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Variations in amino acid composition in bacterial
single stranded DNA-binding proteins correlate
with GC content

Abstract

Background and purpose. Single-stranded DNA binding proteins
(SSBs) are essential for the maintenance of the genome in all domains of life.
Most bacterial SSBs are active as homotetramers. Each monomer comprises
N-terminal domain (OB-fold) which is responsible for sDNA binding and
a disordered C-terminal domain (Ct) with a conserved acidic tail respon-
sible for protein interactions.

The variations in these essential proteins prompted us to conduct in silico
analyses of the amino acid (aa) composition and properties of two distinct
SSB domains in relation to bacterial GC content.

Materials and methods. SSB sequences were collected from genomes
covering a wide range of GC content from 14 bacterial phyla. The maxi-
mum-likelihood (ML) trees were constructed for SSB sequences and corre-
sponding 16S rRNA genes. The aa contents of OB folds and Cr domains

were subsequently analysed.

Results. We showed that SSB followed predicted aa composition as a
Sfunction of genomic GC content. However, two distinct domains of SSB
exhibit significant differences to the expected aa composition. Variations in
aa proportion were more prominent in Ct domains. Elevated accumulation
of Gly (up to 60 %) and Pro (up to 24 %), significant drop in the proportion
of basic Lys and reduction in hydrophobic Leu, Ile and Val were identified
in Ct domains of SSBs from high GC genomes. Consequently, this influ-
ences the biochemical properties of Ct domains.

Conclusions. Based on this comparative study of SSBs we conclude that
genomic GC content and two distinct domains with different functional
roles participate in shaping aa composition of SSBs.

INTRODUCTION

SB proteins are indispensable for the survival of cells in all domains

oflife (). The members of SSB protein family are involved in various
processes of DNA metabolism by binding to transiently formed ssDNA
during DNA recombination, replication and repair. These proteins bind
ssDNA with a high affinity and in a sequence independent manner.
Thus, SSBs prevent degradation of ssDNA and the formation of unpro-
ductive secondary structures (2). One of the most extensively studied
bacterial SSB belongs to Escherichia coli (EcoSSB) (3, 4). Apart from
passive protection of cellular ssDNA, SSB also has a second less known
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role. It interacts and modulates the activity of various
proteins involved in all aspects of DNA metabolism.
EcoSSB has become one of the standard models for stud-
ying ssDNA-SSB interactions, a comprehensive review of
which can be found in the work of Shereda and co-au-

thors (5).

The crystal structure of EcoSSB proved that the func-
tional protein exists as a homotetramer (6). Since then,
most eubacterial SSBs have been shown to function as
homoteramers (7). Each SSB monomer contains two dis-
tinct domains: an N-terminal domain and a C-terminal

(Ct) domain.

The N-terminal domain consists of approximately 110
amino-acid residues, comprising a DNA-binding domain
known as OB-fold (a structurally conserved folding mo-
tif) (8). The OB-fold binds to ssDNA through a combina-
tion of electrostatic and base-stacking interactions with
the phosphodiester backbone and nucleotide bases (9). It
comprises five antiparallel S-sheets which form a 3-barrel

capped by an o-helix.

The Ct domain of SSB is significantly less conserved
among bacterial SSBs. It is often rich in glycine and proline
residues and thus structurally dynamic. This unfolded re-
gion cannot be seen in the crystal structures of SSB proteins
(5, 10, 11). The Ct domain terminates with a conserved
acidic hexapeptide motif (D-D-D-I/L-P-F) recognized asa
critical binding site for SSB interactions (12).

