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ABSTRACT

The rapid expansion of maritime transportation has significantly impacted air quality due to 
increased ship emissions. This study aims to develop a ship emission monitoring system utilizing 
Automatic Identification System (AIS) big data, with Tanjung Priok Port in Indonesia (ID TPP) as the 
case study. The system is designed to monitor and analyze ship emissions based on historical AIS 
data, providing actionable insights to mitigate environmental impacts. By integrating various data 
processing techniques, including data preprocessing, database development, sailing time and speed 
calculation, and emission estimation, this research provides a comprehensive framework for a ship 
emission monitoring system. The system can be implemented in ports through the development of 
an interactive web-based dashboard, enhancing the decision-making capabilities of port authorities 
and other stakeholders. The results demonstrate the system’s potential for effectively monitoring 
emissions and promoting sustainable maritime operations.

1	 Introduction

Over the past few decades, the substantial growth of 
maritime transportation has exerted a significant impact 
on air quality. Approximately 90% of global traffic is 
transported by sea, contributing significantly to environ-
mental pollution. Studies show that ships emit various 
pollutants into the atmosphere, including NOx, CO2, vola-
tile organic compounds, SOx, and particulate matter. Ships 
account for 2.2% of global CO2 emissions and a large per-
centage of NOx and SO2 emissions. The shipping industry 
contributes approximately 1.056 billion tons of CO2 an-
nually, accounting for 2.9% of global greenhouse gas 
emissions. This amount is projected to rise substantially 
over the next 10 to 40 years, driven by the anticipated 
growth in international trade activities [1], [2].

These pollutants contribute to adverse health ef-
fects, environmental degradation, and reduced air qual-
ity in densely populated coastal areas [3], [4], [5], [6], 

[7]. Previous studies have shown that shipping emis-
sions directly impact around 230 million people global-
ly. In 2016, East Asia experienced over 24,000 
premature deaths annually attributed to these emis-
sions [8]. Without intervention, shipping-related pollu-
tion could increase by 150 to 250% globally by 2050, 
posing greater health risks to the public [9], [10]. About 
70% of ship emissions occur within 400 km of the coast, 
significantly impacting air quality in coastal and urban 
areas. High ship traffic in ports degrades air quality, 
highlighting the need for detailed ship emission inven-
tories and continuous monitoring to support effective 
management strategies [11].

Many researchers have used the Ship Traffic Emis-
sion Assessment Model (STEAM) with Automatic Identi-
fication System (AIS) big data to estimate ship emissions 
in ports. AIS big data refers to the large-scale collection, 
processing, and analysis of AIS signals transmitted by 
ships worldwide. AIS is a maritime communication sys-
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tem used for vessel tracking and collision avoidance, 
and its data contains valuable information about ship 
movements. The activity-based method calculates emis-
sions by identifying ship activities and their respective 
emission factors, offering detailed statistical analysis of 
emission sources. For example, research demonstrated 
that STEAM could accurately estimate emissions from 
maritime traffic by integrating AIS data with ship en-
gine characteristics and fuel consumption rates [12]. 
More recently, research highlighted the importance of 
real-time AIS data processing for monitoring emissions 
in dynamic port environments, showing that delays in 
data handling could lead to significant underestima-
tions of short-term emission spikes [13]. However, real-
time AIS data processing remains crucial for timely 
monitoring and management of pollution. 

AIS enhances navigation safety and communication 
among ships by providing real-time static and dynamic 
data. Despite its benefits, processing AIS data requires 
significant effort to ensure accuracy and efficiency in 
real-time emission assessment. For instance, some stud-
ies emphasized that AIS-based emission models must 
account for data gaps, errors, and inconsistencies to 
produce reliable estimations. Meanwhile, a research 
demonstrated that real-time AIS data processing could 
significantly improve the temporal resolution of ship 
emission monitoring, allowing for more responsive en-
vironmental management [14]. These findings highlight 
the need for robust data processing techniques to maxi-
mize the potential of AIS in emission assessments.

Although there has been extensive research on ship 
emission monitoring systems, this study differs by focus-
ing on Tanjung Priok Port in Indonesia (ID TPP). As a ma-
jor hub in the Southeast Asia region, this port is crucial 
for the national economy and significantly impacts envi-
ronmental quality. This research aims to develop a real-
time ship emission monitoring system using AIS data by 
employing Python programming and the Django frame-
work. Django serves as the backbone of the web-based 
system, handling data processing, database management, 
and real-time visualization through an interactive dash-
board. By integrating Django with a MySQL database and 
AIS data processing scripts, the system enables automat-
ed emission calculations and provides critical data for 
policymakers to effectively mitigate environmental im-
pacts. This study also addresses challenges such as map-
ping zone accuracy, data collection periods, and data 
visualization.

2	 Materials and Methods

2.1 Identification of Ship Trajectories

The process of identifying ship trajectories is con-
ducted to determine the direction of ship movement 
when entering the Port area. This identification process 

uses AIS data variables that have undergone pre-
processing. Maritime Mobile Service Identity (MMSI) 
and International Maritime Organization (IMO) data are 
used to identity each ship. MMSI is used because it has a 
unique identification system for each ship and is auto-
matically registered in the AIS data (while the IMO 
number must be manually entered by the crew, allowing 
for potential errors). Longitude and latitude data are 
then used to determine the coordinates of the ship on 
the map. Latitude and longitude are measured based on 
Earth’s coordinate parameters, making them accurate 
indicators of the ship’s position. The final data used is 
the timestamp data, which indicates the time the AIS 
data was collected.

