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Abstract

Success on the market is fostered not only by the quality of provided services,
but also by the precise satisfaction of purchasers’ needs. Therefore, demand
forecasting is an important element of any company function, including transport.
It also allows for appropriate shaping of the level and structure of inventories.
It facilitates proper organization of processes and better management of resources.
This is particularly important in the transport services industry, where vehicle
readiness determines possibility of performing the task. Demand is influenced by a
multitude of factors, which are often difficult to define and describe, therefore this
article proposes the ARIMA model, in which the conducted study was based on the
assumption that the dependent variable is affected only by its own value, lagged over
time. The study was supplemented by the ARIMAX model, which additionally takes
into account exogenous variables resulting from the diagnosed seasonality of the
process.

The analysis was presented on the example of a Polish company (based in
Warsaw) offering passenger transport services, for which the number of passengers
was forecast. Such information allows not only for a more efficient use of the available
human and technical resources, but also for an increase in the company's profit.

Key words: transport services, ARIMA model, ARIMAX model, demand,
forecasting

1. INTRODUCTION

Passenger transport in literature is most frequently approached from the
legislative perspective (Abramovic et al., 2017, Gtadysz et al., 2016; Stimac &
Vistica, 2018; Wesotowski, 2016), which results from the fact that passenger transport
is a very complex issue, conditioned by a number of regulations. Many articles discuss
the quality (Klopott & Miklinska, 2017; Swiderski, 2018) and customer preferences
(Koztowska & Cygan, 2018; Mikulska & Starowicz, 2016; Naletina et al., 2018) as
they constitute the driving force behind the entire industry. Mathematical modeling of
transport is less popular in literature, both in terms of theoretical methods and their
practical application (Sikora & Borowski, 2011; Zurkowski, 2009). Estimating
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demand for transport services is a particularly interesting issue in this area, therefore
the aim of this article is to indicate selected, possible to apply methods of
mathematical forecasting of this phenomenon.

The transport demand in cities is influenced by a multitude of factors, often
difficult to predict. Some of them are life rhythm-based and can be modeled using
variables, such as time of day or hour, others such as preferences or needs of potential
customers are more difficult to identify. Therefore, companies offering passenger
transport services need to adapt their strategy to the high dynamics of demand as well
as plan drivers' work and vehicle availability in a way ensuring that as many of them
as possible are available in a situation of high demand for services, and unjustified
idleness at times of lower demand is avoided. Any unnecessary downtime generates
costs, and lack of transport capability when there is a demand for it means a profit
lost.

Mathematical tools and methods are helpful in identifying potential demand. A
number of them (such as regression models) require information on factors affecting
a given phenomenon, which are often difficult to identify or measure, in order to
obtain reliable forecasts. Therefore, time series models are a good solution, which, in
order to build a forecast, require information only about the value of the dependent
variable lagged in time. Such models include, among others, autoregressive or moving
average models, as well as combinations thereof, such as ARMA, ARIMA or
SARIMA. The application and comparison of the selected model shall be presented
in this article.

The author’s intention was to show that it is possible to offer reliable forecasts
of demand for transport services even in a situation of limited access to information,
and thus to better plan the use of resources and adapt them to customer needs.
Furthermore, the aim was to emphasize the utilitarian nature of such analyses when
applied to create the company’s strategy.

2. TIME SERIES FORECASTING MODELS

Analysis methods of sequences of chronologically ordered information, showing
a certain dependence between individual observations, are called the time series
analyses. Mathematical description of this dependence makes it possible, not only to
determine the nature of the studied phenomenon, but also to forecast, i.e. to predict
the future values of the time series. The so-called stationary models, which assume
that the analyzed process is in balance with the constant average level, occupy a
special place among the models used for describing real stochastic processes.
However, since many economic phenomena are of non-stationary nature, such
analysis methods have also been developed, the ARIMA processes in particular
(Stimac & Vistica, 2018).