It was shown that deletion of the Ct has an effect on
SSB binding mode (13). Removal of the acidic Ct motif
(Ct tail) increases the intrinsic affinity for ssDNA and
decreases cooperative binding, indicating that the Ct has
an inhibitory effect on ssDNA binding. It was also re-
ported that the extension of EcoSSB by a C-terminal gly-
cine residue results in slower cell growth, indicating im-
paired protein function in vivo (74). A study on the phage
T7 gene 2.5 SSB protein has shown that the Ct tail com-
petes with ssDNA for binding to the OB-fold (75). In the
proposed model the Ct tail is bound to the OB fold in the
absence of ssDNA, while in the presence of ssDNA the Ct
tail is released, thus leaving it free for the interactions with
other cellular proteins. Recently it was demonstrated that
an intrinsically disordered C-terminal region of E. coli SSB
protein participated in cooperative binding to ssDNA (76).
All these results suggest an important regulatory role of
Ct domain. Although the crystal structures of SSB pro-
teins from taxonomically distant bacteria reveal similar
ssDNA binding domains (OB folds) and oligomeric states
(9, 17-20) some interesting variations have been noticed.
Due to the orientation between oligomeric subunits (AC
and BD) it has been observed that a homotetramer in the
case of EcoSSB is an approximate spheroid (9), whereas
the SSBs of Mycobacterium spp. and Streptomyces coelicolor
are ellipsoid (7, 21). Mycobacterium sp. and Streptomyces sp.
belong to distantly related genera of the phylum Actino-
bacteria. Mycobacteria are a widespread slow growing
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bacteria with some pathogenic properties, while strepto-
mycetes are soil-inhabiting filamentous bacteria best
known for producing antibiotics. Both of these genera
belong to the high GC ratio Gram positive bacteria. Ad-
ditionally, the SSBs from both genera contain a short se-
quence of 7 highly conserved amino acids (aa) which form
an additional 3-strand at the C-terminal end of the OB-
fold which is not found in Gram negative E. coli. These
strands form two additional clamp-like structures in the
homotetrameric SSB which contribute to the overall sta-
bility of the quaternary structure of SSB (18, 21). It is
thought that the mode of DNA binding of actinobacte-
rial SSBs is different from that of EcoSSB partly on ac-
count of the difference in the shape of the tetramers (22,
23).

During our previous studies, it has been observed that
SSBs from high GC content Actinobacteria have an ex-
tremely high glycine ratio in their Ct domain. Sequence
comparison of SSB proteins of the representative myco-
bacterial and streptomycetes species revealed their rela-
tively high sequence similarity (67 %), and existence of
additional motifs that contribute to the overall SSB struc-
ture stability. It has also been noted that their SSBs lack
many of the highly conserved aas crucial for the EcoSSB
structure-function relationship (9).

We hypothesized that observed change in the aa com-
position of OB-fold and Ct domain might be related to
high GC content.

Therefore, in this study using a larger data set, we have
examined composition and specific properties of aas pres-
ent in the OB-fold and C-terminal regions in relationship
to the GC content of selected species. The results were
compared and discussed with respect to relative aa com-
position of 961 proteomes from different organisms.

MATERIALS AND METHODS

SSB sequences analysed in this work were retrieved
from Uniprot database (http://www.uniprot.org/) (24).
16S rRNA gene sequences were downloaded from NCBI
(25). The SSB dataset was constructed to cover bacterial
genomes with wide range of GC content (13-75 %) be-
longing to 14 different phyla, including five classes of
Proteobacteria. In total, 199 SSB sequences belonging to
199 sequenced genomes, were collected for this study (Table
1). This dataset was divided into three categories according
to the GC content: low (<40 %), medium (40-60 %) and
high (>60 %).

Evolutionary distances of the selected species were cal-
culated using a standard molecular marker (16S rRNA
gene) and a corresponding SSB sequences. Multiple se-
quence alignment (MSA) of 16S rRNA sequences was
obtained using Clustal Omega (26). Statistical selection
of models of nucleotide substitution was performed under
the AIC in JModeltest (27). SSB sequences of all selected
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species were aligned using 3D PROMALS (28). Only
conserved motifs obtained from the multiple sequence
alignment by Gblocks server under default conditions
with included options for the less stringent selection, were
used in further analysis (29). The length of pruned align-
ment for 16S rRNA was 1389 nucleotides and for SSB
was 74 aa (Appendix 2). Substitution modelling was com-
pleted using AIC in ProtTest (30) and used for phyloge-
netic analysis. Phylogenetic trees for both 16S rRNA and
SSBs were constructed using maximum likelihood meth-
od in PhyML (31) under the best-fit models selected by
AIC (GTR+I+G for 16S rRNA and LG+I+G+F for SSB).
aLRT values were used to infer branch support. The nodes
with aLRT values over 0.9 were considered well support-
ed. Programme Seaview (32) was used for statistical report
and Corel DRAW® for graphic presentation of the results.

