated by hypertrophic stimuli in mice and 
are both necessary and sufficient to drive the hypertrophic 
growth of cardiomyocytes (47). Consequently, miR-
212/132KO mice that lack these two important miRs are 
protected from pressure-overload-induced heart failure, 
whereas miR-212/132 overexpression in cardiomyocytes 
leads to pathological cardiac hypertrophy and severe heart 
failure and death in mice (47). In Drosophila as well, miR-
206 is involved in cardiac hypertrophy through its YAP 
target (48), although little is known concerning this miR’s 
role in the fly’s cardiac function. To conclude, miR-1, 
miR-132 and miR-206 are all important for correct heart 
development and their dysregulated levels may cause 
pathological cardiac conditions.

CholinomiRs at the NMJ: ALS and 
organophosphate poisoning as 
models

The NMJ is a specialized synapse, enabling communi-
cation between the nervous system and skeletal muscles; 
and it makes use of the chemical transmitter ACh for 
relaying electrical impulses. Notably, ACh signaling in 
the NMJ can be regulated by CholinomiRs at multiple 
stages (49). In C. elegans, miR-1 regulates the expression 
of the UNC-29 and UNC-63 nAChR subunits as well as 
the muscle transcription factor MEF-2, such that its levels 
regulate presynaptic ACh secretion (26). In mammals, 
miR-1 provides a surveillance over epigenetic processes in 
the NMJ by targeting the histone deacetylase HDAC4 
(29,30). Intriguingly, HDAC4 also operates as a mediator 
of long-lasting stress-inducible changes in AChE’s pro-
moter choices in the hippocampus (50). This histone 
modifier also regulates nAChR expression following skel-

etal muscle denervation (51), making miR-1 a global up-
stream regulator of ACh signaling. HDAC4 is also ele
vated in the skeletal muscle of patients with the 
motor-neuron disease ALS (52). Predictably, miR-206, 
having an identical seed sequence to miR-1, also regulates 
HDAC4 levels (33). Multiple studies have provided evi-
dence for the important role of miR-206 in muscle regen-
eration and protection from muscular atrophy (53). In a 
mouse model for ALS, miR-206KO mutants showed fast-
er progression of the disease, most likely due to delayed 
muscle re-innervation compared to mice with the func-
tioning miR-206 allele (33). At a later stage of ACh signal-
ing, where ACh degradation terminates such signals, 
miR-132 emerged as direct regulator of AChE levels (34).

Organophosphate poisoning, most commonly caused 
by exposure to insecticides or nerve agents, interrupts 
ACh signaling at all of the above systems and more. Such 
poisoning causes drastic hyper-cholinergic stimuli by in-
stantaneously arresting ACh degradation by AChE, and 
one outcome of such poisoning involves rapid changes in 
AChE gene expression (54). In civil terms, agricultural 
use of organophosphate insecticides is very common, with 
an estimate of a hundred thousand fatalities annually and 
many severe symptoms, including cognitive and cardiac 
ones among survivors (55,56). The organophosphates in-
activate AChE by phosphorylating the serine hydroxyl 
residue on the enzyme (57). This leads to ACh accumula-
tion at the NMJ causing hyper-cholinergic stimulation. 
Moreover, mice exposed to miR-132 antisense molecules 
prior to organophosphate poisoning sustain higher AChE 
levels and show a higher survival and recovery rate com-
pared to naïve animals (58). Collectively, this evidence 
suggests causal involvement of CholinomiRs in both nor-
mal neuromuscular development as well as pathological 
states such as ALS and following organophosphate poi-
soning.

Table 1. miR-1, miR-132 and miR-206 presence and influence in cardiac, metabolic and muscular system

Organism Function affected Body system miRNA

Drosophila, Mouse, 
Rats

Mediates cell cycle arrest and differentiation of cardiomyocyte during chamber 
development (75)
Promotes electrical and contractile heart irregularities (76,39,40,41)

Heart miR-1

Xenopus laevis, Human 
(in vitro), C. elegans

Promotes myogenesis during development (28)
Downregulates muscle sensitivity to and pre-synaptic release of ACh (26)

Muscle

Human (in vitro) Downregulation PPP-dependent NADPH production and ribose synthesis (77) Metabolism

Mouse Upregulation in cardiomyocytes promoting hypertrophy and heart failure (48) Heart miR-132

Mouse Downregulation AChE levels (58) Muscle

Human Promotes inflammation in visceral adipose tissue (78,79,80,81) Metabolism

Drosophila Promotes cardiomyocyte hypertrophy (49) Heart miR-206

Mouse Promotes muscle cell re-innervation (32,33) Muscle

Human (in vitro) Downregulation PPP-dependent NADPH production and ribose synthesis, 
Downregulates gluco-kinase activity (15,73)

