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ABSTRACT

Maritime security and monitoring are essential for global trade, environmental protection, and 
national defense. Traditional machine learning models have been effective in recognizing and 
classifying maritime objects, but their reliance on large, labeled datasets poses significant challenges, 
particularly in dynamic environments where new and unforeseen objects frequently emerge. This 
study explores the application of Zero-Shot Learning (ZSL) to the maritime domain, leveraging the 
CLIP (Contrastive Language-Image Pre-training) model to classify maritime objects with minimal 
labeled data. A custom dataset comprising 1,438 images across five maritime object categories—
boat, cargo, cruise, dock, and lighthouse—was curated for evaluation. Four CLIP model variants 
were examined: “clip-vit-base-patch16,” “clip-vit-base-patch32,” “clip-vit-large-patch14,” and “clip-
vit-large-patch14-336.” The study’s findings indicate that the CLIP models, particularly the “clip-vit-
large-patch14-336” variant, achieve high classification accuracy, with AUC values approaching 1.0 
across most classes. Performance was strongest in easily distinguishable categories such as dock 
and lighthouse, but challenges remain with rare or ambiguous classes such as cargo ships, where 
F2 scores suggest variability in recall and precision. Additionally, the study highlights the potential 
limitations of these models, including their dependency on dataset diversity and potential biases 
introduced by web-scraped images, which may not fully represent the complex, real-world conditions 
of maritime environments.

1 Introduction

Maritime security and monitoring are critical for 
global trade, environmental protection, and national se-
curity. Traditional machine learning approaches have 
shown success in recognizing and classifying maritime 
objects such as ships, buoys, and marine animals [1-3]. 
However, these models typically rely on large, labeled 
datasets for training, which are not always available for 
every possible object of interest. This limitation is par-
ticularly pronounced in dynamic environments like 
oceans, where new types of vessels, debris, or other ob-
jects may frequently appear. The effective management 
and surveillance of maritime environments necessitate 
robust systems for object detection and classification. 
While traditional computer vision techniques have 

shown promise, their reliance on large, meticulously an-
notated datasets poses significant challenges, particu-
larly in the context of maritime imagery. Zero-shot 
learning, an emerging paradigm in machine learning, of-
fers a potential solution by enabling the recognition of 
unseen object categories without requiring correspond-
ing training examples. By leveraging semantic and visu-
al information, this research explores the feasibility of 
applying zero-shot learning to the maritime domain. 
Our aim is to develop a model capable of detecting and 
classifying a diverse range of maritime objects, includ-
ing vessels, buoys, and marine debris, with minimal  
reliance on labeled data. Successful implementation of 
this approach could significantly advance maritime  
situational awareness and support a wide array of 
applications.



240 I. Lorencin et al. / SCIENTIFIC JOURNAL OF MARITIME RESEARCH [Pomorstvo] 38 (2024) 239-249

This paper is structured to explore the application of 
Zero-Shot Learning (ZSL) in the classification of mari-
time objects, focusing on the challenges posed by the 
scarcity of labeled data in dynamic maritime environ-
ments. It begins with the literature review provides an 
overview of recent advancements in machine learning 
and image processing within the maritime domain. Fol-
lowing this, the paper discusses the theoretical founda-
tions of ZSL and its potential to generalize across 
unseen object categories. A description of the dataset 
used for evaluation is included, along with the methods 
for data collection and preparation. The results section 
presents a comparative analysis of different model vari-
ants, focusing on their performance across various mar-
itime object categories. The paper concludes with a 
discussion of the strengths, limitations, and potential 
applications of the proposed approach in real-world 
maritime scenarios, offering insights into its future 
development.