Aa composition was analysed using Protparam (33)
separately for OB fold and Ct domain. The properties of
the aas within Ct domain were calculated using web
server peptide2.com/N_peptide_hydrophobicity_hy-
drophilicity.php. Statistical analysis was performed using
GraphPad Prism version 5.00 (GraphPad Software, La
Jolla California USA,) which included one-way ANOVA

Table 1. Number of SSBs retrieved from the representative members
of 14 phyla with increasing ratios of GC content used in this study.
Phylum Proteobacteria is divided into five classes.

Total
GC content <40 % 40-60 % >60 % number
of SSBs

Actinobacteria 1 7 10 18

Alphaproteobacteria 7 7 10 24
'g Betaproteobacteria 4 7 11 22
_§ Epsilonproteobacteria 7 1 - 8
E Gammaproteobacteria 8 8 10 26

Deltaproteobacteria 1 9 10 20
Fusobacteria 5 - - 5
Tenericutes 8 1 - 9
Spirochacte 5 6 1 12
Bacteroidetes 5 8 2 15
Firmicutes 8 6 3 17
Aquificae 4 4 - 8
Veruccomicrobia 2 1 3
Chloroflexi - 2 2 4
Nitrospira 1 2 - 3
Gemmatimonadetes - - 1 1
Planctomycetes - - 1 1
Acidobacteria - - 3 3
Total 64 70 65 199
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test for the analysis of aa composition in the three defined
GC groups, and Pearson’s correlation analysis for the pep-
tide hydrophobicity/ hydrophilicity properties.

RESULTS AND DISCUSSION

Two domains with three distinctive elements can be
found in the SSBs: N-terminal domain which forms
DNA-binding domain (OB-fold), and C-terminal do-
main which is a largely unstructured region often rich in
glycine and proline residues with a conserved acidic C-
terminal motif. While studying structure/function rela-
tionship of the paralogous SSBs in streptomycetes we
noticed that bacteria with high GC content possess some
structural elements previously reported for mycobacterial
SSBs (23). Moreover, SSBs from streptomycetes (GC con-
tent over 70 %) exhibit the high content of glycine (57 %)
in their Ct domain (Table 2) and also show some addi-
tional specific structural variations which contribute to
structural stability of respective SSBs (78, 23). Based on
this, we proposed that all reported variations may be of
significance for SSB functioning in a high GC content
bacteria (18).

In this study we aimed to examine whether SSBs un-
derwent some additional evolutionary changes, not seen
previously, as a result of GC adaptation, and would it be
possible to observe variation in such adaptation between
two SSB domains.

For our first analysis we compared the evolutionary
relationships of 199 selected bacterial species using two
molecular markers, standard 16S rRNA gene and corre-
sponding sequences of SSB proteins. Two maximum like-
lihood (ML) trees were constructed and the 16S rRNA
gene and SSB trees were designated according to taxo-
nomic group and GC content (Figure 1). The coloured
branches in Figure 1 represent an overview of species GC
coverage within different phyla, as numerically presented
in Table 1. As depicted in Figure 1 bacteria with various
GC content are dispersed across bacterial phyla. Moreo-
ver, GC content varies even between closely related genera
within single phylum.