ARIMA (Autoregressive integrated moving average model) is a model created
by integration of the autoregressive model — AR and the moving average model — MA.
The AR model is based on the assumption that there is an autocorrelation between the
current values of the forecast variable and its values lagged in time. The current value
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of the process is expressed as a finite linear combination of the previous values of the
process (1) (Box & Jenkins, 1983; Devon, 2016):

Ve=0p+ 01y, 1+0Ye o+ ..+ 0,y +& (1)
where:

Yt:Ye-1,Ye-2,Yi—p - the value of the forecast variable at the time or in the period
t,t—1,t—2,..,t—p;

8,04, 0,, 8,- model parameters;

& - model error (residual) for the moment or period t;

p- lag length.

Whereas in the MA (moving average) process, the values of the endogenous
variable are expressed as a function of the lagged values of the stationary random
component [Chaoqing et al., 2016; Chen et al., 2016]. The parameter q of this process,
1.e. the order of the MA process, indicates the level of lags adopted for the model. The
form of the MA model is as follows (2):

Ve =0 t & — D161 — G262 — . — PgEt_q (2)
where:

Yo Ye-1,Ye—2,Yi—q - the value of the forecast variable at the time or in the period
t,t—1,t—q;

) Et—1) Er—2 Et—q - errOr8, residuals of the model in the periods ¢,t —1,t —
2,..,.t—q;

®o, D1, P2, Pg- model parameters;

q- lag length.

Mixed autoregressive—moving average models allow for greater flexibility in
fitting the model to the real time series [Xin, 2017]. The form of the ARIMA model
is as follows (3):

Ve=00+601Yi 1+ 0,y 5+ .+ 9p Ye—p T bo + & — Pr&—1 — GrEp —
o= Pgr_q 3)

If there are clear seasonal variations in the process, the SARIMA (Seasonal
ARIMA) model can be used. It is constructed by supplementing the ARIMA model
with a seasonal component. This requires the determination of three additional
parameters including such a component, i.e. P — the order of seasonal lags of the AR
type, Q — the order of seasonal lags of the MA type, D — the seasonal differentiation
parameter. ARIMA models can also be combined with classic regression models. The
result of which is the ARIMAX (Autoregressive integrated moving average with
exogenous variables) model, in which an additional exogenous variable is included in
order to improve forecasting efficiency. Therefore, the form of the ARIMAX model
is the ARIMA model supplemented by a set of exogenous regressors (4) [Box &
Jenkins, 1983]:

Ve=Cc+Px+0,+ 01 Ve 1+ 0y, + .+ ep Yep T bo + & — P11 —
¢2 2 — T ¢q€t—q (4)
where:

B - coefficient of variation

X~ additional exogenous variable

The procedure for estimating the parameters of the above models was developed
by George Box and Gwilym Jenkins in the 1970s. The proposed algorithm consists of
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the following stages of time series analysis: identification, estimation, verification,
forecast determination, according to which this analysis was conducted.

3. MODELING METHOD
3.1. Arima Model

According to the methodology of statistical research (Bielinska, 2007; Taylor &
Karlin, 1998), the first stage is the visual evaluation of the time series, presented in
Fig. 11. The analyzed phenomenon is characterized by a clearly visible seasonality of
the process, as a result of which the series is not stationary.

Figure 14. Graph presenting the number of passengers using transport services
during the studied period
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A detailed analysis revealed that this seasonality is primarily determined by the
time of provision of the service. It turns out that at different times of day the demand
for transport is different, which is shown in the frame graph in Fig. 12 on which the
analysis of the examined variable was made depending on the time of its execution.

Figure 15. Frame graph showing hourly seasonality of the studied time series
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The variation in the number of people using the company’s services changes
over the course of the day, making the process non-stationary. Since ARIMA methods
can only be used for stationary series or reduced to stationary series, it is necessary to
achieve at least stationarity in a broader sense (unchangeability during the first and
second moment) (Box & Jenkins, 1983). Therefore, in order to smoothen the expected
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value and variance, a differentiation of the time series was applied. The graph of the
variable after differentiation is shown in Fig. 13.