Using a combination of these AIS data, the ship’s tra-
jectory or path can be constructed based on the collect-
ed timestamps. This trajectory can be used to identify 
the ship’s position and how long it remained in that po-
sition. Additionally, the ship’s trajectory can be calculat-
ed to determine its speed.

As shown in Figure 1, the sampling period is struc-
tured over designated time intervals, enabling the ac-
quisition of AIS data streams in continuous data blocks. 
Within each block, ship trajectories are extracted initial-
ly for various vessels. Given the essential role of Mari-
time Mobile Service Identity (MMSI) in uniquely 
identifying individual ships, AIS messages containing 
the same MMSI within a data block can be consolidated.

2.2 Ship Traffic Emission Assessment Model (STEAM)

The Ship Traffic Emission Assessment Model 
(STEAM) was developed by Jalkanen [12] as a frame-
work to measure and analyze emissions from maritime 
traffic. By collecting data on ship movements, fuel con-
sumption, and engine characteristics, STEAM provides 
accurate emission estimates. Considering various pol-
lutants such as CO2, NOx, SOx, and particulate matter 
(PM), The STEAM model facilitates a deeper under-
standing of the environmental impacts associated with 
maritime activities. STEAM is a crucial tool for research-
ers and policymakers to formulate emission mitigation 
strategies in the shipping sector.

STEAM is an estimation model that assesses emis-
sions based on input data such as ship activity, engine 
specifications, and emission factors. This method has 
been successfully applied in Various studies that provid-
ed insights that support global decision-making process-
es [15], [16], [17]. Figure 2 presents the STEAM model 
framework, which relies on data from multiple sources. 
These include Lloyd’s List Intelligence for information on 
the power and tonnage of heavy equipment, as well as 
Automatic Identification System (AIS) data for tracking 
ship types, sailing durations, and speeds. Additionally, 
empirical values from prior research are utilized for cor-
rection factors and emission coefficients.
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Figure 1 AIS Data Stream Splitting

Figure 2 STEAM Method Flow
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The diagram in Figure 2 highlights key components 
of the STEAM method, including inputs like the ship’s 
main engine power, auxiliary engine power, and ton-
nage, which influence the calculation of maximum de-
sign speed. These inputs are critical for determining 
emission factors, which are adjusted using data from 
Lloyd’s databases, AIS data, and reference values. 

Studies such as [18] have emphasized the impor-
tance of integrating data sources to ensure accurate 
emission assessments. Different types of ships have var-
ying power levels, directly affecting their emissions. 
Generally, ships utilize three primary power sources: 
main engines, auxiliary engines, and boilers [19]. Emis-
sions from these engines can be estimated using specific 
equations 1 – 3 outlined in the literature [16], [20].

Main Engine:

Ea,i = (Pa × La × Ta × EFa)/103	 (1)

Auxiliary Engine:

Eb,i = (Pb × Lb × Tb × EFb)/103	 (2)

Boiler:

Ec,i = (Pc × EFc × Tc)/103	 (3)

The notation description of the formula is explained 
as presented in Table 1. 

Table 1 Notation description of the emissions from different 
engines equation

Notation Description

i The type of pollutant emitted, including CO, CO2, 
NMVOC, NOX, PM2,5, SO2

Ea,i
The emission of the ship’s main engine for 
different pollutants (units: Kg)

Eb,i
The emission of the ship’s auxiliary engine for 
different pollutants (units: Kg)

Ec,i
The emission of the ship’s boiler for different 
pollutants (units: tone)

pa Ship’s power for Main Engine (units: kW)
pb Ship’s power for Auxiliary Engine (units: kW)
pc Ship’s power for Boiler Engine (units: kW)

La, Lb

The load factor for the main and auxiliary 
engines, where the value is obtained from the 
actual speed and the ship’s maximum speed:  
L= Vact / Vmax ; Vact indicates the actual speed; 
Vmax indicates the maximum speed

EFa
The emission factor of the main engine (units:  
g/kWh)

EFb
The emission factor of the auxiliary engine 
(units: g/kWh)

Ta Operating time of the main engine (unit: hours)
Tb Operating time of the auxiliary engine (unit: hours)
Tc Operating time of the boiler (unit: hours)

Table 1 presents the notation used in ship emission 
calculations, detailing various pollutants such as CO, 
CO₂, NOX, and SO₂. It defines emissions from different 
sources, including the main engine, auxiliary engine, 
and boiler, along with their respective power outputs. 
The table also introduces load factors for the main and 
auxiliary engines, calculated based on the ratio of actual 
speed to maximum speed. Furthermore, it includes 
emission factors specific to each engine type, which are 
essential for accurately assessing and quantifying ship 
emissions.

2.3 Load Factor

The load factor for the main engine (ME) is calculat-
ed using the Propeller Law, as defined by the Port of 
Long Beach [21], and is expressed by the following 
equation 4. 