2 Literature review
The maritime domain, characterised by vast and dy-

namic environments, has increasingly leveraged the ca-
pabilities of machine learning (ML) and image 
processing to address complex challenges. These tech-
nologies have been instrumental in enhancing maritime 
safety, efficiency, and environmental protection. Image 
processing techniques have been foundational in ex-
tracting meaningful information from maritime image-
ry. Image acquisition platforms, including satellites, 
aerial drones, and ship-borne sensors, generate vast 
amounts of visual data. Pre-processing techniques are 
applied to improve image quality and model perform-
ance [4]. Subsequently, feature extraction methods, in-
cluding edge detection, texture analysis, and interest 
point detection, are employed to identify salient image 
regions [5]. Object detection algorithms, such as You 
Only Look Once (YOLO) [6-8], localise and classify mari-
time objects and recyclable materials within images. 
Application of deep learning in maritime environment 
has a vital role in protection an inspection of critical un-
derwater infrastructure such as seafloor pipelines [9]. 
Furthermore, ML algorithms can also be used in model-
ling of the dynamics of tidal rivers and estuaries [10].

Machine learning algorithms have been integrated 
into maritime systems to analyse extracted image fea-
tures and make informed decisions. While significant 
progress has been made, challenges persist in the appli-
cation of ML and image processing to maritime do-
mains. These include the variability of maritime 
conditions, the presence of occlusions and shadows in 
images, the scarcity of labeled data for specific maritime 
objects, and the computational demands of complex 
models. Addressing these challenges requires ongoing 
research and development to improve the robustness 
and reliability of maritime systems. Zero-shot learning 

(ZSL) has emerged as a promising approach to address 
the challenge of classifying unseen categories without 
corresponding training data. Early works primarily fo-
cused on attribute-based methods, where semantic at-
tributes were used to bridge the gap between seen and 
unseen classes [11]. However, the reliance on handcraft-
ed attributes limited their effectiveness.

Subsequently, generative models gained attention, 
aiming to synthesise training examples for unseen 
classes [12]. While these methods showed promise, 
they often suffered from mode collapse, and generating 
realistic samples remained challenging.

More recently, embedding-based approaches have 
emerged as a dominant paradigm in ZSL. By learning a 
joint embedding space for visual and semantic informa-
tion, these methods enable similarity-based classifica-
tion of unseen classes [13].

Despite the advancements in ZSL, its application to 
the maritime domain is relatively unexplored. The con-
vergence of computer vision and natural language 
processing has given rise to language-vision models, a 
class of artificial intelligence systems capable of under-
standing and reasoning about both visual and textual 
information simultaneously. These models have 
emerged as a powerful tool for bridging the gap be-
tween the human-interpretable world of language and 
the machine-perceptible world of images. Early re-
search in language-vision focused on establishing foun-
dational connections between the two modalities. Tasks 
such as image captioning, which requires generating de-
scriptive text for an image [14], and visual question an-
swering, demanding an accurate textual response to a 
question about an image [15], were instrumental in de-
veloping techniques for multimodal representation 
learning. These initial studies laid the groundwork for 
understanding how to align visual and textual informa-
tion, forming the basis for more complex language-vi-
sion models.

Building on these foundational works, the develop-
ment of large-scale pre-trained language-vision models 
has marked a significant leap forward. Models like CLIP 
[16] and ViLBERT [17] have been trained on massive 
datasets of image-text pairs, enabling them to learn rich 
representations that capture complex relationships be-
tween visual and textual content. These pre-trained 
models have demonstrated exceptional performance on 
a wide range of tasks, including image classification, ob-
ject detection, and visual grounding. By leveraging the 
knowledge acquired from extensive training data, these 
models have shown a remarkable ability to generalise 
to new tasks and domains.

This study hypothesises that the application of Zero-
Shot Learning (ZSL) through language-vision models 
like CLIP can effectively address the challenges of mari-
time object classification, particularly in environments 
where labelled data is scarce or unavailable. We pro-
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pose that these models, due to their ability to generalise 
from diverse image-text pairings, can accurately classify 
a wide range of maritime objects, including those that 
have not been seen during training. The conclusion of 
this research will evaluate the validity of this hypothesis 
by analysing the models’ performance in classifying dif-
ferent maritime object categories and assessing their 
potential limitations in real-world maritime scenarios.