Figure 16. Graph of the series after differentiation with a lag d=1
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The next step is to identify the appropriate subclass of ARIMA models by
determining the initial values of their parameters. The basic tools in this respect are
graphs of an autocorrelation function (ACF) and a partial autocorrelation function
(PACF). The ACF values shown in the Fig. 14 disappear quickly for the initial lags
and the significant value for lag 2 suggests that the value of the moving average
parameter will be qg=2. However, the values for the lag d=12 and its multiplicity are
clear, which indicates a strong seasonality of the process, necessary to be included in
the model.

Figure 17. Graph of autocorrelation function with off-season lag d=1
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The PACF graph (Fig. 15) leads to identical conclusions in terms of seasonality,
also showing high indications for lag d=12. In addition, it suggests the value of the
autoregressive element p=2.

Figure 18. Graph of partial autocorrelation function with nonseasonal lag d=1

PACF

Lag Cor. S.E T
1 +,036 ,0367 | [ |
2 +,118 ,0367 }
3 +,000 ,0367F |
4 +,005 ,0367 } |
5  +,066 ,0367F [
6 -,002 ,0367} |
7 -,069 ,0367 |}
8 -,021 ,0367} |
9 -,071 ,0367}
10 -,189 ,0367 } =
11 -,145 ,0367 | .
12 -,439 ,0367 } =
13 -,117 ,0367 } e
14 -,271 ,0367 } i
15 -,183 ,0367 | e
16 -,151 ,0367} O
17 -,078 ,0367 } =1
18 -,080 ,0367 } =1
19  +,006 ,0367} |
20 -,097 ,0367 | o
21 -,137 ,0367} I
22 -,269 ,0367 | |
23 -,078 ,0367F} ]
24 +,223 ,0367 } 7
25  +,129 ,0367 | 1
26  +,150 ,0367 1
27 +,055 ,0367 | OJ
28 -,031 ,0367} 0
29  +,005 ,0367 ]
30 -,088 ,0367 | —

0

-1,0 -0,5 0,0 0,5 1,0— CI

Source: own study

Finally, it was decided to estimate the parameters of the ARIMA model using
the festing down method, assuming that it is a moving average process with a non-
stationary parameter ¢ = 2 and a non-stationary autoregressive parameter p=2.
Additionally, seasonal parameters were taken into account, which resulted in
transformation of the assumed ARIMA model into a seasonal model, 1.e. SARIMA.
The two best models were selected from all tested models, for which all model
parameters were statistically significantly different from zero. The results of the
estimation are presented in Table 3.

Table 3. Results of the ARIMA model parameters estimation

Parameter The ARIMA The ARIMA
model (2,1,1)(2,0,0) | model (2,1,2)(2,0,0)
transformations D(-1) D(-1)
p(1) 0.56 -0.59
p(2) 0.13 0.35
q(1) 0.94 -0.21
q(2) 0.75
Ps(1) -0.31 -0.35
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Parameter The ARIMA The ARIMA
model (2,1,1)(2,0,0) | model (2,1,2)(2,0,0)

Ps(2) 0.48 0.49

Seasonal lag 12 12

MS 65.8 66 1

MRPE 27.5 28

AIC 5630.94 6699.33

Source: own study

For the proposed models estimation errors and Akaike information criterion
were calculated, and on the basis of these criteria (MS-Mean square error, MRPE -
Mean relative prediction errors, AIC - Akaike Information Criterion) the best one was
selected, which turned out to be the ARIMA model (2.1.1) (2.0.0) in the form (5):

v =094y, 4+ —056¢&_4—0.13¢_,+031¢_,,—048¢_45 (5

Then it was diagnosed by analyzing the distribution of residuals. In a correctly
constructed model, the residuals should be random and symmetrical. In order to
examine these features, the autocorelogram (Fig. 16) and the histogram of the
distribution of residuals (Fig. 17) were drawn up. The ACF shows few statistically
significant indications suggesting that not all dependencies were explained by the
proposed model. Compatibility with normal distribution was not confirmed either.
The test statistic in the Shapiro-Wilk test was W=0.94283, giving p-value p=0.0000.