16S rRNA gene tree is generally well supported giving
distinct groups which belongs to different phyla (Figure
1A). SSB tree revealed two distinct group of SSB proteins:
one belongs to SSB from Proteobacteria, Chloroflexi,
Acidobacteria and Bacteroidetes, and the other to SSB
from Firmicutes, Actinobacteria, Tenericutes, Aquificae,
Fusobacteria and Verrucomicrobia (Figure 1B). However,
SSB tree is not well supported as 16S rRNA gene tree. The
possible reason for this poor resolving is too short align-
ment obtained after Gblocks server (only 18 % of starting
alignment). This could result in random branching which
does not follow phyla relationships obtained in 16S rRNA
gene tree. Furthermore, mixed branching of some divi-
sions of Proteobacteria, although well supported in some
cases, could be ascribed to the preservation of their com-
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Figure 1. ML trees constructed with 199 sequences of 16S rRINA gene (A), and corresponding SSBs (B). Branches are coloured depending on the

GC content of species (blue — low GC, green — medium GC and red — high GC). Nodes with aLRT values equal or greater than 0.9 are indi-
cated by asterisks.
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Table 2. Comparison of SSB amino acid composition in three taxo-
nomically distant bacterial species. Minimum and maximum val-

ues are with green background for OB folds and Ct domains.

% GC 38 50 72  max/ 38 50 72  max/
min min
% AA OB ratio Ct ratio

76 62 92 15 135 92 63 22
57 80 83 26 81 15 13 6,2
86 10,6 6,7 16 00 262 570 570
I 57 27 L7 34 54 31 00 54
67 53 50 14 54 00 00 54
38 44 25 18 162 4,6 0,0 16,2
86 53 67 16 81 62 @38 21
48 11,5 125 2,6 14 00 00 14
0 2,7 1,7 27 00 15 38 25

O @ >

€ < v Z =~

mon ancestral ssb gene. Some SSBs, e.g. two from extre-
mophile species Salinibacter ruber and Rhodothermus
marinus (phyla Bacteroidetes), branch within Deltapro-
teobacteria with support value over 0.9. This example
could reflect some special SSB adaptations to extreme life
conditions.

In addition, it has been reported that compositional
bias may affect protein-based phylogenetic reconstruc-
tions (34). Therefore, some SSB sequences could be
branching outside their phyla due to GC-driven codon
changes. Nevertheless, the majority of SSBs belonging to
the same taxa branch together and follow the phyloge-
netic distribution as seen in the 16S rRNA gene tree (Fig-
ure 1).

Next, we examined the aa composition of the SSBs
from three taxonomically distant species, Helicobacter
pylori, (Epsilonproteobacteria), Escherichia coli (Gamm-
aproteobacteria), and Streptomyces coelicolor (Actinobac-
teria). These species with solved SSB structures were se-
lected since they possess 38 %, 50 % and 72 % GC ratio
in their genomes, respectively (6, 17, 18). Since OB fold
is shown to be more conserved than Ct domain we have
analysed aa composition for these two domains separate-
ly. Table 2 shows percentage of aa compositions (% aa)
only for those aa which exhibit higher variation in per-
centages. Altogether, significantly greater variations in aa
compositions are found between Ct domains. The most
pronounced changes in the aa composition in Ct domain
are observed for Gly and Asn, following Glu, Ile, Lys and
Trp. With respect to the OB fold, the highest variations
in the aa content were observed for Ile, Val and Trp. As
stated above, the largest difference between species was
observed for Gly and Asn residues; i.e. low GC bacteria
H. pylori has high percentage of Asn in the Ct domain
(16 %), while GC rich bacteria S. coelicolor has no Asn

residues in its C-terminus. Contrary to this, H. pylori does

Period biol, Vol 118, No 4, 2016.

not possess any glycine residues in its Ct, while S. coeli-
color with high GC has 57 % of Gly residues within its
Ct domain. On the other hand, E. co/i with medium GC
content (50 %) sits well between these values with an
average of 4,6 % Asn and 26,2 % Gly.

In addition to observed interspecies differences, the
composition of aa also differs between the OB fold and
Ct domain of each species (Table 2).

To confirm that a change in aa content of the Ct do-
main can influence the chemistry of the region, we used
in silico prediction tools to predict the nature of the Ct
domain (Table 3). The data shows that in selected bacteria
with high GC content there is a significant decrease in the
percentage of the hydrophobic, acidic, and basic aa and
increase in the neutral aa. The greatest differences are ob-
served in the acidic (3 times) and basic (7 times) aa content

of the Ct domains of H. pylori and S. coelicolor (Table 3).