	
(4)

In this equation, LF represents the load factor of 
the main engine, AS is the actual operating speed 
(knots), and MS denotes the maximum speed (knots). 
The maximum speed data for each ship is obtained 
from sources such as Lloyd’s database, the CCS data-
base, or prior research and surveys, while the actual 
speed is calculated by dividing the distance traveled 
between two AIS-reported positions by the time inter-
val between them.

Within the STEAM model, the emission factor varies 
based on changes in the load factor of the main engine 
[22], [24], [25]. Specifically, when the load factor is be-
low 20%, a correction factor is applied to the emission 
factor, as shown in Table 2. For auxiliary engines, the 
load factor is based on the ship’s type and activity, as 
shown in Table 3.

2.4 Ship Emission

Ship emissions refer to the release of various pollut-
ants into the air resulting from the operational activities 
of sea vessels. These pollutants are produced during the 
fuel combustion process in ship engines. Types of ship 
emissions involve harmful gases and particles that can 
affect air quality around water areas and significantly 
contribute to environmental impact. 

The primary types of ship emissions are categorized 
and shown in Table 4. The emission factors used in this 
study are derived from previous ship emission invento-
ries [16]. 
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Table 2 Emission Correction Factor for Main Engine at Low Load [22]

Load SO2 NOX PM NMVOC CO CO2

0.01 1.00 11.47 19.17 59.28 19.32 1.00
0.02 1.00 4.63 7.29 21.18 9.68 1.00
0.03 1.00 2.92 4.33 11.68 6.46 1.00
0.04 1.00 2.21 3.09 7.71 4.86 1.00
0.05 1.00 1.83 2.44 5.61 3.89 1.00
0.06 1.00 1.60 2.04 4.35 3.25 1.00
0.07 1.00 1.45 1.79 3.52 2.79 1.00
0.08 1.00 1.35 1.61 2.95 2.45 1.00
0.09 1.00 1.27 1.48 2.52 2.18 1.00
0.10 1.00 1.22 1.38 2.20 1.96 1.00
0.11 1.00 1.17 1.30 1.96 1.79 1.00
0.12 1.00 1.14 1.24 1.76 1.64 1.00
0.13 1.00 1.11 1.19 1.60 1.52 1.00
0.14 1.00 1.08 1.15 1.47 1.41 1.00
0.15 1.00 1.06 1.11 1.36 1.32 1.00
0.16 1.00 1.05 1.08 1.26 1.24 1.00
0.17 1.00 1.03 1.06 1.18 1.37 1.00
0.18 1.00 1.02 1.04 1.11 1.11 1.00
0.19 1.00 1.01 1.02 1.05 1.05 1.00
0.20 1.00 1.00 1.00 1.00 1.00 1.00

Table 3 Auxiliary Engine Load Factor Assumptions [23]

Ship Type Sailing Manoeuvring Mooring
Auto carrier 0.13 0.67 0.24
Bulk carrier 0.17 0.45 0.22
General cargo 0.17 0.45 0.22
Tanker 0.13 0.45 0.67
Container 0.13 0.5 0.17
Reefer 0.20 0.67 0.34
Passenger 0.80 0.8 0.64
Ro-ro 0.15 0.45 0.3
Rest 0.17 0.45 0.22

Table 4 Ship Emission Description

Pollutant Description Impact

NOₓ (Nitrogen Oxides)
Irritant gases, including NO and NO₂, are 
produced from high-temperature fuel 
combustion.

Causes respiratory issues, acid rain, and smog 
formation.

PM₁₀, PM₂.₅ (Particulate Matter)
Fine particles with diameters ≤10 μm or ≤2.5 
μm. Emitted from fuel combustion and engine 
wear.

It can penetrate human lungs, causing 
respiratory and cardiovascular diseases.

CO (Carbon Monoxide) Produced from incomplete combustion of 
fossil fuels.

Harmful to human health; reduces oxygen 
delivery in the bloodstream.

SOₓ (Sulfur Oxides) Formed from burning sulfur-containing fuels, 
primarily HFO (Heavy Fuel Oil).

Causes respiratory and cardiovascular issues; 
contributes to acid rain.

NMVOC
(Non-Methane Volatile Organic 
Compounds)

Organic compounds emitted from fuel 
evaporation and combustion.

Contributes to ground-level ozone and 
secondary pollutant formation.

CO₂ (Carbon Dioxide) The main greenhouse gas emitted from fuel 
combustion.

A major contributor to global warming and 
climate change.
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Note that the values presented are energy-based 
emission factors (expressed in g/kWh). Most of the CO₂ 
emission factors are derived by multiplying the Specific 
Fuel Consumption (SFC) of each engine type with the 
corresponding fuel-based emission factors (in g CO₂/g 
fuel). Similarly, SO₂ emission factors are determined 
based on the sulfur content of the fuel used.

These emission factor values are sourced from the 
Fourth IMO GHG Study 2020 and reflect the standard 
parameters adopted for various engine types, including 
slow-speed diesel (SSD), medium-speed diesel (MSD), 
high-speed diesel (HSD), auxiliary engines, and boilers.

2.5 Ship Activity Identification

When a ship is sailing, accelerating, or decelerating, 
its engines operate under varying conditions, including 
fuel consumption and engine performance, to generate 
the necessary power for movement. Consequently, emis-
sions from ship engines differ depending on the ship’s ac-
tivity. Identifying various ship activities using AIS data is 
crucial for calculating ship exhaust emissions.

