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Abstract 

The contemporary explosion of urbanization processes, dynamic urban 
development, as well as intensive growth of economic activity and constantly growing 
demand result in an increased demand for transport services. The direct consequence
of these phenomena is emergence of transport congestion. This problem affects many 
cities around the world. It is an undesirable phenomenon and has an adverse impact 
on the flow of traffic, causing problems not only for inhabitants, but also for the 
development of economy, as well as disruptions in the supply chain. Moreover, it is a 
cause of increasing pollution levels in cities and excessive energy consumption.

The article proposes a detailed analysis of the phenomenon of transport 
congestion based on empirical studies carried out on a selected section in the capital 
city of Poland –Warsaw. Inspired by sustainable transport paradigm, the real transport 
congestion level and chosen reasons for its occurrence along the studied route were 
identified. Then, on the basis of selected mathematical methods and tools, this 
phenomenon was analyzed and mathematical models were proposed. At first, 
a multiple regression (MR) and influence of such factors as day of the week 
or holidays was used, and then more advanced econometric model of ARIMA 
was used. The adequacy of both models was finally compared. We also propose
selected solutions to increase capacity, which can be adopted in most cities.

An aim of this article was not only to present mathematical analysis 
of phenomenon and to identify factors that affect it, but also to present negative social, 
economic and environmental effects.

The�author’s�intention�was�also�to�stress�out�that�achieving�satisfactory�results�
in limiting transport congestion requires constant and effective shaping of social 
attitudes and permanent changes in the way of thinking, to which the presented article 
also contributes.

Key words: congestion, multiple regression (MR) model, ARIMA model 
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1. INTRODUCTION - PHENOMENON OF TRANSPORT CONGESTION

The progress of civilization is shown in many aspects, including 
the development of widely understood transport. However, not only the possibilities,
but also the communication requirements are growing. An increasing number 
of traffic users and motor vehicles lead to congestion in the road network 
and disturbances to free movement, resulting in transport congestion. There are many 
definitions of this phenomenon. A. Altshuler defines congestion as a condition in 
which demand for a given infrastructure object prevents free movement, at the 
maximum permitted speed of traffic (Altshuler, 1979). J. Rothenberg, on the other 
hand, refers to a situation where more than one buyer applies for certain goods, which 
cannot be provided in the form of separate units (Rothenbarg, 1970). Similarly, M. 
Ciesielski says about congestion occurring when demand for objects of transport 
infrastructure or transport services exceeds the possibilities of its efficient service 
(Ciesielski, 1986).

The congestion concerns practically every progressive city in the world, which 
shows its scale and difficulty in finding a solution to this problem. The latest reports 
from INRIX (INRIX, 2018), which sum up the past year, show that in the most 
crowded city in the world, Los Angeles, the driver spent on average 102 hours 
in traffic. The survey covered 1360 cities on five continents (except Australia), 
and the top ten are presented in Table 12.

Table 1. The most crowded cities in the world according to INRIX

No. Country City

Hours spent on 
crowded streets 
(% of changes in the 
ratio to 2016) 

% of the total
driving time 
in congestion 
conditions

1 USA Los Angeles 102 (-2%) 12%
2 Russia Moscow 91 (+2%) 13%
3 USA New York City 79 (-5%) 12%
4 Brazil Sao Paulo 70 (-1%) 10%
5 USA San Francisco 64 (-2%) 9%
6 Colombia Bogota 63 (+3%) 11%
7 Britain London 60 (+3%) 14%
8 Russia Magnitogorsk 57 (0%) 10%
9 Russia Yurga 55 (0%) 12%
10 USA Atlanta 54 (-8%) 6%

Source: INRIX, 2018.

In the survey, Poland was ranked 122nd in the world ranking with the city 
of Cracow, and 131st in the ranking with the capital city of Warsaw. Among the most 
crowded cities in Europe, Cracow has 66 positions, and Warsaw 71. Moreover, there 
were such Polish cities� as� Poznań,� Szczecin,� Wrocław,� Gdańsk,� Łódź,� Katowice�
(INRIX, 2018). Solving the congestion problem requires involvement of all elements 
of the transport system, but even the best solutions will not achieve their full potential 
without the right approach of traffic participants, which is why it is so important to 
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build their awareness. It is not only necessary to highlight the negative impact of 
congestion on economic and environmental issues, but also to point out individual 
benefits (lower costs, time savings, reduction of driving stress, possibility of using 
driving time for other activities, e.g. reading a book) that encourage people to switch 
from car to alternative forms of transport.