In order to verify whether a similar trend could be
observed in a much larger data set, we assembled 199 SSB
proteins covering a broad range of GC content (13-75 %)
and 14 phyla. It was not possible in this instance to find
exactly equal number of SSBs from each GC category,
however the numbers used were statistically comparable

(Table 1).
Selected SSB sequences (199) divided into three GC

categories were aligned to determine N- and Ct domains
(Appendix 1). Based on these alignments, N- and C-ter-
minal domains were separated for further analysis. As it
has been reported previously (5), in most cases N-terminal
domain occupies approximately the first 110 aa. In addi-
tion to domain separation, the alignment did not reveal
any obvious conserved motifs related to the GC content
neither in the N- nor in the Ct domain. Since alignment
of S. coelicolor SSB showed an extended Ct domain (ap-
prox. 20 aas) in comparison to B. subtilisand E. coli SSBs,
we tested if this trend was conserved among all high GC
content bacterial SSBs. Our data confirmed that selected
GC rich bacteria have an extended Ct domain (P=0,002,
n=199). However, when analysed taxa separately we have
found that this trend is not conserved for all GC rich
bacteria. For example, it was conserved for Alphaproteo-
bacteria, but not for Actinobacteria. At present it is dif-
ficult to withdraw the final conclusion about the impor-

Table 3. Biochemical properties of aa in Ct domain of SSBs from
three bacterial species

oBfi‘(;zhiim(i;a;E;:Ei);rties H. pylori E. coli S coelicolor
Hydrophobic 37,66 % 36,76 % 18,99 %
Acidic 14,29 % 7,35 % 5,06 %
Basic 7,79 % 2,94 % 1,27 %
Neutral 40,26 % 52,94 % 74,68 %
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tance/correlation of the Ct domain length for the SSB
proteins from bacteria with high GC content.

Recently, it was shown that shortening of C-terminal
region of E. coli SSB protein had an impact on cooperative
binding to ssDNA (16). It was also reported that extension
of Ct domain slowed cell growth rate, indicating impaired
protein function in vivo (14). Thus SSB C-terminal elon-
gation could be only partially explained by adaptation of
SSB proteins to varying GC content. Possibly within cer-
tain groups of bacteria, where this elongation is not sig-
nificant, this could be reflection to some other adapta-
tions. For example, slow growing bacteria need different
SSB adaptation compared to fast growing bacteria.

Next, as in the previous analysis (Table 3), the percent-
age of each aa in OB fold and Ct domain of SSB proteins
collected from 199 proteomes was calculated and expressed
as average within each of three groups (low, medium and
high GC) (Table 4). Composition of amino acids in SSB
proteins in our dataset were compared to composition of
aas in the overall proteomes of 961 species (35), as shown
in Table 4. Observed changes in aa content reported for
961 proteomes were explained with enrichment of GC
rich/poor codons (35). Significant correlation between ge-
nomic GC composition and proteome aa content was well
documented (36, 37). It was reported that AT-rich genome
would encode proteins rich in the Phe, Tyr, Met, Ile, Asn,
and Lys (FYMINK), whereas GC-rich genomes would
encode proteins rich in the Gly, Ala, Arg, and Pro (GARD)
(36). Indeed, this trend is present in SSB proteins (Table
4) (34, 35). As shown previously for a trial sample (Table
2) the changes were much more pronounced for Ct do-
main.

Next, the trend of Gly accumulation in C-terminal
domains, observed previously in SSBs in bacteria with high
GC content, was also confirmed on this large data set
(P<0.0001, n=199) (Table 4). However, it is much higher
(up to 60 %, on average 30 %) than it has been expected
from the reported proteome analyses; i.e. up to 10 % of
Gly residues were found in GC rich proteomes (35). This
suggests that elevated Gly accumulation in the Ct domain
evolved with some specific functional request of SSBs to
high GC content genomes. The increase in the Gly content
can contribute to the flexibility of this region while the
extended Ct domain is possibly important to accommo-
date OB fold — Ct domain interaction in the ellipsoidal
structure of SSBs from high GC content bacteria.