A ship is considered to be sailing if its speed exceeds 
3 knots (1 knot = 1.852 km/h). This threshold distin-
guishes whether a ship is actively in motion or station-
ary. When sailing under typical operational conditions, 
a ship’s instantaneous speed generally corresponds to 
approximately 85% of its engine’s maximum capacity, 
as supported by operational data and modeling studies. 
[26]. AIS data shows that ships in motion generally ex-
ceed speeds of 12 knots. In contrast, manoeuvring 
speeds typically range between 3–8 knots, as vessels 
adjust their speed and direction when navigating into or 
out of ports, coastal waters, or areas with restricted vis-
ibility.

In the STEAM methodology, emission factors can 
vary according to fluctuations in the main engine load 
factor [17], [27].

Essentially, the Maximum Continuous Rated Engine 
Power (MCR) serves as the primary parameter repre-
senting the main engine load factor, as shown in Table 6.

2.6 Linear Regression Analysis to Determine Ship 
Power

The estimation of main engine power plays a crucial 
role in ship performance analysis and emissions assess-
ment. However, due to data incompleteness in the cur-
rent dataset, especially regarding power ratings, a direct 
regression modeling approach was not feasible. There-
fore, this study adopted empirically validated regres-
sion equations developed in previous research to 
estimate main engine power based on ship dimensions.

Prior studies have shown a strong correlation be-
tween main engine power and the product of ship length 
and breadth, especially for cargo ships and tankers [14]. 
As a result, the present work utilizes existing polynomial 
regression models that relate engine power (kW) to the 
projected area of the hull (length × breadth, in m²). The 
equations (5) and (6) represent the power estimation 
models for cargo ships and tankers, respectively.
Cargo: 

y = 7.52 × 10–5 x2 + 0.59x – 41.48	 (5) 

Tanker: 

y = 3.32 × 10–5 x2 + 0.27x – 57.20	 (6)

where x represents the product of the ship’s length and 
width (m2) and y represents the ship’s main engine 
power (kW).

Table 5 Emission Factors Based on Machine Type and Pollutant Type

Machine Type Engine Type
Emission Factors (EF, g/kWh) 

CO2 NOx CO NMVOC PM SO2

ME SSD 620.00 17.00 1.40 0.632 1.39 10.50
ME MSD 683.00 13.00 1.10 0.527 1.39 11.50
ME HSD 686.00 12.70 1.00 0.527 1.39 11.31
AE MSD 683.00 13.00 1.10 0.421 1.39 12.30

Boiler - 970.00 2.10 0.20 0.105 0.57 16.50

Table 6 Ship Main Activities and Emission Equations [16]

Operation Modes Matching Emission Formula
Hoteling < 1kn E = Eb + Ec + Ep

Anchoring 1kn – 3kn E = Eb + Ec

Manoeuvering 3kn–8kn, < 20%MCR E = Ea + Eb + Ec

Slow-steaming 8kn – 12kn,20%MCR–65%MCR E = Ea + Eb

Cruising > 12kn, < 65kn E = Ea + Eb



296 A. Wibisono et al. / SCIENTIFIC JOURNAL OF MARITIME RESEARCH [Pomorstvo] 39 (2025) 290-305

This methodology provides a robust estimation 
technique for determining main engine power based on 
ship dimensions, which can be effectively utilized in 
ship performance assessments and emission monitor-
ing systems [28].

The ratio of auxiliary engine power to main engine 
power varies depending on the type of ship. For exam-
ple, car carriers have a ratio of 0.266, while bulk carri-
ers, ocean tugs, and other unspecified ship types share a 
similar ratio of 0.222. Container ships exhibit a slightly 
lower ratio of 0.220, whereas cruise ships have a higher 
ratio of 0.278. General cargo ships demonstrate the low-
est ratio at 0.191, while refrigerated ships have the 
highest ratio at 0.406. Roll-on ships show a ratio of 
0.259, and tankers have a ratio of 0.211. These ratios 
are used to calculate the auxiliary engine power based 
on the ship’s main engine power[16] .

2.7 Design Speed 

After determining the main engine power, it becomes 
possible to estimate the ship’s design speed if it is not al-
ready known. This estimation relies on a regression mod-
el that correlates the design speed with the total engine 
power, particularly for tankers, container ships, and bulk 
carriers. For tankers and cargo vessels, the total main en-
gine power can be derived using Equation 7 [28]. 

CR = α ∗ DWT ∗ V ,    Mtanker
CR = α ∗ TEU ∗ V ,          cargo 	

(7)
  

Where MCR represents the total main engine power 
(measured in kilowatts) [kW], DWT denotes the dead-
weight tonnage of the tanker (in tons) [t], TEU indicates 
the number of containers, V refers to the design speed 

(in knots), and α, β, γ are the coefficients used in the re-
gression model.

Using Equation 7, the design speed is determined in-
versely based on the calculated engine power. The result-
ing predictive formula for estimating the design speed of 
tankers and cargo vessels is provided in Equation 8.

V = MCR /2.66DWT ,      tanker
V = MCR /4.297DWT ,     cargo  	

(8)

2.8	 Methods

Ship Traffic Emission Model is a framework used to 
measure and analyze emissions produced by ships dur-
ing sea operations. This model helps in understanding 
the environmental impact of shipping activities by cal-
culating the number of emissions generated by various 
pollutants such as CO2, NOx, SOx, and others [30].