Congestion in cities is a subject of many scientific dissertations, especially in the 
era of such intensive development of urban logistics. This is mainly due to the scale 
of problem, as well as its constant increase (Miklińska,� 2017). The explosion of 
urbanization processes drastically reduces capacity, forcing the company to seek 
solutions to counteract the phenomenon. A large number of publications are dedicated 
to this issue. They indicate the possibilities of expansion and modernization of the 
existing infrastructure (Jamroz, 2016), both linear (construction of new roads, 
extension of the existing ones) and point infrastructure (parking lots, stations and 
stops) (Krajewska�&�Łukasik,�2017),� as well as its more effective use through the 
control of real-time flows. Such methods are favored by the intensive development of 
intelligent traffic control systems (Kamiński�et al., 2016; Selwon & Roman, 2017; 
Kornaszewski & Gwiazda, 2017), such as lanes with variable traffic direction 
(Igliński,�2009;�Szołtysek,�2011;�Kulińska,�et�al.,�2014)�or dynamic control of traffic 
lights (Ruchaj, 2012; Lejda & Siedlecka, 2016). Another measure to counteract urban 
congestion is to encourage travelers to use collective forms of transport (Nosal & 
Starowicz, 2010) or more environmentally friendly and congested roads, such as 
bicycles (Radzimski,�2012;�Dębowska-Mróz�et�al.,�2017). An important element in 
the analysis of congestion is also the costs it incurs, which lead to social and economic 
losses (Dyr & Kozłowska,� 2017,� 2018).� In� addition,� mathematical� models are 
presented in the literature for the purpose of mapping transport systems and processes 
(Jacyna, 2001, 2009; Świderski,�2011; Kamińska�&�Chalfen,�2017). They not only 
allow for assessment of transport flows, but also have an important role in the 
planning processes, better use of the existing infrastructure, as well as shaping social 
attitudes and even transport policy instruments (Koźlak,�2015).The issues addressed 
in this article are a part of the above objectives. The presented study describes methods 
of mathematical description and analysis of transport congestion with multiple 
regression method and ARIMA model in order to predict the travel time over 
the studied section.

2. RESEARCH METHODOLOGY

Analysis of above-mentioned phenomena and processes is possible 
for modelling using the theory of stochastic processes. We are dealing with a family 
of random variables defined in a certain probabilistic space with values in a certain
measurable space (Taylor & Karlin, 1998). If the domain of stochastic process 
realization is time, as in the case of our analysis, then we address a time series in which 
individual measurements constitute a set of observations representing the realization
of studied phenomenon and are characterized by its changes. The correct 
identification of series consists in identification of its elements, which may be 
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systematic components, such as trends, periodical or cyclical fluctuations, and 
accidental-random components (Fig. 13) (Dittmann et al., 2011).

Figure 1. Components of time series

Source: own elaboration

Decomposition of time series enables to define possible to use forecasting 
models, among the single equation we can distinguish: classic trend models, adaptive 
trend models, causal-descriptive models and autoregressive�models�(Cieślak,�2005).�
In this paper, the multiple regression (MR) method is used as the most common form 
of linear regression analysis. As a predictive analysis, the multiple linear regression is 
used to explain the relationship between one continuous dependent variable and two 
or more independent variables (Dittmann et al., 2011; Rabiej, 2012). Conversely, the 
ARIMA (Autoregressive Integrated Moving Average) process can be modelled via 
the group of autoregressive models. Both types of models, MR model and ARIMA 
model, were developed in this research and compared among each other.

Regression consists in finding a function that reflects implementation 
of the process and enables to determine how the phenomenon will evolve in the future. 
It is based on finding correlations between variables, which makes it possible 
to extend the analysis also to function arguments out-of-sample data. The basis 
for estimation is to find a proper trend function and then to describe and isolate (if any) 
seasonal and cyclical fluctuations. For this purpose, the classical method of least 
squares or method of maximum likelihood are usually used.

The simplest type of regression is a simple linear regression, which describes 
the relations between variables by means of straight line (1).
� � ��� � ���� � � (1)
where betas are the parameters, while � is the noise disturbance assumed to be a white 
noise (Dittmann� et� al.,� 2011;� Osińska� et� al,� 2007). If there are more explanatory 
variables, then we have a multiple regression (MR) and its linear model takes the form 
(2):
� � ��� � ����� � ����� � ⋯� ����� � � (2)

A single time series
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Trend 
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Regression coefficients describe how much the average value of dependent 
variable y will change if the value of independent (explanatory) variable �� to which 
it relates changes by an entity assuming a fixed level of other independent variables.

Independent variables in the analysis of economic phenomena are sometimes 
of a qualitative rather than quantitative nature. In this case, it is necessary to translate 
them into binary variables. Since the number of their values is reduced, they cannot 
be treated in the same way as continuous variables in regression, which is because of 
the fact that they make no economic sense. Then such qualitative, or discrete variables 
have to be re-coded into binary ones and estimation must be carried out with 
subtraction of one of them. The excluded variable is then the reference level for the 
others.

Simple autoregressive (AR) models (3) are a group for which it is assumed that 
there is a relation between the values of time series in the given time and those of the 
same series in the earlier time, separated by a certain period of time:

�� � �(��−��, ��−� …��−�, ���) � �� � �����−� � �����−� � …� �����−� � ��� (3)

where alfas are the parameters, while ����� is the noise disturbance assumed 
to be a white�noise�(Osińska et al, 2007). Therefore, there are no explanatory variables 
here, and the values of forecast variable are estimated on the basis of their own
components, which are distant in time. Their use is limited by the stationary nature of 
the observed process, which can be ensured by a number of d, differentiating 
operations: ∆��

� � ��� � ��−��
� . The ARIMA process presented in this article 

is modelled using the ARIMA model, which is based on the assumption that a value 
of forecasted variable in time t depends both on its past values and on differences 
between past values of a true ARIMA process and values obtained from the ARIMA 
model – i.e. on forecast model errors. The form of classical ARMA model (without 
integrated I part) is as follows (4):
�� � �� � �����−� � �����−� � …� �����−� � ����� � �� � �����−� �

������−� � …� ����−� (4)

where alfas and betas are the regression parameters, while����−��represent the noise 
disturbances at time t and past time points t – I, where the assumption of being 
the white noise is adopted again. The ARIMA model is obtained from the ARMA 
model (4) by applying the afore-mentioned differential treatments
∆��

� � ��� � ��−��
� of the analyzed series to remove time-variant non-stationarity. 