Metabolism
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The main organophosphate-induced damage is done 
at the NMJ, where AChE inactivation causes ACh ac-
cumulation and overstimulation followed by blocking of 
ACh signaling (59). Cardiac irregularities, along with a 
wide range of other symptoms, occur frequently following 
organophosphate poisoning; and arrhythmias can often 
be the cause of death (60,61,62). Both miR-132 and miR-
1 overexpression contribute to cardiac irregularities 
(39,40,41,46,47) and have roles in neuromuscular desen-
sitization (26,58). Therefore, miR-1 and miR-132 may 
modulate both the cardiac and the neuromuscular symp-
toms observed following organophosphate poisoning. 
Such a mechanism might provide a possible explanation 
for the very rapid and widespread symptoms following 
exposure to organophosphates, concordant with the rap-
id and efficient miR biogenesis. That miR-1 regulates 
retrograde signaling by targeting MEF-2, decreasing pre-
synaptic ACh release is compatible with that prediction. 
It is tempting to speculate that miR-1 levels rise, which 
decreases presynaptic ACh release following organophos-
phate poisoning, in an attempt to compensate for the 
synaptic over-activation following AChE inhibition. Giv-
en that miR-132 downregulation increases survival and 
recuperation after exposure compared to naïve animals 
(58), it might be interesting to see if miR-1 downregula-
tion provides the same results and if such treatment exerts 
any changes at the cardiac level.

MiR-206 as a bridge between ALS-
induced NMJ degeneration and 
metabolic changes

Despite technological challenges, miRs are rapidly ris-
ing as possible biomarkers and therapeutic targets for 
numerous pathological states (56, 61). In a study aiming 
to find biomarkers for ALS, researchers compared miR 
alterations from skeletal muscle and plasma in the ALS 
mouse model to the levels of the affected miRs in the 
serum from human ALS patients (64). ALS is notably 
characterized by cycles of denervation and subsequent re-
innervation. Correspondingly, elevated levels of miR-206, 
involved in muscle re-innervation, emerged as a promising 
biomarker for ALS. It is thus possible that the initial de-
nervation in NMJ’s induces increases in miR-206 levels 
which promotes re-innervation.

Aside from motor neuron degeneration, ALS is associ-
ated with several defects in energy metabolism (65,66, 
67,68), and a better metabolism correlates with longer 
survival of ALS patients (69,70,71). Alongside other met-
abolic features, augmenting glucose intolerance is consid-
ered a sign of deteriorating and dysregulated metabolic 
homeostasis progressing along with the disease (66,72). 
Interestingly, recent research has identified miR-206’s 
involvement in the downregulation of enzymes involved 
in metabolism. Thus, miR-206KO mutant mice show in-
creased glucose tolerance and potentiated transcription of 

glucose metabolism-related enzymes (73). This suggests 
that over-expression of miR-206, as can be observed in 
ALS patients and the corresponding mouse models, exerts 
detrimental effects on glucose tolerance. It is tempting to 
suggest that the attempt for NMJ re-innervation involves 
increasing miR-206 levels, but damages metabolic func-
tion, in turn leading to more NMJ degeneration. Accord-
ing to this prediction, miR-206 might operate both as a 
slowing and as an accelerating factor for ALS symptoms.

Concluding Remarks

The apparent and predicted involvement of miRs in 
modulating the effects of ALS and the NMJ, as well as 
cardiac and metabolic symptoms following organophos-
phate poisoning might provide new ways to detect and 
treat such pathological states. The involvement of miRs 
might also explain the differences between people in the 
severity and progression of the pathologies, as single nu-
cleotide polymorphisms (SNPs) in the miR target genes 
might lead to differential downregulation of the miR tar-
gets. This is corroborated by the elevated AChE levels in 
carriers of a miR-608 disrupting SNP in the AChE gene 
(74) as well as by the differences in miR-206 and HDAC4 
expression between patients with rapidly decaying and 
slowly progressing ALS (33). Although there was a sig-
nificant difference between ALS patients and control 
subjects in miR-206 expression, no difference was mea-
sured in miR-206 levels between patients with rapidly 
progressing ALS and long surviving ALS patients. The 
levels of the miR-206-targeted HDAC4, on the other 
hand, were significantly higher in rapidly progressive 
ALS, suggesting impaired binding of miR-206 to its tar-
get, possibly due to a yet undefined SNP or other, further 
removed molecular differences. In conclusion, further 
research concerning CholinomiRs involvement in these 
pathological states, as well as in normal development is 
required and could provide us with better targeted thera-
peutics.
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