The research method used in this study is inspired by 
the Ship Traffic Emission Model. However, there are im-
portant differences in the approach taken by the author. 
First, the author performs data preprocessing to clean 
raw data for easier processing. Then, to identify ship  
trajectories, the author uses a simple equation to deter-
mine sailing speed and time. Finally, the output of this re-
search will be a website that displays processing results 
automatically in an integrated process. With this ap-
proach, the author hopes to provide a more efficient and 
accessible solution for stakeholders in understanding 
and controlling the environmental consequences of ship-
ping practices.

The development flow of the ship emission monitor-
ing system is illustrated in Figure 3, starting with the col-

Figure 3 Research Flow Chart
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lection of AIS data and a comprehensive literature review. 
Collected AIS data, which includes static and dynamic in-
formation about ships, undergoes preprocessing to en-
sure data quality and consistency. Static AIS data involves 
basic information about ships, such as Maritime Mobile 
Service Identity (MMSI), type, and dimensions. Mean-
while, dynamic AIS data includes real-time movement 
and activity information, such as coordinates, speed, and 
timestamps. This data is crucial for tracking ships and ac-
curately assessing their emissions. Then, 15 AIS data 
samples are taken through the preprocessing process.

The next step is to determine parameters for each 
ship based on static AIS data. This involves updating AIS 
data according to MMSI to ensure accurate and up-to-
date information. Regression analysis is then performed 
to estimate the power of the main and auxiliary engines 
as well as the design speed of the ship. These estimates 
are crucial for calculating ship emissions. Dynamic AIS 
data is used to identify ship trajectories. Each segment 
of the ship’s journey is analyzed to calculate emissions 
using the STEAM model. This involves calculating sail-
ing time and speed before estimating emissions for each 
segment and updating the ship emission database.

Finally, the processed data is visualized on an inter-
active web dashboard developed using Python, with 
front-end components built with HTML, CSS, and Java
Script. This dashboard provides monitoring and statisti-
cal visualization capabilities, enabling port authorities 
and stakeholders to make informed decisions to reduce 
the environmental impact of ship emissions. The entire 
system integrates data collection, processing, and visu-
alization to provide a comprehensive tool for monitor-
ing ship emissions at ports.

2.8.1 Preprocessing

Preprocessing AIS entails detecting, rectifying, or 
eliminating errors, inconsistencies, and anomalies with-
in the dataset to guarantee that the data used for analy-
sis or modeling is both reliable and accurate. This 
procedure, as illustrated in Figure 4, begins by loading 
raw data from CSV files using pandas, which is then or-
ganized into a structured format to allow for efficient 
manipulation and analysis. Key columns such as MMSI, 
name, IMO number, length, width, vessel type, latitude, 
longitude, and date time are retained, while unneces-
sary columns are removed to simplify the dataset. Du-
plicate entries are eliminated to maintain data integrity, 
and invalid coordinates are filtered to ensure spatial ac-
curacy. Timestamp corrections and interpolations fill 
gaps for temporal reliability, while rows with invalid 
MMSI numbers or unrealistic ship dimensions are dis-
carded. The cleaned data is then stored in a database for 
further use.

The database, designed to store AIS data for ship 
emission calculations, is implemented in MySQL. This 
database serves as a central repository that organizes 
AIS data, emissions, and other relevant data. The data-
base structure, including tables, columns, data types, 
and relationships, is planned and created in detail using 
SQL commands. Data is entered manually or through 
automation scripts, and the MySQL database is integrat-
ed with the Django web framework for interactive data 
analysis and visualization. This process ensures a relia-
ble and accurate dataset ready for the monitoring sys-
tem.

Figure 4 Preprocessing Flowchart
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2.8.2 Distributed Emission Calculation

Figure 5 illustrates the procedural framework for dis-
tributed emission calculations involves systematically as-
signing and processing computational tasks. The process 
begins, and data blocks are used to determine ship trajec-
tories using Pandas. After trajectory segments are identi-
fied, ship parameters are calculated from these segments, 
using Pandas. Each segment of a ship’s trajectory is sub-
divided into multiple data blocks, with each block serving 
as a fundamental unit for dynamic emission calculations. 
Once the data blocks are prepared, the Spark Engine allo-
cates specific computational tasks to each block. These 
tasks utilize an advanced version of the STEAM model to 
estimate exhaust emissions for the corresponding trajec-
tory segments. The tasks are executed in a First In, First 
Out (FIFO) sequence, ensuring systematic processing. 
Upon completion, the Spark Engine integrates the calcu-
lated emission results, which are promptly recorded in 
the database for further use.

After determining the selected MMSI for system de-
velopment, AIS data is then sorted to produce data 
blocks that form trajectories for each ship. The calcula-
tion tasks are then assigned to calculate static and dy-
namic AIS data in a distributed manner. In this study, 
the author utilizes Pandas and Apache Spark to imple-
ment dynamic computational calculations. The calcula-
tions are carried out in sequence and efficiently process 
data blocks in batches within designated time intervals.