This is evidenced by the use of the letter I in the name of ARIMA model.
The�estimation�process�is�to�a�large�extent�formalized�(Bielińska,�2007),�which�

results from the procedure created in the 1960s and is proposed by Box and Jenkins. 
It consists of four main stages: identification, estimation, verification and forecasting. 
First of all, model structure and parameters should be determined, i.e. such values of 
p, d and q model�candidates’�orders�should�be�found�that�the�best�possible�model�is�
detected via the estimation procedure in a model selection process. Then it is 
necessary to analyze the significance of estimated regression parameters of the model 
(parsimony) and check whether the residual component possesses the properties of 
the white noise. Moreover, due to stationarity, invertibility and stability reasons, the 
position� of� zeros� and� poles� of� the� ARIMA� model’s� transfer� function� should� be�
investigated regarding the unit circle (Box et al, 1994). At the end, forecasts are 
conducted, i.e. future values of the time sequence are determined. Their quality can 
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be assessed by comparing them with the recorded empirical observations. In addition, 
the quality of the developed model should be verified via the performance error-based 
criteria indicators (e.g. Mean Absolute error – MAE,�etc.)�(Bielińska,�2007).

3. RESEARCH SUBJECT

In order to illustrate how the phenomenon of congestion can be presented 
experimentally, the journeys over a selected road section were analyzed. The analysis 
was conducted for the city of Warsaw, which is the capital of Poland. The length 
of surveyed route was 6 km. Travel time TT and fuel consumption (TT) were measured 
for 235 days. They took place on working days, always at the same time. The analyzed 
route (Obozowa Street 14 – Urbanowicza Street 21) is shown in Figure 2.

Figure 2. Visualization of analyzed section

Source: https://www.google.com/maps/d/edit?mid=15e9NyOU3K0Ec-771KK2T5-
GROzj1OlRw&ll=52.25178912954547%2C20.93190000000004&z=15

The surveyed route is an asphalt road of medium quality, on which the local 
surface defects also occur. The whole length is subject to a speed limit of 50 km/h. 
There were several reasons for choosing this route. First of all, it should 
be emphasized that this is a representative section for Warsaw, especially 
as the alternative route is closed due to ongoing repairs associated with building 
of a subway system. In addition, data acquisition was related to commuting, which 
enabled the daily measurement and facilitated to carry out analyses.

4. RESEARCH RESULTS

4.1. Preliminary Analysis of Factors Influencing the Studied Process

Research was carried out in the period from 16 January 2017 to 8 December 
2017 every day – on working days – conducting measurements at the same hour. 
Travel time TT and fuel consumption (TT) were measured. At first, the relation 



18th international scientific conference Business Logistics in Modern Management 

October 11-12, 2018 - Osijek, Croatia 

507

between journey time and fuel consumption (TT) was studied in order to see if it exists 
and how strong the relation between these measurements is. The diagram of analyzed 
values is shown in Figure 3, where the observed variables fuel consumption (TT) 
and a travel time TT are intentionally shown to more clearly indicate the relation 
between them. It is clear that the increase in travel times causes an increase in the 
amount of consumed fuel. In a diagram, the current consumption measured over 
analyzed distance was converted into incineration in liters per 100 km, in order 
to better visualize the phenomenon. 

Figure 3. Measurements of time dependent travel time TT, t in days, and fuel 
consumptions (TT) in the analyzed period 

Source: own study 

Determined linear regression model, as shown in Figure 4, takes the form of (5): 
Fuel (TT) = 0.5988 + 0.0073 TT (5)
A strong correlation is confirmed by the scatter diagram on Figure 4 and calculated 
correlation coefficient of 98%. It is clear that the increase in driving time (in minutes) 
results in an increase in the amount of consumed fuel. Therefore, every additional 
minute spent in congestion causes a higher amount of combusted diesel oil (and thus 
higher costs). The variation of results from uneven traffic intensity on studied section 
in individual days, as well as from a certain inaccuracy of the measurement device 
(measurements were conducted on the basis of readings of the on-board computer of 
vehicle).
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Figure 4. Diagram of the linear regression model determined on the basis of actual 
travel time TT measurements and fuel consumption (TT) 

Source: own study

The study showed a strong correlation between the travel time TT and fuel 
consumption (TT) variable. This is valuable information, which indicates that every 
additional minute spent in congestion causes an increase in fuel consumption, and as a 
result, undesirable consequences, such as an increase in travel costs or an increase in 
emissions to the environment. Since the main objective of this study was to determine 
the impact of selected factors on the phenomenon of congestion in cities, as a further 
step only the travel time TT variable was analyzed.