Next, although it has been expected that high GC
content bacteria will accumulate Pro due to the GC codon
enrichment (35), OB folds from high GC content bacteria
(Table 4) do not show this trend. This could be ascribed
to the fact that proline, due to its unique chemical and
structural properties, belongs to the group of the aas
known to have ,disorder-promoting” residues, and as such
Pro can have a negative influence on the classical second-
ary elements which form OB-fold (38). Thus, accumula-
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Table 4. Comparison of aa composition of SSB sequences between
different GC content groups. Average values (%) for each aa in
OB-fold and Ct domain were shown for each GC category. The last
column shows the overall trend in the aa composition in 961 pro-
teomes collected from the bacteria with wide range of GC content
(approx. 25-75 %). Statistically significant changes (P<0.05) be-
tween three groups for OB fold or Ct domains are with green back-
ground. Trends in overall proteomes are shown in the right column
(T increase in aa ratio with an increase in GC, L decrease in aa
ratio with an increase in GC and — no overall change in aa ratio
with increase in GC).

% GC <40 40-60 60 <40 40-60 >60

average OB fold C-tail pr(c))‘zzﬂes

AR (35)
A 54 64 65 47 82 98 0
cC 09 06 08 05 00 00 -
D 46 45 50 11,6 98 110 -
E 71 80 82 84 67 34 -
F 40 28 24 53 45 39 l
G 77 83 89 71 175 299 0
H 08 09 08 06 04 04 -
I 62 53 44 41 22 13 l
K 72 62 61 52 18 02 l
L 70 73 71 25 20 11 -
M 23 25 23 15 13 13 -
N 65 53 48 96 57 20 l
P15 19 19 7l 10,8 107 0
Q 44 49 51 75 72 62 -
R 73 84 90 23 40 65 0
S 62 51 49 121 115 70 -
T 74 73 75 41 22 10 -
V. 83 86 93 23 L7 09 0
W 1,8 22 24 03 04 05 0
Y 33 34 30 27 21 24 d

tion of Pro in Ct domains which are structurally disor-
dered is not surprising. However, the proportion of Pro
in Ct domain is higher (up to 24 %) than expected (pro-
teomes possess approx. 6 % in GC rich organisms) (35).
Pro rich Ct domains have already been reported by other
researchers (4). Another aa which does not follow the ex-
pected trend is Tyr. This aa is encoded by GC poor codons
and according to the Moura and collaborators (35) its
content in high GC content bacterial genomes should
decrease. However, the percentage value of Tyr seems to
be independent on the GC content or SSB domain. Tyr
residue is found to be phosphorylated in SSBs of phylo-
genetically distant bacteria (39). It is reported that this

Period biol, Vol 118, No 4, 2016.
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GC group.

modification has an impact on ssDNA binding and thus
the lack of Tyr can have a great impact on SSB binding
properties. Contrary to trend predicted for the whole pro-
teome, Val is an example of the aa with decreased percent-
age in high GC content bacteria, but only in SSBs Ct
(Table 4). This is not surprising since Val is hydrophobic
and usually found in the interior of proteins. Further-
more, Trp is recognized as an aa important for ssDNA
binding (40). As shown in Table 4, its content slightly
increases in OB fold in bacteria with higher GC content,
although this change is not highly statistically significant
(P=0.001). Interestingly, the average content of Trp is
higher for low GC SSBs than for the overall proteomes of
high GC organisms. This possibly has some implication
for the interactions of OB fold with ssDNA. For example
in EcoSSB, Trp 40, 54 and 88 binds ssDNA (9) and these

aa positions are not preserved in mycobacterial/strepto-

Period biol, Vol 118, No 4, 2016.