In the calculation process, key data elements such as 
emission factors and engine power ratios are critical for 
accurately estimating ship emissions using the STEAM 
model. Retrieving and processing this data manually 
would be highly time-consuming. To address this chal-
lenge, a big data storage solution, such as a MySQL data-
base, is implemented to supply the essential information 
required for calculations efficiently. Prior to initiating 
the calculation process, this database ensures stream-
lined access to the necessary data, and these parame-
ters will be arranged and stored in the database and 
connected to the calculations with the MySQL Connec-
tor so that the calculation program can easily access the 
required information.

The emission calculation process uses an enhanced 
version of the STEAM model proposed by [14] to esti-
mate exhaust emissions from each ship. Equation 9 
presents the formula for calculating ship exhaust emis-
sions during sailing and mooring.

⃗
⃗ ,    sailing

,                        mooring 	
(9)

The subscript i indicates the specific type of pollut-
ant, such as SOx. The subscripts m, a, and b correspond 
to the main engine, auxiliary engine, and ship boiler, re-
spectively. The variable E represents the quantity of pol-
lutant emissions, while P indicates the engine power. 

Figure 5 Distributed Emission Calculation Flow
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Additionally, the variables P and T denote the power 
output and operational duration of the ship’s engine. 
The parameters EF and LF signify the emission factor 
and load factor of the engine, respectively. Furthermore, 
Vmax represents the design speed or maximum service 
speed, and Voss indicates the ship’s actual operating 
speed.

3	 Results

3.1 PreprocessingMA

The main data used for this research is the Big Data 
Automatic Identification System (AIS) provided by the 
Indonesian Maritime Security Agency (BAKAMLA RI). 
The collected AIS data focuses on the research object at 
Tanjung Priok Port. 

Table 7 presents the specifications of AIS data received 
by the author, which include attributes such as MMSI, 
name, IMO, length, width, class, ship type, flag, COG, speed, 
latitude, longitude, destination, date time, heading, route, 
beam, draught, ETA, ship status, source, and flag.

The display of the ship trajectory validation program 
can be seen in Figure 6. 

Figure 6 showing vessel movement and tracking ac-
curacy in the Tanjung Priok Port area.

Figure 6 Displays of Ship Trajectory Validation Program

Based on this visualization, 15 ships from the ob-
tained AIS data were identified using MMSI, as shown in 
Table 8.

Table 8 presents a list of tankers along with their key 
vessel attributes, including MMSI, name, IMO number, 
length, width, and vessel type. The data provides essen-
tial information for identifying and classifying tankers 
based on their dimensions and registration details. This 
dataset is useful for analyzing vessel characteristics, 
traffic patterns, and operational parameters within 
maritime logistics and port management.

Therefore, the sample AIS data records used total 
16,432 records, as shown in Table 9.

Table 7 AIS Data RAW Specifications 

Number of AIS 
Records Number of MMSI Number of Ship Types First

Timestamp
Last

Timestamp
1.048.576 1.031 25 08/03/2022 17.00 09/06/2022 15.25

Table 8 Data on 15 Sample Ships

MMSI Name IMO Length (Meter) Width (Meter) Vessel Type
255806523 APOLLO 9234628 26 167 Tanker
256520000 NEW RANGER 9328326 20 127 Tanker
351169000 ORALIA 9269609 18 118 Tanker
354996000 DIONNE 9814909 20 124 Tanker
355332000 DHEPOCH 9753648 22 120 Tanker
370229000 VALENTINE 9504023 21 134 Tanker
374548000 ASTREANA 9763629 14 97 Tanker
441530000 CT CONFIDENCE 9340427 24 145 Tanker
525003041 MT. ELISABET 9595668 10 75 Tanker
525003175 MT.KAKAP 9504401 18 108 Tanker
525003489 MT.LAPETTA 9004645 8 59 Tanker
525004010 PALU SIPAT 9106651 27 160 Tanker
525004138 TRANSKO AQUILA 9216042 14 93 Tanker
525007033 GAS MALUKU 9143154 20 100 Tanker
525007196 MT.FIGAR JAYA I 9636230 57 9 Tanker
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3.2 AIS Static Data Calculation Results

The calculation of AIS static data includes parame-
ters such as main engine power, auxiliary engine power, 
and design speed data, which are computed using Py-
thon. To calculate the design speed, the ship’s DWT data 
is required. The obtained DWT data is then entered into 
the database along with other supporting data. Table 10 

shows the DWT data obtained according to the ships in 
the AIS sample data stored in the database.

The ship’s DWT data is used to estimate the design 
speed, while the main and auxiliary engine power esti-
mates use the ship’s length and width data from the AIS 
records. The estimation results are presented in Table 
11 and are then stored in the MySQL database.

Table 9 AIS Data Note Sample Data (First five rows)

MMSI Name IMO Width (meter) Length (meter) Vessel Type Latitude Longitude Date Time

255806523 APOLLO 9234628 26 167 Tanker -6.03596 106.9188 17/04/2022 
06:37

255806523 APOLLO 9234628 26 167 Tanker -6.03576 106.9181 17/04/2022 
03:19

255806523 APOLLO 9234628 26 167 Tanker -6.03714 106.9193 16/04/2022 
22:10

255806523 APOLLO 9234628 26 167 Tanker -6.03613 106.919 17/04/2022 
07:16

... ... ... ... ... ... ... ... ...