Diagram 3 clearly shows two periods in which the surveyed variables take 
significantly different values. The analysis of basic descriptive statistics of the travel 
time TT indicates a high fluctuation of this variable – from 9 to 30 minutes. 
The coefficient of variation is about 22% (Table 2), so it is quite high. Therefore, 
the cause of this phenomenon was studied.   

Table 2. Descriptive statistics for variable journey time

Variable:
travel time TT

Descriptive statistics 

N Mean Min. Max. Standard deviation Coefficient of variation

time 229 21.61 9 30 4.99 23.10

Source: own study
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Detailed study of the travel times showed that during the school year, the average 
travel time TT is much longer than during both winter and summer holidays. This is 
due to the fact that during this period a significant part of the population takes holiday 
leaves and stays outside the city, which means that there are fewer traffic participants. 
This relation is shown by the following box plot (Fig. 5).

Figure 5. Box plot of variable travel time TT for school year, as well as summer 
and winter holiday

Source: own study 

The chart (in figure 5) shows atypical observations. These are not measurement 
errors, but observations, which indeed took place. Their further analysis leads 
to conclusion that shorter journey times are achievable not only in school-free period, 
but also on Tuesdays, Wednesdays and Thursdays when – as the study shows – they 
are lower than those recorded on Mondays and Fridays. The reason for such 
phenomenon is a significant migration of people from outside Warsaw to the city, 
who arrive to work or school from nearby towns. Quite often, the route between home 
and capital city is covered by car, hence the increased traffic on Mondays and Fridays, 
while on other working days it is covered by public transport. In relation 
to overlapping seasonality resulting from holidays and from weekdays, both these 
factors had to be taken into account. This was shown in Figure 6, where the average 
journey times recorded on individual weekdays for two periods were compared: 
school year period and for both: winter and summer holidays.
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Figure 6. Box plot considering the seasonality related to holidays and weeks 

Source: own study 

Taking into account the seasonality on the box causes plot that there 
are no atypical observations. The descriptive statistics presented in Table 3 and 4 
are also different.

Table 3. Descriptive statistics of variable travel time TT for the school year

Variable:
travel time TT
for the school year

Descriptive statistics 

N Mean
Minimu

m
Maximum

Standard 
deviation

Coefficient 
of variation

time 175 23.73 11 30 3.44 14.51

Source: own study

Table 4. Descriptive statistics of variable travel time TT for holidays

Variable:
travel time TT
for holidays

Descriptive statistics 

N 
Mea

n 
Minimu

m 
Maximu

m 
Standard 
deviation

Coefficient 
of variation

time
5
4

14.7
4

9 20 2.32 15.71

Source: own study

As can be seen, the average travel time TT during the school year is almost 23.73 
minutes, which is much longer than the average travel time TT on holidays, which 
is almost 9 minutes less. The maximum and minimum journey times also vary, i.e. 
appropriately 9 and 20 minutes for holidays and 11 and 30 minutes for the rest 
of period. The coefficient of variation for both processes is similar at around 15%, 
which allows for continuing the study.
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Before the estimation, a preliminary trend analysis was carried out, calculating 
the correlation coefficient between the variable travel time TT and time t (observation 
day). A negligible result was obtained, r=-0.006471 that informs about the lack of 
dependence. The scatter diagram was also drawn (Fig. 7), which clearly shows that 
most observations are beyond the confidence limits (indicated by red lines on 
diagram). Therefore, there is no travel time dependence from the next day of 
observation (t), and there is no basis to estimate the trend in the model, which 
describes the travel time.

Figure 7. Scatter diagram of variable journey time in relation to variable 
t (observation day)

Source: own study 

4.2. Multiple Regression (MR) Model With Binary Variables

4.2.1 Model 1 – Only Three Daily-Based Dummy Variables

According to quoted analyses, the stochastic model of daily trips should not take 
into account the long-term trend, but should describe short-term seasonality for 
particular days of the week, or sets of groups: working days (Monday and Friday, 
Tuesday, Wednesday and Thursday) and weekend days. As mentioned earlier, the 
qualitative nature of explanatory variables causes the need to estimate a model in 
which the number of variables is reduced by one.

First of all, model 1 was proposed, which takes into account weekdays, i.e. 
Monday, Friday and a group of days from Tuesday to Thursday, due to the fact that 
travel times for these days were similar. Multiple regressions (MR) were used for this 
purpose, estimating the model with binary variables D1 (Monday) and D3 (Friday).
The estimated regression parameters were obtained using the Statistica software. They 
are shown in Table 5, while the model has the following structure (6):
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��� � ���� � ���� · �� � ����−� · �� � ���5 · �� (6)
where the ��� is the estimate of the real TT(t), while t represents the days of the year. 
During the estimation in Statistica program, variables corresponding to individual 
days or groups of days were coded with 0 and 1, where 0 means that variable 
is excluded from the model, and vice-versa.

Table 5. Estimation results – model 1

Constant Monday Tuesday - Thursday Friday

Parameter

Value 20.65 1.96 -4.84 -2.89

Standard 
deviation SD

0.41 0.83 1.18 0.83

t - values 49.89 2.36 -3.48 3.45

Relative forecast 
error�δ�[%]�

2 42.31 -24.30 28.97

Source: own study

All estimated parameters turned out to be statistically significant. However, 
relative�forecast�error�δ�[%]�while�doing�the�estimation�of�parameters�are�high,�and the 
corrected determination coefficient is only 5%, which means that random component 
has a definite advantage over the deterministic. In addition, the residue distribution 
deviates significantly from normal distribution shown in the diagram by red line (Fig. 
8).