3 Zero-Shot Learning

Zero-shot learning (ZSL) is a challenging machine 
learning subfield focused on classifying unseen catego-
ries without corresponding training data. Unlike tradi-
tional supervised learning reliant on labelled data for 
each class, ZSL generalises knowledge from known 
classes to unknown ones. A core ZSL assumption is the 
existence of auxiliary information bridging the gap be-
tween seen and unseen classes. This information is of-
ten represented as semantic embeddings capturing 
object category semantics and attributes. These embed-
dings reside in a shared semantic space encompassing 
both seen and unseen classes [18]. The integration of 
language and vision modalities presents a promising av-
enue for enhancing maritime object detection and clas-
sification. By fusing the complementary strengths of 
these domains, we can develop more robust, accurate, 
and interpretable models. The incorporation of textual 
descriptions enriches object representations with se-
mantic information, facilitating improved discrimination 
between object categories. Moreover, language-vision 
models have the potential to mitigate the challenges 
posed by limited labeled data in the maritime domain 
through techniques such as data augmentation and 
knowledge transfer from large-scale pre-trained 
models.

4 Dataset description

The dataset used in this study was curated through a 
comprehensive web scraping process, aimed at gather-
ing a diverse and representative collection of images 
corresponding to five distinct maritime classes: boat, 
cargo, cruise, dock, and lighthouse. The primary objec-
tive of this dataset creation was to build a robust image 
repository that could effectively support the training, 
validation, and testing of machine learning models, par-
ticularly those focused on classification tasks within the 
maritime domain.

The dataset was compiled using automated web 
scraping techniques, which involved crawling various 
publicly accessible online sources, including image 
search engines, maritime-themed websites, and rele-
vant databases. The web scraping process was carefully 
designed to ensure that the images collected were of 
high quality and relevant to the specific classes of inter-

est. Each image was manually reviewed to confirm its 
relevance to the corresponding category, thereby mini-
mising the inclusion of irrelevant or mislabeled images. 
The scraping process was conducted over several 
weeks, during which various scripts were employed to 
capture images based on keyword searches associated 
with each class. The images were then processed to re-
move duplicates and standardise their formats. This 
preprocessing step was crucial to maintaining the data-
set’s integrity and ensuring that the models trained on 
this data would be exposed to a wide variety of images, 
reflecting real-world variability in maritime settings. 
The final dataset comprises a total of 1,438 images, dis-
tributed across the five maritime classes as shown in 
Table 1. The distribution of images was intentionally 
kept unbalanced to reflect the natural occurrence of 
these classes in typical maritime environments. For in-
stance, “cruise” class images are more prevalent due to 
the high visibility and frequent documentation of cruise 
ships compared to other classes such as “cargo” or “dock.”

Table 1 Dataset Composition

Class Number of Images
Boat 159
Cargo 112
Cruise 824
Dock 175
Lighthouse 168
Total 1438

Class Descriptions

Boat: This class includes a variety of small to medi-
um-sized vessels, typically used for leisure or short-dis-
tance travel. The images in this class capture boats in 
different settings, such as in marinas, on open water, 
and docked at piers. The diversity within this class pro-
vides a comprehensive representation of recreational 
and functional boating scenarios.

Cargo: The cargo class encompasses images of com-
mercial freight ships, including container ships, bulk 
carriers, and other vessels used for transporting goods 
across international waters. This class is characterized 
by large ships often depicted in ports, at sea, or in the 
process of loading and unloading cargo.

Cruise: The largest class in the dataset, cruise, con-
tains images of cruise liners, which are a prominent fea-
ture of the maritime tourism industry. These images 
vary in perspective and context, capturing cruise ships 
from aerial views, at sea, docked at ports, and in various 
lighting conditions.

Dock: Images in the dock class feature maritime 
docking facilities, including piers, harbors, and mooring 
points where boats and ships are stationed. This class is 
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essential for understanding the infrastructure associat-
ed with maritime activities. The dock images are di-
verse, depicting both bustling commercial docks and 
quieter, smaller-scale docking areas.