Table 10 Ship DWT data

MMSI IMO Name Vessel Type DWT (Tonnes)
255806523 9234628 APOLLO Tanker 23998
256520000 9328326 NEW RANGER Tanker 12950
351169000 9259609 ORALIA Tanker 8715
354996000 9814909 DIONNE Tanker 12384
355332000 9753648 DH EPOCH Tanker 13204
370229000 9504023 VALENTINE Tanker 14214
374548000 9763629 ASTREANA Tanker 3654
441530000 9340427 CT CONFIDENCE Tanker 19993
525003041 9595668 MT. ELISABET Tanker 3255
525003175 9504401 MT. KAKAP Tanker 6523
525003489 9004645 MT. LAPETTA Tanker 730
525004010 9106651 PALU SIPAT Tanker 17957
525004138 9216042 TRANSKO AQUILA Tanker 3592
525007033 9143154 GAS MALUKU Tanker 5761
525007196 9636230 MT. FIGAR JAYA I Tanker 1199

Table 11 Estimation Results of Design Speed, Main Engine Power, and Auxiliary Ship

MMSI Vessel_type Main Engine Power (kW) Auxiliary Engine Power (kW) Speed_Design (Knots)
255806523 Tanker 7488.724 1580.121 23.39
256520000 Tanker 2884.931 608.720 8.84
351169000 Tanker 2128.457 449.104 7.91
354996000 Tanker 2768.733 584.203 8.63
355332000 Tanker 3083.907 650.704 9.69
370229000 Tanker 3445.954 727.096 10.83
374548000 Tanker 1036.122 218.622 5.69
441530000 Tanker 5017.453 1058.683 14.40
525003041 Tanker 446.450 94.201 1.57
525003175 Tanker 1836.753 387.555 8.27
525003489 Tanker 258.604 54.566 2.64
525004010 Tanker 7419.517 1565.518 30.78
525004138 Tanker 971.548 204.997 5.20
525007033 Tanker 1925.200 406.217 10.13
525007196 Tanker 299.811 63.260 2.19
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3.3 AIS Dynamic Data Calculation Results

Sailing speed is calculated by dividing the distance 
travelled between sequential AIS data points by the 
time difference. This calculation is essential for catego-
rizing ship activities and understanding their operation-
al modes. Table 12 shows the results of the sailing speed 
calculations.

Table 12 Total Ship Sailing Time (First Three Rows)

MMSI Speed (knots) Date Time
255806523 10.84703643 16/04/2022 05:50
255806523 10.06962199 16/04/2022 06:01
255806523 10.89496867 16/04/2022 06:14

... ... ...

Table 13 Ship Sailing Speed (first three lines)

MMSI Duration Start Timestamp End Timestamp
255806523 0.18 16/04/2022 05:50 16/04/2022 06:01
255806523 0.22 16/04/2022 06:01 16/04/2022 06:14
255806523 0.20 16/04/2022 06:14 16/04/2022 06:26

... ... ... ...

Sailing time is calculated by determining the time 
difference between sequential AIS data points for each 
ship. The total sailing time is calculated by summing 
these differences, providing a comprehensive measure 
of the ship’s activity duration. 

The results of the sailing time calculations are shown 
in Table 13.

3.4 Ship Emission Calculation Results

Once all the necessary variables are complete, the 
ship emission calculation process can be carried out. In 
this experiment, the time period from April 1, 2022, to 
April 20, 2022, was used as shown in Table 14. The data 
required for the calculations is taken directly from the 
MySQL database.

Table 14 presents the analysis of ship emission data 
collected over a 20-day period from April 1, 2022, to 
April 20, 2022, for 15 ships revealed significant variabil-
ity in various emission parameters, providing insight of 
the ecological effects of maritime activities. The emis-
sion data analysis revealed important insights into the 
distribution and characteristics of various pollutants. It 
is important to note that data showing a value of 0 re-

flects situations where the calculated data duration is 0, 
resulting in the emission calculation being 0 as well. 
This can occur when ships are docked in port or under-
going loading and unloading processes.

This dataset consists of total recorded emissions 
dominated by CO2, accounting for 96.12% of total emis-
sions, amounting to (253,291.927 kg). This is followed by 
NOx at 1.83% (4,821.076 kg), SO2 at 1.69% (4,440.578 
kg), PM at 0.17% (445.022 kg), CO at 0.15% (407.937 
kg), and NMVOC at 0.03% (74.170 kg). The percentage of 
these emission types highlights the dominance of CO2 in 
contributing to total emissions. In terms of average emis-
sions per pollutant type recorded, CO2 again leads with 
an average emission of 13,331.154 kg. NOx follows with 
an average of 253.741 kg, SO2 with 233.715 kg, PM with 
23.422 kg, CO with 21.470 kg, and NMVOC with 3.904 kg.
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Table 14 Deduction of ship emissions calculation results (with time period 04/01/2022 – 04/20/2022)

MMSI CO2 (Kg) NOX (Kg) CO (Kg) NMVOC (Kg) PM (Kg) SO2 (Kg)
255806523 955.743 18.191 1.539 0.280 1.679 16.113
255806523 1129.514 21.499 1.819 0.331 1.985 19.043

... ... ... ... ... ... ...
256520000 334.716 6.371 0.539 0.098 0.588 5.643
256520000 267.773 5.097 0.431 0.078 0.470 4.515