Figure 8. Histogram of residuals of the model 1

Source: own study

Forecasting quality of the model is negligible (R2 = 5 %). Its causes are shown 
in the diagram of time series and forecast function (Fig. 9), where it can be seen 
that the model, generally speaking, does not take into account the seasonality resulting 
from winter holidays and summer holidays, which significantly increases 
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the variance, deteriorates determination coefficient and desymmetricizes 
the distribution of residuals.

Figure 9. Diagram of empirical variable TT (t) and forecasts for the model 1

Source: own study 

Due to the insignificant forecasting quality of the model, it was not subjected 
to further statistical tests to verify its properties.

4.2.2 Model 2 – Applying an�Additional�Holidays’�Dummy�Variable

Therefore, analyzed model 1 should be adjusted to take into account not only 
weekly, but also seasonality due to winter holidays. A new binary variable Dh
has been created for the school holidays and the parameter estimates have been 
calculated again. The obtained results are presented in Table 6, while the model 
has now the following structure (7):

��� � ���� � ���� · �� � ����−� · �� � ���5 · �� � ���� · �� (7)

Table 6. Estimation results – model 2 

Constant Monday Tuesday -Thursday Friday Holidays 

Parameter ���� ���� ����−� ���5 ����
Value 22,79 1,96 -4,27 2,73 -8,96

Standard 
deviation SD

0,28 0,51 13,28 0,52 0,47

t - values 81.61 3.82 -0.32 5.29 -19.13
Relative forecast 
error�δ�[%]�

1,23 26,16 20,24 18,91 -5,22

Source: own study
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Errors in estimation of parameters are smaller, but still quite high, especially 
for Mondays. However, the determination ratio has increased from 5% to 64%, 
indicating a significant improvement in fitting model 2.

Figure 10. Histogram of residual model 2

Source: own study

Residuals distribution is more similar to normal (Fig. 10) and the model 
significantly better reflects variability resulting from school holidays (Fig. 11). 
Nevertheless, it was decided to make one more attempt to estimate the regression 
model.

Figure 11. Diagram of empirical variable TT(t) and forecasts for the model 2

Source: own study 
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4.2.3 Model 3 – Applying All Daily Dummy Variables And Additional Holidays

Finally, a third model of multiple regression (MR) was proposed, in which 
the explanatory variables concern all days of the week and days related to winter 
holidays, and the model 3 was estimated for Mondays with the following results 
(Table 7), while the model has now the following structure (8):

��� � ���� � ���� · �� � ���� · �� � ���� · �� � ���� · �� � ���5 · �5 � ���� · �� (8)

Table 7. Estimation results – model 3

Constant Monday Tuesday Wednesday Thursday Friday Holiday

Parameter ���� ���� ���� ���� ���� ���5 ����

Value 24.75 14.05 -1.83 -2.04 -2.00 0.77 -8.96

Standard 
deviation SD

0.46 1.81 0.63 0.63 0.63 0.63 0.47

t - values 53.91 7.76 -2.90 -3.25 -3.178 1.22 -19.06

Relative 
forecast error 
δ�[%]�

1.85 9.57 -34.47 -30.80 -31.47 81.86 -5.25

Source: own study 

The corrected determination factor R2 is 63%, but variable for Friday 
is insignificant, large errors in estimation of parameters do not allow for considering 
model 3 as better than the previous one. This way constructed model is indeed 
parsimonious, but in regression analysis with a use of dummy variable, it is also 
practiced to leave insignificant variables in the model, because thanks to that simple 
and�clear�interpretation�of�seasonal�parameters�is�preserved�(Sokołowski,�2016).

4.2.4 Validation Of The Best Model 2

Therefore, it was finally decided that model 2 is the most reliable for analyzed 
empirical data and it was subjected to further research. In order to check whether 
all relations existing in time series have been explained, a diagram of autocorrelation 
and partial autocorrelation functions of the residual model has been prepared (Fig. 12, 
Fig. 13). 
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Figure 12. Diagram of autocorrelation function of the residual model

Source: own study

Figure 13. Diagram of partial autocorrelation function of the residual model

Source: own study

The above diagrams in figures 12 and 13 show that apart from the first delay, 
there are no significant dependencies, which may suggest that most of dependencies 
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that occur in the analyzed phenomenon have been explained by the model. 
This is confirmed by the Ljung-Box test, which assumes the following 
in the hypothesis H0: The data are independently distributed. The calculated value of 
test statistics up to the order of 10 was Q = 10.447, with a p-value = P (Chi-square(10) 
> 10.447) = 0.402, which means that the investigated series is a process of white noise.

However, White's test for heteroscedicity of residuals showed that the variance 
of random element is not constant. For the zero hypothesis, which assumes 
that the residual heteroscedicity is not present, the value of test statistics LM=22.0237 
with the p-value = P(Chi-square(5) > 22.0237) = 0.000518201 was obtained. In 
addition, the study of normality of the residues distribution at a significance level of 
α=0.05� indicated� the� need� to� reject� H0� hypothesis,� which� assumes� that random 
element has a normal distribution (obtained Chi-square test statistic=6.49899 with p-
value=0.0387938). All this indicates an imperfection of the proposed model. 
Nevertheless, it was decided to verify it on the basis of preserved test observations. 
Estimated forecasts along with their relative forecast errors are presented in Table 8.