Lighthouse: The lighthouse class includes images of 
lighthouses situated in coastal areas, often serving as 
navigational aids for maritime vessels. These images 
capture lighthouses in various settings, from isolated 
rocky coastlines to more urbanized harbor areas. The 
inclusion of lighthouses provides a unique perspective 
on coastal features relevant to maritime navigation.

It is important to note that the dataset presented in 
this study was used exclusively for the testing and eval-
uation of different CLIP architectures. The dataset was 
not intended for training the models but rather to as-
sess their zero-shot learning capabilities in the mari-
time domain. This approach allows for a more accurate 
evaluation of how well these models can generalize to 
new, unseen data, which is critical for their application 
in real-world maritime environments. The representa-
tion of each class is given in Figure 1.

The dataset used in this study reflects a notable class 
imbalance, with a large number of cruise ship images 

(824) compared to fewer images of other categories, 
such as cargo ships (112). This imbalance can be attrib-
uted to the varying availability and visibility of maritime 
objects, with cruise ships being more frequently docu-
mented in different settings, such as aerial views, ports, 
and at sea. Cruise ships can have diverse appearances, 
sizes, and conditions, necessitating a wide representa-
tion within this class to ensure comprehensive cover-
age. This abundance was intentionally included to 
capture as many variations of cruise ships as possible, 
as the dataset was primarily intended for testing the 
model’s ability to generalize across different maritime 
objects. The dataset reflects the diversity of real-world 
maritime environments, while also acknowledging the 
challenges posed by this inherent class imbalance.

5 CLIP Vision Language model

CLIP (Contrastive Language-Image Pre-training) is a 
groundbreaking vision-language model developed by 
OpenAI that integrates visual and textual modalities in a 
shared representation space. This model is trained to 
understand and generate meaningful associations be-

a) Class Boat b) Class Cargo ship

c) Class Cruise ship d) Class Dock e) Class Lighthouse

Figure 1 Representation of classes contained in the data set
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tween images and their corresponding textual descrip-
tions. CLIP leverages a large-scale dataset consisting of 
400 million image-text pairs gathered from the inter-
net, making it one of the most comprehensive pre-
training datasets in the field of multi-modal machine 
learning [19]. The core of CLIP’s architecture compris-
es two parallel neural networks: a Vision Transformer 
(ViT) and a Transformer-based text encoder [20]. The 
vision model processes images, while the text model 
processes corresponding descriptions. Both models 
project their respective inputs into a shared multi-di-
mensional space, enabling the system to align images 
with text based on their semantic similarity. During 
training, CLIP employs a contrastive loss function that 
maximizes the cosine similarity between matching im-
age-text pairs while minimizing the similarity for non-
matching pairs [21]. This approach enables CLIP to 
effectively learn robust, generalizable representations 
that capture the relationships between images and 
text. The vision encoder is typically a ViT model or a 
ResNet, pre-trained to extract high-level features from 
images [22]. The text encoder is a Transformer model, 
pre-trained on text-only corpora to understand the 
syntactic and semantic nuances of natural language. 
The alignment of these two modalities in a joint em-
bedding space allows CLIP to perform tasks such as 
zero-shot image classification, where the model can 

classify images into categories without having seen la-
beled examples during training. This capability is 
achieved by comparing the embeddings of candidate 
labels expressed as text with the image embeddings, as 
presented in Figure 2.

One of the key innovations of CLIP is its ability to 
perform zero-shot learning across a wide range of vi-
sion tasks. By formulating classification problems as 
text-based prompts, CLIP can classify images without 
needing task-specific fine-tuning. For instance, given 
an image of a boat, the model can identify it as a “boat” 
by comparing the image’s embedding with text embed-
dings of potential labels like “boat,” “cargo ship,” and 
“dock”, as presented in Figure 3. This capability dem-
onstrates the model’s generalization power and its po-
tential to be applied to diverse vision tasks with 
minimal adaptation [23]. Moreover, CLIP’s transfer 
learning capabilities extend beyond classification. The 
model has been shown to perform well on tasks such 
as object detection, image segmentation, and visual 
question answering (VQA), even when transferred to 
these tasks without additional task-specific training. 
This versatility underscores the effectiveness of the 
shared representation space learned by CLIP and its 
utility in various applications where understanding 
the interplay between visual and textual information is 
crucial.