... ... ... ... ... ... ...
351169000 296.338 5.640 0.477 0.087 0.521 4.996
351169000 98.779 1.880 0.159 0.029 0.174 1.665

... ... ... ... ... ... ...
354996000 674.592 12.840 1.086 0.198 1.185 11.373
354996000 14385.481 7.337 0.621 0.113 0.677 6.499

... ... ... ... ... ... ...
355332000 429.361 8.172 0.692 0.126 0.754 7.239
355332000 26.734 0.509 0.043 0.008 0.047 0.481

... ... ... ... ... ... ...
370229000 239.884 4.566 0.386 0.070 0.421 4.044
370229000 159.923 3.044 0.258 0.047 0.281 2.696

... ... ... ... ... ... ...
374548000 120.213 2.288 0.194 0.035 0.211 2.027
374548000 12.021 0.229 0.019 0.004 0.021 0.203

... ... ... ... ... ... ...
441530000 349.281 6.648 0.563 0.102 0.614 5.889
441530000 174.641 3.324 0.281 0.051 0.307 2.944

... ... ... ... ... ... ...
525003041 4.838 0.092 0.008 0.001 0.008 0.087
525003041 4.838 0.092 0.008 0.001 0.008 0.087

... ... ... ... ... ... ...
525003175 277.035 5.273 0.446 0.081 0.487 4.671
525003175 213.104 4.056 0.343 0.062 0.374 3.593

... ... ... ... ... ... ...
525003489 2.242 0.043 0.004 0.001 0.004 0.040
525003489 2.242 0.043 0.004 0.001 0.004 0.040

... ... ... ... ... ... ...
525004010 1205.159 22.939 1.941 0.353 2.117 20.318
525004010 258.248 4.915 0.416 0.076 0.454 4.354

... ... ... ... ... ... ...
525004138 8.422 0.160 0.014 0.002 0.015 0.152
525004138 8.422 0.160 0.014 0.002 0.015 0.152

... ... ... ... ... ... ...
525007033 178.693 3.401 0.288 0.052 0.314 3.013
525007033 178.693 3.401 0.288 0.052 0.314 3.013

... ... ... ... ... ... ...
525007196 34.785 0.662 0.056 0.010 0.061 0.586
525007196 34.785 0.662 0.056 0.010 0.061 0.586

... ... ... ... ... ... ...
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3.5 Monitoring Dashboard

   

Figure 7 Monitoring Dashboard User Interface
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The user interface (UI) is designed to be intuitive 
and user-friendly to facilitate access and interpretation 
of complex emission data, as shown in Figure 7. User 
feedback indicates that the interface effectively conveys 
data, with users appreciating the interactive map and 
real-time data updates. The ability to visualize emis-
sions spatially and temporally provides stakeholders 
with a clear understanding of emission patterns and 
their implications. Front-end development plays a cru-
cial role in enhancing the accessibility and usability of 
the emission monitoring system, supporting informed 
decision-making and policy development.

The back-end system also performs well, efficiently 
handling multiple data requests and ensuring timely 
updates to the front-end. This design is intended to 
scale with increasing data volumes to ensure that the 
system can accommodate future AIS data and emission 
calculations. The integration of Django with the MySQL 
database enables seamless data interaction and 
processing, meeting the requirements of the ship emis-
sion monitoring system. The back-end development 
provides a solid foundation for the overall system’s 
functionality and performance, ensuring that data is 
processed and delivered accurately and efficiently.

4	 Discussion

The proposed big data-based framework for a ship 
emission monitoring system is adaptable for imple-
mentation in other ports where high maritime traffic 
significantly contributes to air pollution. As long as 
ships within a port area are required to transmit AIS 
data, this data can be processed and utilized as a 
source for emission monitoring. Expanding this system 
would enable real-time emission tracking, allowing 
port authorities to develop localized control strategies 
and ensure compliance with IMO’s MARPOL Annex VI 
[31] and national regulations. Integrating this system 
across multiple ports would facilitate data-sharing and 
coordinated policy-making, enhancing the port’s ef-
forts to reduce greenhouse gas emissions in maritime 
operations. Although the system has been tested using 
historical AIS data, it has not yet been validated against 
real-world emission measurement data. This valida-
tion process is identified as a key objective for future 
system development. Successful implementation re-
quires digital infrastructure readiness, operational 
adaptability, and regulatory alignment, ensuring a 
seamless transition to a unified national ship emission 
monitoring network.

5	 Conclusions

This research aims to develop a web-based ship 
emission monitoring system that utilizes AIS data and 
various related calculations to provide comprehensive 

information on ship pollutant emissions through a sys-
tem supported by a structured MySQL database that 
stores emission and other operational ship data. The 
system is integrated with the Django framework to re-
trieve, process, and display data through an interactive 
and user-friendly web interface that can be used by de-
cision-makers, primarily at Tanjung Priok Port, in ef-
forts to control ship emissions in the port area.

To enhance system automation, future work will in-
volve validating the estimated emissions against actual 
onboard emission measurements to improve the sys-
tem’s accuracy and reliability. Implementing a DWT esti-
mation method or alternatively providing access to 
classification society data or port data would be benefi-
cial. Developing faster calculation methods is also neces-
sary to process larger datasets. Furthermore, developing 
more detailed calculation methods tailored to the Tan-
jung Priok Port area is needed 
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