Table 8. Comparison of empirical and forecast data for the test interval

Date 
Regression model

(estimated values ��� )
Empirical data

(observations TT)
Forecasting relative 

error�Ψ�[%]

17-12-01 25,52 26 1,8%

17-12-04 24,75 25 1,0%

17-12-05 18,52 22 15,8%

17-12-06 18,52 24 22,8%

17-12-07 18,52 22 15,8%

17-12-08 25,52 26 1,8%
Source: own study

In accordance with the above table, the forecasts obtained for days when 
the traffic intensity is high are satisfactory and amount to less than 2%. On the other 
hand, on the remaining days of the week, the forecast was much more optimistic than 
empirical values, and therefore the underestimation of errors is between 15 and 20%.

4.3. ARIMA Model

In the next part of study, the ARIMA model was proposed. As mentioned above, 
it can only be used for stationary series, and therefore the first step was to analyse 
series under stationary performance. For this purpose, the diagram of autocorrelation 
function, shown in Figure 14, was calculated at first.
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Figure 14. Diagram of autocorrelation function (ACF) of the variable 
travel time TT.

Source: own study 

The ACF function does not expire, its values are statistically significantly 
different from zero. Presence of a unit root was confirmed by the Dickey-Fuller test, 
for which the H0 zero hypotheses assumes that a unit root exists. The calculated 
empirical significance level is high and amounts to approximately 50% 
(p-value= 0.4996), which does not allow to reject H0 and indicates that the tested 
series is stationary due to the presence of a unit root. Therefore, it must be reduced to 
a stationary form. For this purpose, two transformations were conducted. Firstly, the 
logarithmic transformation has been carried out (9):
����� � log�������� (9)
Then first order differentiation (10):
∆���

�
�
� ���� � ���−��

�

(10)
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Figure 15. Diagram of autocorrelation function (ACF) of the of the modified 
variable travel time TT after transformations

Source: own study

Figure 16. Diagram of partial autocorrelation function (PACF) of the modified 
variable travel time TT after transformations

Source: own study

The ACF function decreases rapidly (Fig. 15), while the PACF function (Fig. 16) 
breaks off for a delay value k>4, which may initially suggest that this is the AR(4) 
autoregressive process. Since the course of correlograms does not always provide 
clear results, several models were estimated, including parameters p and q in the range 
from 0 to 4, and also those taking into account the parameter of moving average 
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process MA(q). In the first place, they were selected due to statistical significance of 
estimated parameters, and in this way the models for which all parameters are 
statistically significant were selected, as presented in Table 9.
The best results were obtained for models (formula11 and 12):
ARIMA (2,1,0):
����� � ���� � ���� · ����� � 1� � ���� � · ����� � 2� � 0 � 0.33� · ����� � 1� � 
�0.23� · ����� � 2� (11)
and ARIMA (4,1,0):
����� � ���� � ���� · ����� � 1� � ���� � · ����� � 2� �� ���� � · ����� � 3�
����� � · ����� � 4� � 0 � 0,42 · ����� � 1� � 0.36� · ����� � 2� �
�0.3� · ����� � 3� � 0.17� · ����� � 4� (12)

Table 9. Summary of estimation results

model
Model 

ARIMA 
(4,1,0)

Model
ARIMA 
(3,1,0)

Model
ARIMA 
(2,1,0)

Model
ARIMA 
(1,1,1)

Transformations: ln(TT)  D(1) ln(TT)  D(1) ln(TT)  D(1) ln(TT)  D(1)

a1   p(1)   -0.42 -0.38 -0.33 0.38376

a2   p(2)   -0.36 -0.31 -0.23 0.82903

a3   p(3)   -0.30 -0.24

a4 p(4) -0.17

MSE Mean Squared 
Error

0.035 0.036 0.038 0.035

AIC Akaike 
information criterion

−110.12 −105.77 −94.21 −110.68

BIC Bayesian 
information criterion

−92.98 −92.05 −83.93 −96.97

HQC Hannan–Quinn 
information criterion

−103.21 −100.23 −90.06 −105.15

ACF and PACF 
functions of the 
residuals

not 
significantly 

different 
from zero

significantly 
different 
from zero

significantly 
different 
from zero

significantly 
different 
from zero

Source: own study

Other factors determining the quality of model were then analyzed. 
Due to the lowest value of all calculated information criteria, the best turned out to be 
model (2,1,0). However, the analysis of diagram of the autocorrelation function and 
partial autocorrelation of its residuals showed that there exist for the model values of 
these functions significantly different from zero, which indicates that in the model 
remained relations, which were not fully explained by it. Only for the ARIMA (4,1,0) 
model, all values of ACF and PACF functions of the residuals distribution (Fig. 17 
and Fig. 18) were statistically significantly different from zero, which suggests that 
this model will better explain the relations existing in series. Consequently, both 
ARIMA (2,1,0) and ARIMA (4,1,0) were further verified.
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Figure 17. Autocorrelation function (ACF) of the ARIMA (4,1,0) residual model 
distribution