Figure 2 Schematic representation of CLIP ViT model



244 I. Lorencin et al. / SCIENTIFIC JOURNAL OF MARITIME RESEARCH [Pomorstvo] 38 (2024) 239-249

CLIP’s architecture and training methodology repre-
sent a significant advancement in the field of vision-lan-
guage models. Its ability to generalize across tasks 
without fine-tuning opens new possibilities for AI sys-
tems to interact with the world in a more natural and 
flexible manner. Applications of CLIP span various do-
mains, including content moderation, where the model 
can automatically identify inappropriate or harmful 
content based on textual descriptions, and in creative 
fields such as generating text-based image searches or 
guiding artistic creation through text prompts [24]. Ad-
ditionally, CLIP’s zero-shot capabilities make it particu-
larly valuable in scenarios where labeled data is scarce 
or unavailable, offering a practical solution for deploy-
ing machine learning models in real-world environ-
ments with minimal human intervention [25].

In this research, four different CLIP architectures are 
used and compared, and these are:

• clip-vit-base-patch16,
• clip-vit-base-patch32,
• clip-vit-large-patch14, and
• clip-vit-large-patch14-336.

Figure 3 Example of image classification using CLIP 

6 Results and discussion

The results for the “clip-vit-base-patch16” model 
across five classes—boat, cargo, cruise, dock, and light-
house—are presented using AUC (Area Under the 
Curve) and F2 score metrics. The AUC values are very 
high across all classes, ranging from 0.988 for the 
“cruise” class to 0.999 for the “dock” and “lighthouse” 
classes, as presented in Figure 4. These values suggest 
that the model has a strong ability to correctly distin-
guish between true positive and false positive classifica-
tions across different categories. The F2 scores, which 
give more weight to recall than precision, show more 
variability. The scores range from 0.714 for the “cargo” 
class to 0.971 for the “lighthouse” class. This indicates 
that while the model performs well overall, there is 
some room for improvement, especially in the “cargo” 
class where the F2 score is significantly lower. This low-
er score suggests that the model might struggle more 
with recall or precision in this specific class, leading to 
more false negatives or false positives compared to oth-
er classes.
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The results for the “clip-vit-base-patch32” model 
across five classes show that AUC values are consistent-
ly high across all classes, ranging from 0.991 for the 
“cargo” class to nearly 1.0 for the “lighthouse” class, as 
presented in Figure 5. This indicates that the model has 
an excellent ability to distinguish between true posi-
tives and false positives, effectively identifying correct 
classifications across different categories. However, the 
F2 scores reveal a more varied performance, with 

Figure 4 AUC and F2 Scores for Various Classes Using the “clip-vit-base-patch16” Model

scores ranging from 0.620 for the “cargo” class to 0.970 
for the “lighthouse” class. The lower F2 score for the 
“cargo” class suggests that the model may struggle with 
recall or precision in this category, leading to a higher 
incidence of either false negatives or false positives. On 
the other hand, the high F2 scores for the “boat,” 
“cruise,” “dock,” and “lighthouse” classes demonstrate 
that the model performs well in these areas, balancing 
recall and precision effectively.