mycetes SSBs. The ratio of Trp is low in Ct domain and
is not influenced by the change in GC content (Table 4).
‘The binding site of SSB-ssDNA in a low GC content bac-
terium H. pylori was determined by crystal structure, and
instead of Trp (40 and 54), Phe (37, 50, and 55) pre-
dominantly participates in ssDNA binding (17). As de-
picted in the Table 4, our result also confirms higher
content of Phe in low GC bacteria. Additional amino
acids whose proportion was expected to be less affected
by the GC content are Asp, Cys, Glu, Gln, His, Leu, Met
and Ser (35). Our data partially correlate with this obser-
vation indicating that variations in aa composition of SSB
proteins are not only dependent on genomic GC content.
As shown, the proportion of Asp in SSBs is fairly constant
through different GC content but elevated in Ct domain
for all GC categories. This is in agreement with the fact
that acidic tip of Ct domain is essential for protein inter-
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actions (5). Interestingly, Glu which also contributes to
acidity of Ct domain is significantly decreased within Ct
domain (Table 4). Next, the proportion of hydrophobic
Leu is not affected by the change in GC content of OB
fold, but it is significantly decreased in Ct domain (Table
4). This is not surprising since other hydrophobic aa such
as Ile are decreased within Ct of GC rich SSBs as well thus
allowing higher flexibility of this domain. The disordered
regions of proteins (such as Ct of SSB) are known to pos-
sess less hydrophobic aas (38).

Finally, discrepancy between proteome analyses (35)
and our data was observed for Ser; proportion of this aa
significantly decreased in OB fold and Ct domain in bac-
teria with high GC content (Table 4). In addition, the
proportion of Thr is also affected by the change of GC
content, but only in Ct of SSBs. In comparison to this
result the overall proteome content of Thr is not changing

with respect to GC content (Table 4).

In this analysis we show how two distinct domains of
an essential protein exhibit significant differences in the
aa composition with respect to the expected distribution
of the aas for a defined GC content (35). We demon-
strated that some aas in the OB fold are affected by GC
content, but not to the same extent as Ct domain of SSBs.
This is expected since SSB has to preserve its core function
in all living cells.

We additionally examined the biochemical properties
of the aas that compose Ct domains of the SSBs from two
distantly related bacterial clusters: Actinobacteria and
Proteobacteria (ot-division). Representative members with
high, medium and low GC content were selected for this
analysis. As shown in Figure 2, representative members
of both groups showed statistically highly significant
(P<0,0001) reduction in percentage of acidic aa content
in dependence to GC content (Figure 2). In addition to
this, percentage of neutral aa is increasing with an increase
in GC, which is also highly statistically significant
(P<0,0001). In contrast, the change of basic and hydro-
phobic aa content in dependence of GC content, although
statistically significant (P=0,036 and P=0,0247 respec-
tively), is not so pronounced. These properties are the
result of changed aa composition and probably have an
impact on the regulatory function of Ct-domain.

It has been reported that genes that evolve slowly are
less affected by aa composition changes due to the
changed GC content than the more rapidly diverging
genes (36).

As reported, the strongly conserved housekeeping
genes, gap and fuf'show amino acid composition changes
in the predicted directions, although to a more moderate
degree than non-essential genes (36).

Since SSB proteins also belong to the housekeeping
genes we expected the same trend at least in the OB fold
domain. Indeed, in this study, it was shown that the OB
fold tended to be more conserved, although some spe-
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cific changes had been observed. In contrast, the Ct do-
main displayed a greater variability in aa composition
with respect to GC content, with the exception of the
acidic tail motif (75). Properties of Ct domain are presum-
ably changed predominantly due to elevated content of
Gly residues and reduced composition of other aas such
as Glu, Asn and Ser. Accumulation of the Gly not only
changes the aa ratio but also promotes the extension of
the Ct domain. It has been reported that long disordered
regions increase the complexity of protein interacting net-
works (41). Such regions within proteins are often found
to be evolving faster than ordered regions (42). This is in
agreement with our data and with the biological role of
Ct domain, which is essential for SSB network.
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APPENDIX 1. ALIGNMENTS OF SSB SEQUENCES

Alignment of SSB sequences from GC low bacteria
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APPENDIX 2. FINAL ALINGMENT OF SSB PROTEINS FROM 199 BACTERIAL SPECIES
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