Source: own study

Figure 18. Partial autocorrelation function of the ARIMA (4,1,0) residual model 
distribution

Source: own study 

The last stage of model verification is to check its reliability in forecasting. 
Preserved test observations were reused and three proposed models were compared: 
the best multiple regression (MR) model from section 5.2, ARIMA (4,1,0) 
and ARIMA (2,1,0) model. Relative forecast errors were calculated for each 
observation. The results are presented in Table 10.
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Table 10. Forecasting errors for regression model, ARIMA (4,1,0) and ARIMA 
(2,1,0) models

Date
Day of 
week

Empirical 
data

Forecasts Relative forecast error�Ψ�[%]

17.12.01 5 26 25,52 22,97 22,87 1,83 11,67 12,05

17.12.04 1 25 24,75 23,41 22,58 1,00 6,37 9,69

17.12.05 2 22 18,52 23,51 22,47 15,80 -6,86 -2,14

17.12.06 3 24 18,52 23,00 22,57 22,82 4,15 5,95

17.12.07 4 22 18,52 22,88 22,56 15,80 -4,01 -2,56

17.12.08 5 26 25,52 23,01 22,54 1,83 11,50 13,30
Source: own study

Conducted research shows that none of models managed perfectly with 
empirical data, but the average forecast errors for all the models are satisfactory 
and they do not exceed 10%. The best result was obtained for the ARIMA (4,1,0) 
model, which diagram is shown in Figure 19.

Figure 19. Diagram of empirical variable TT(t) and forecasts for the ARIMA 
(4,1,0) model 

Source: own study
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The regression model managed best with estimation on the days when traffic 
intensity was the highest, i.e. on Mondays and Fridays. On the remaining days 
of week, the ARIMA models proved better. If the capabilities of regression model and 
ARIMA (4,1,0) were combined, the average error of such a forecast would be just 
over 3% (Table 11).

Table 11. Average forecast errors for estimated models
Regression 

model
ARIMA 
(4,1,0)

ARIMA 
(2,1,0)

Regression model / 
ARIMA (4,1,0)

Relative forecast 
mean�error�Ψ�[%]

9,85 7,43 7,61 3,28

Source: own study

5. CONCLUSIONS

The problem of congestion regards many cities around the world. It is difficult 
to solve as it requires the involvement of many entities of the transport system, 
in particular road users. The best and latest developments in transport infrastructure 
and� superstructure� will� not� be� effective� without� changing� citizen’s� habits�
and mentality. Therefore, all available methods must be used to shape the right 
attitudes, to which this article also contributes. The mathematical analysis of short 
distance showed drastic differences between the driving times depending 
on the factor, which is a day of the week. Difference between the longest 
and the shortest time was as much as 21 minutes and it is a lost time, which could 
be used much more pleasantly and efficiently. The economic issue is also important. 
Getting stuck on crowded road is not only an increase in fuel costs, but also the cost 
of missed opportunities.

The article shows possibility of mathematical modelling of the congestion 
phenomenon. The versatility of chosen route allows the model to be applied also 
to other parts of the city, as well as to calculate the potential journey times. It is a good 
practice to determine the same phenomenon using many methods. In this way, the 
obtained results can be compared, first of all, in terms of their accuracy. For example, 
the simple regression model was found to better reflect the time travel of days with 
the highest traffic, while the more complex ARIMA model was proved for the 
remaining days of the week. 

Therefore, the analyses carried out can be improved and developed using more 
advanced econometric models. (e.g. ARIMAX models). Moreover, it is worth 
to consider comparison of obtained results for passenger car journeys with alternative 
transport means, such as public transport (buses and trams) or the idea of city bikes, 
which is particularly preferred in times of sustainable transport development. There is 
no doubt that the congestion issue will be the subject of many scientific dissertations.



Mathematical model of travel times related to a transport congestion: an example of the capital city of… 

Anna Borucka, Szymon Mitkow  

524

6. REFERENCES 

Altshuler, A., Womack, J.P & Pucher, J.R (1979). The Urban Transportation System 
Politics and Policy Innovation. Cambridge Massachusetts: MIT Press.

Bielińska,� E.� (2007).� Forecasting temporary sequences, Gliwice: Publishing 
Company of the Silesian University of Technology.

Box, G. E. P. & Jenkins, G.M. (1983). Time-series analysis. Forecasting and control, 
Warsaw: Scientific Publishing House PWN.

Ciesielski, M. (1986). Costs of transport congestion in cities.� Poznań:� Publishing�
Company of the University of Economics.

Cieślak� M.� (2005).� Economic forecasting. Warsaw: Scientific Publishing House 
PWN.

Dębowska-Mróz,�M.;�Lis,�P.;�Szymanek,�A.�&�Zawisza,�T.� (2017).�The municipal 
bicycle as system components transport in cities, Buses: technology, operation, 
transport systems, (18)6, p. 1173-1182.

Dittmann, P., Szabela-Pasierbińska,�E.,�Dittmann,�I.�Szpulak, A. (2011). Forecasting 
in sales and financial management of a business, Warsaw: Wolters Kluwer Polska Sp. 
Z o.o. 