Figure 5 AUC and F2 Scores for Various Classes Using the “clip-vit-base-patch32” Model
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Figure 6 AUC and F2 Scores for Various Classes Using the “clip-vit-large-patch14” Model

The AUC values are consistently close to 1 across all 
classes, indicating that the model has a very high capa-
bility to distinguish between the positive class (correct 
identification) and the negative class (incorrect identifi-
cation). Specifically, the AUC values range from 0.990 
for the “boat” class to 0.999 for the “lighthouse” class, 
suggesting that the model is highly effective in correctly 
classifying these classes. The F2 score, which places 
more emphasis on recall than precision, is also relative-
ly high across all classes, though it exhibits slightly more 
variation than the AUC. The scores range from 0.906 for 
the “cruise” class to 0.976 for the “lighthouse” class, as 
presented in Figure 6. This indicates that while the 
model performs well in recalling true positives, there is 
some variability depending on the class, with the 
“cruise” class presenting slightly more challenges. Over-
all, the model demonstrates strong performance on 
both metrics, particularly in its ability to distinguish be-
tween different classes, as reflected by the high AUC val-
ues. The F2 scores suggest that the model maintains a 
good balance between precision and recall, with a slight 
emphasis on minimizing false negatives. The “light-
house” class appears to be the easiest for the model to 
classify correctly, achieving the highest scores in both 
AUC and F2. In contrast, the “cruise” class, despite its 
high AUC, shows a slightly lower F2 score, indicating po-
tential areas for improvement in recall or precision.

The results for the “clip-vit-large-patch14-336” 
model show that the AUC values are consistently high, 
ranging from 0.992 for the “boat” class to nearly 1.0 for 
the “lighthouse” class, as presented in Figure 7. These 
values indicate that the model has an exceptional ability 
to distinguish between correct and incorrect classifica-
tions across all classes, reflecting its overall strong dis-

criminative power. The F2 scores are also notably high, 
with values ranging from 0.914 for the “boat” class to 
0.976 for the “lighthouse” class. These scores suggest 
that the model is highly effective at maintaining a bal-
ance between precision and recall, with a particular em-
phasis on minimizing false negatives. The “lighthouse” 
class again stands out with the highest F2 score, indicat-
ing that it is the easiest class for the model to classify 
correctly. Meanwhile, the “boat” class, despite having a 
slightly lower F2 score, still performs well, showing a 
minor gap between precision and recall.

When the results are compared, we can see that the 
“clip-vit-large-patch14-336” model consistently achieves 
the highest average scores in both AUC and F2, as pre-
sented in Figure 8. Presented results are indicating supe-
rior overall performance across classification tasks. The 
AUC scores, represented in blue, show that all models are 
highly effective in distinguishing between true and false 
positives, with minimal variation. However, the F2 scores, 
shown in orange, reveal more variability, particularly in 
how well each model balances precision and recall. The 
“clip-vit-large-patch14-336” model stands out for its bal-
anced performance, while the other models, such as 
“clip-vit-base-patch16” and “clip-vit-base-patch32,” show 
lower average F2 scores, suggesting potential areas for 
improvement in recall or precision. This comparison 
highlights the relative strengths of each model, with “clip-
vit-large-patch14-336” emerging as the most robust 
option.

While the CLIP models demonstrated strong per-
formance in classifying maritime objects, several limita-
tions and potential biases should be considered, 
particularly when applying these models to real-world 
maritime object detection tasks.
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Figure 7 AUC and F2 Scores for Various Classes Using the “clip-vit-large-patch14-336” Model

Figure 8 Average AUC and F2 Scores by Model

The performance of CLIP models is heavily influ-
enced by the quality and diversity of the dataset used 
for training and evaluation. The curated dataset in this 
study, while comprehensive, may still lack the full varia-
bility encountered in maritime environments. For in-
stance, certain classes, such as “cruise” and “cargo,” may 
exhibit inherent biases due to the more frequent and 
visually distinct representation of these objects in avail-
able data. This could lead to a model that performs well 
on these more common classes but struggles with rarer 

or more ambiguous categories, such as small boats or 
floating debris, which might not be as well-represented.