Figure 19. ACF graphs for the residuals of the ARIMA model (2,1,1) (2,0,0)
S.E T T T

lag. Cor. Q p
1 -,009 ,0366 | 06 ,8129
2 -,048 ,0366 | {1 1,78 ,4101
3 -, 009 ,0366 | {1 1,84 ,60&3

+,055 ,0365 1 4,08 ,3947

1 8,83 ,1le0

+,056 ,0365

4

a5 +,080 ,0365
] (17 ,0833
=

-, 047 L0365 | 112,86 ,0756
g8 +,032 ,0364 113,66 ,0913
S +,002 ,0364 113,66 ,1350
10 -,093 ,0364 | [ 120,18 ,027¢
11 -,005 ,0364 | 420,20 ,0428
12 +,015 ,0363 120,36 ,060€

13 +,054 ,0363 122,57 ,0471

e e Oy oy gy — O —
=
=

14,102 ,0363 D 30,41 0067
15 -, 100 ,0363 D 38,07 ,0009
0 L 1 . 0
10 05 0,0 0,5 1.0 —

Source: own study

283



Forecasting demand for transport services on the example of passenger transport
Anna Borucka

Figure 20. Histogram of the distribution of residuals of the ARIMA model (2,1,1)
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The above results explain why the forecast function differs from empirical
observations. The largest errors relate to the maximum observation values achieved
for peak transport service demand. The forecast for these hours is definitely
overestimated 18.

Figure 21. Graph of the examined series and forecast according to the ARIMA model
(2.1.1) (2.0.0)
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3.2. ARIMAX Model

In order to improve the obtained prognosis [ Niematallah & Mototsugu, 2018], a
modification of the model, allowing to include additional exogenous variables, has
been proposed, i.e. the ARIMAX model [Sutthichaimethee & Ariyasajjakorn, 2017;
Wiwik, 2015]. Since the hourly variation shown in Figure 2 is clearly arranged into
three separate periods, as confirmed by Fig. 19, it was divided into three levels,
resulting from the diverse customer interest. First, low demand is defined as a group
of hours during which the number of customers does not exceed 30, followed by a
high season on weekdays with a maximum of 49 customers and a high season on
weekends starting on Friday afternoons with a maximum of 70 customers.

Figure 22. Frame graph showing the seasonality of the examined transport services
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The selected regressors are qualitative variables, thus it was necessary to re-code
them into binary variables (zero-one values). The parameters of thusly constructed

model were estimated. The results are presented in table 4.

Table 4. Results of the ARIMAX model parameters estimation

Parameter ARIMAX
model

C -0.03
p(1) 0.22
q(1) 0.21

Bi 53.90
B2 9.39

Bs 35.99
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ARIMAX
Parameter
model
MS 30.43
MRPE 17.7
AIC 4553.05

Source: own study

The model obtained this way has the following form
yt - _0-03 + 53.9 X1 + 9-39 Xz + 35-99 X3 + 0-22 yt—l + gt - 0-21 gt—l (6)

where

X,- the binary variable corresponding to high values at the weekend

X,- the binary variable corresponding to the low season on weekdays

X3- the binary variable corresponding to the high season on weekdays

According to the criteria adopted for verification (MS error, MRPE, AIC), the
ARIMAX model achieved the most satisfactory results out of all the proposed models,
as confirmed by Fig. 20, presenting empirical data and forecast functions according
to ARIMA and ARIMAX models.