Dyr,�T.�&�Kozłowska,�M.� (2018).�Congestion� costs� in� the�European�Union� 2018,�
Buses: technology, operation, transport systems, 19 (1-2), p. 26-31.

Dyr,� T.&� Kozłowska,� (2017).� M.� Congestion� costs� in� the� European� Union,� Rail 
Transport Technique, 24(7-8), p. 18-23.

Hugos, M. (2006). Essentials of Supply Chain Management, 2nd Edition, Hoboken, 
New Jersey: John Wiley & Sons, Inc.

Igliński, H. (2009). Reducing transport congestion and sustainable urban 
development,�(Unpublished�doctoral�dissertation),�Economic�University�In�Poznań.

INRIX (2018). Global Traffic Scorecard [available at: http://inrix.com/scorecard/, 
access March 16, 2018]

Jacyna, M. (2001). Multicriterial modelling in application for the assessment 
of transport systems. Warsaw: Publishing Office of the Warsaw University 
of Technology.

Jacyna, M. (2009). Modelling and evaluation of transport systems. Warsaw: 
Publishing Office of the Warsaw University of Technology.

Jamroz, K. (2016). Guidelines for the road extension to additional lanes depending 
on the expected road traffic volume, Part I – Analysis report, Technical University of 
Gdańsk.�

Kamińska,� J.� &� Chalfen,� M.� (2017).� Congestion versus travel time: modelling 
approach. Buses: technology, operation, transport systems, (18)6, p. 1212-1214.



18th international scientific conference Business Logistics in Modern Management 

October 11-12, 2018 - Osijek, Croatia 

525

Kamiński,�T.;�Niezgoda,�M.;�Siergiejczyk,�M.;�Oskarbski,�J.;�Świderski,�A.& Filipek, 
P. (2016). Impact of the use of Intelligent Transport Systems services on the road 
safety level, Scientific work - transport, 113, p. 201-208. 

Kornaszewski, M. & Gwiazda, A. (2017). Intelligent systems of transport as means 
of solving problems in transport congestion, Buses: technology, operation, transport 
systems, 18(6), p. 1429-1434.

Koźlak,�A.�(2015).�Limitation�of�transport�congestion�in�the�cities�as�a�major�challenge�
for transport policy, Logistics, 3, p. 5386-5394.

Krajewska,�R.�&�Łukasik,�Z.�(2017).�Effective utilization of transport infrastructure 
in cities: examples of good practice, Buses: technology, operation, transport systems, 
(18)9, p. 203-211.

Kulińska,� E.;� Rut,� J.&� Partyka,� P.� (2014).� Reduction of congestion with the use 
of flexible lanes, Logistics, 2, p. 26-34.

Lejda, K &, Siedlecka, S., (2016). Intelligent traffic systems in cities, Buses: 
technology, operation, transport systems, 17(12), p. 680-683.

Miklińska,� J.� (2017).� Development� Of� The� Intermodal� Market� In� Poland� From�
The Perspective Of Cargo Handling Operations In International Supply Chains; 
Selected Issues, Business Logistics in Modern Management, Osijek, p. 233-249.

Miklińska,� J.� (2017). Development Of The Market For Modern, Commercial 
Warehouse Spaces As The Logistics Infrastructure Facilities Of The Region; 
Experiences From Poland, 6th International Scientific Symposium Economy 
of Eastern Croatia; Vision and Growth, Osijek, p. 880-890.

Nosal, K. & Starowicz, W. (2010). Some problems of mobility management, Urban 
and Regional Transport, 3, p. 26-31.

Osińska,� M.,� Kośko,� M.� &� Stempińska,� J.� (2007).� Modern econometrics.� Toruń:�
Publishing House - Scientific Society of the Organization and Management� “Dom�
Organizatora”.

Rabiej, D. (2012). Statistics with the Statstica program, Gliwice: Helion Publishing 
House.

Radzimski, A. (2012). Pedestrian and bicycle traffic as the elements of sustainable 
urban transport system in Copenhagen, Urban and Regional Transport, 2, p. 12 -20.

Rothenbarg, J. (1970). The economics of congestion and pollution: an integrated view. 
The American Economic Review: Papers and Proceadings, 60(2), p. 114-121.

Ruchaj, M., (2012). Algorithms for controlling acyclic traffic lights in a congested 
road network. (Unpublished doctoral dissertation). Opole University of Technology.

Selwon, A. & Roman, K. (2017). The impact of Intelligent Transport Systems to 
reduce congestion in cities, Buses: technology, operation, transport systems, (18)3, p. 
28-32.



Mathematical model of travel times related to a transport congestion: an example of the capital city of… 

Anna Borucka, Szymon Mitkow  

526

Sokołowski,� A.� 2016.� Forecasting� and� analysis� of� time� series.� Training�materials.�
StatSoft Polska. Cracow.

Szołtysek�J.,�(2011).�Creating mobility of city residents. Wolters Kluwer Polska Sp. z 
o.o. 

Świderski,�A.�(2011).�Quality evaluation modelling of transport services, Scientific 
work – transport, 81, Warsaw: Publishing Office of the Warsaw University 
of Technology.

Taylor, H. M. & Karlin, S. (1998) An introduction to stochastic modelling, New York: 
Academic Press.