Furthermore, the reliance on web-scraped images 
introduces another layer of potential bias. Images found 
online are often taken in favorable conditions and from 
aesthetically pleasing angles, which may not reflect the 
challenging real-world conditions of maritime environ-
ments, such as poor lighting, rough seas, or occlusions 
caused by other objects. This could limit the model’s ro-
bustness when deployed in less controlled settings.
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The zero-shot learning capabilities of CLIP allow it 
to generalize to unseen classes, yet the performance can 
still be inconsistent when dealing with rare or ambigu-
ous classes. For instance, the relatively lower F2 scores 
in classes like “cargo” suggest that the model may strug-
gle with distinguishing these objects, especially when 
they share visual similarities with other classes (e.g., 
large boats vs. small cargo ships). The challenge lies in 
the semantic and visual overlap between classes, which 
could lead to misclassification or reduced confidence in 
the predictions for these less distinct categories.

7 Conclusions

The comparative analysis of the models—”clip-vit-
base-patch16,” “clip-vit-base-patch32,” “clip-vit-large-
patch14,” and “clip-vit-large-patch14-336”—reveals 
several key insights into their performance across vari-
ous classes, namely boat, cargo, cruise, dock, and light-
house, using AUC and F2 score metrics. The AUC values 
across all models are consistently high, particularly in 
the “dock” and “lighthouse” classes, where they ap-
proach or reach 1.0. This indicates that all models ex-
hibit a strong ability to correctly distinguish between 
true positive and false positive classifications, highlight-
ing their effectiveness in identifying correct classifica-
tions across different categories. However, when 
examining the F2 scores, which emphasize the balance 
between precision and recall, more variability is ob-
served. The “clip-vit-base-patch16” model, while per-
forming well in terms of AUC, shows significant 
variability in F2 scores, particularly in the “cargo” class, 
where the F2 score drops to 0.714. This suggests that 
this model may struggle with either recall or precision 
in certain categories, leading to a higher incidence of 
false negatives or false positives. The “clip-vit-base-
patch32” model similarly demonstrates high AUC values 
but exhibits even greater variability in F2 scores, with 
the “cargo” class again being a weak point. The F2 score 
of 0.620 for this class indicates a notable challenge in 
maintaining an effective balance between recall and 
precision. On the other hand, the “clip-vit-large-
patch14” model performs more consistently, with both 
AUC and F2 scores being high across most classes. De-
spite a slightly lower F2 score in the “cruise” class, this 
model shows a good balance between precision and re-
call, with minimal gaps in performance across different 
categories. The “clip-vit-large-patch14-336” model 
emerges as the strongest performer among the four, 
consistently achieving the highest average scores in 
both AUC and F2. This model not only excels in distin-
guishing between true and false positives but also main-
tains a robust balance between precision and recall 
across all classes, with particularly high scores in the 
“lighthouse” class. When the results are compared, it is 
evident that the “clip-vit-large-patch14-336” model of-
fers the most balanced and reliable performance, mak-

ing it the most suitable option for tasks that require 
high accuracy and a strong balance between recall and 
precision. The other models, while effective in certain 
areas, show varying degrees of performance across dif-
ferent classes, indicating potential areas for refinement. 
The findings suggest that for applications where both 
AUC and F2 are critical metrics, the “clip-vit-large-
patch14-336” model would be the preferred choice.

One important direction is improving model robust-
ness in real-world maritime environments, particularly 
by expanding the dataset to include more diverse and 
challenging conditions, such as poor lighting, occlusions, 
and rough seas, which are not well-represented in the 
current dataset. Another valuable research avenue is the 
exploration of hybrid models that combine ZSL with 
semi-supervised or few-shot learning techniques, poten-
tially reducing the performance variability in rare or am-
biguous classes like “cargo” or “small boats.” Additionally, 
future studies could focus on refining the textual embed-
dings to better capture the semantic differences between 
visually similar classes, thus improving classification ac-
curacy. Finally, research could investigate the deployment 
of such models in real-time systems, addressing compu-
tational challenges and the scalability required for mari-
time surveillance and security applications. These 
advancements could further enhance the applicability of 
zero-shot learning in the maritime domain.
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