Figure 23. Graph of empirical values and forecast functions according to ARIMA and
ARIMAX models
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The ARIMAX model is better suited to real observations, but its diagnosis is not
satisfactory because the distribution of residuals is still not close to the normal
distribution (Fig. 21) and the graph of the autocorrelation function shows significant
values of this function (Fig. 22).
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Figure 24. Histogram of distribution of the residuals of the ARIMAX model
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Figure 25. Graph of the autocorrelation function of the ARIMAX model residuals
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3.3. Forecasting According To the ARIMA and ARIMAX Models

In the last stage of the study, the future values of the series were forecast and
compared with the retained test observations, which did not participate in the
estimation of model parameters. A relative forecast error was also calculated for each
predicted value. The obtained results are presented in table 5.
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Table S. Forecasts according to the ARIMA and ARIMAX models

date/time(hour) empirica} ARIMA | ARIMAX |SE SE
observatio | forecast forecast ARIMA ARIMAX
20-03-19 0:00 41 40.3 45.1 1.6% 10.0%
20-03-19 1:00 AM 45 41.5 46.0 7.8% 2.3%
20-03-19 2:00 AM 40 36.6 46.2 8.4% 15.6%
20-03-19 3:00 AM 45 36.0 46.3 20.1% 2.9%
20-03-19 4:00 AM 17 16.3 19.7 4.3% 15.9%
20-03-19 5:00 AM 12 17.8 13.8 48.6% 14.7%
20-03-19 6:00 AM 13 15.6 12.4 19.9% 4.3%
20-03-19 7:00 AM 13 14.5 12.1 11.3% 6.6%
20-03-19 8:00 AM 12 14.1 12.1 17.8% 0.6%
20-03-19 9:00 AM 13 15.8 12.1 21.9% 7.2%
20-03-1910:00 AM 14 14.2 12.1 1.5% 13.9%
20-03-1911:00 AM 7 15.9 12.1 127.7 72.2%
20-03-19 12:00 PM 9 17.2 12.1 91.6% 34.0%
20-03-19 1:00 PM 11 16.4 12.1 49.1% 9.6%
20-03-19 2:00 PM 13 22.2 12.1 70.8% 7.3%
20-03-19 3:00 PM 20 24.8 12.1 24.1% 39.7%
20-03-19 4:00 PM 42 40.5 38.7 3.6% 8.0%
20-03-19 5:00 PM 45 40.5 44.6 10.0% 0.9%
20-03-19 6:00 PM 53 43.1 45.9 18.7% 13.4%
20-03-19 7:00 PM 52 44.4 46.2 14.6% 11.1%
20-03-19 8:00 PM 50 45.0 46.3 10.0% 7.4%
20-03-19 9:00 PM 48 42.5 46.3 11.4% 3.5%
20-03-19 10:00 PM 46 41.1 46.3 10.6% 0.7%
20-03-19 11:00 PM 46 40.1 46.3 12.8% 0.7%

Source: own study
The average forecast error for the ARIMA model was as high as 25.7%, while

for the ARIMAX model it was much lower, at 12.6%. The higher effectiveness of the
ARIMAX model is presented in Fig 23.
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Figure 26. Graph of test observations and forecasts according to the ARIMA and
ARIMAX models
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4. FINAL THOUGHTS

The presented process is characterized by high complexity, causing difficulties
in estimation of parameters of econometric models. However, in companies similar to
the examined one, where a limited number of vehicles and drivers providing transport
services require the adjustment of their working hours to market demand, even an
estimation with a certain error can prove to be very useful. Although the proposed
models took into account only the dependence of the examined variable on its value
lagged in time (ARIMA model) and additionally, the selected element of seasonality
of provided services (ARIMAX model), they are a sufficient guidance to assess the
development of demand and may determine the direction of the company's strategy.

The models presented here can be applied in forecasting demand in nearly every
company. Depending on the needs, they can be extended with additional variables,
increasing the forecast accuracy and reducing estimation errors. However, identifying
and measuring all the factors that shape the demand for certain goods or services is
not always possible. Often the process of collecting and processing such factors is
difficult and sometimes even impossible. Nevertheless, as demonstrated in this article,
even a simplified model can provide valuable guidance on the use of available
resources (in this case vehicles and personnel) in order to respond more effectively to
customer demand. This may translate into an increase in the quality of services
provided and customer satisfaction and, as a result, into an increase in the company's
profits.
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