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ABSTRACT

Oil spill modeling is a crucial tool in marine environmental management, enabling early prediction 
and mitigation of pollution impacts on coastal ecosystems. This study presents a high-resolution 
oil spill simulation framework developed for the Hai Phong coastal region in northern Vietnam, 
where risks from maritime activities are significant. The proposed approach utilizes a Lagrangian 
particle tracking method to simulate the transport and dispersion of oil particles driven by wind, 
wave, and tidal forces. A hydrodynamic model underpins the simulation, with its input parameters 
systematically calibrated to improve accuracy. Model calibration was guided by widely accepted 
error assessment metrics, including Root Mean Square Error, Nash–Sutcliffe Efficiency, and Percent 
Bias. These indicators were used to iteratively refine the simulation until a satisfactory match with 
empirical observations was achieved. Unlike traditional models that often rely on static inputs, 
this study incorporates dynamic environmental forcing and applies adaptive calibration strategies, 
allowing for reliable forecasts even when the spill source is uncertain or data availability is limited. 
The model demonstrates strong predictive capacity during the critical early hours following an oil 
spill, highlighting its potential for integration into rapid-response systems. Overall, the framework 
contributes to advancing oil spill preparedness and response strategies in data-scarce coastal regions, 
supporting both ecological protection and maritime risk management. 

1 Introduction

Oil spills in marine environments pose severe envi-
ronmental threats, disrupting ecological balance, dam-
aging fisheries, and undermining the socio-economic 
stability of coastal communities. The Hai Phong coastal 
region in northern Vietnam—home to one of the coun-
try’s most active port systems and dense industrial 
zones—is particularly at risk from oil pollution due to 
increasing maritime traffic and coastal development.

Accurate simulation of oil spill behavior is critical for 
timely and effective response, enabling mitigation strat-
egies to be deployed before irreversible environmental 
damage occurs. While numerous oil spill models have 
been developed globally, their application in complex 

nearshore environments is often hindered by challenges 
such as limited spatial resolution, uncertainties in input 
data, and the inability to simulate dynamic interactions 
between wind, tides, and waves with sufficient fidelity.

To overcome these limitations, the integration of ob-
servational data with advanced numerical modeling 
techniques has become increasingly important. Recent 
studies have demonstrated the value of assimilating re-
al-time environmental data into simulation frameworks. 
For example, Wilson et al. [1] emphasized data assimila-
tion to enhance model reliability, while Nordam [2] de-
veloped a scenario-specific model for Arctic conditions 
using the OSCAR platform. Dinu et al. [3] integrated re-
al-time environmental data—such as wind, wave, and 
current information—which significantly improved the 
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accuracy of oil slick trajectory predictions. However, 
their model was developed based on the proprietary 
ADIOS2 platform. Andrés et al. [4] enhanced model ac-
curacy by optimizing grid resolution and the number of 
Lagrangian particles, effectively balancing simulation 
precision and computational performance. Konstanti-
nos et al. [5] employed ECMWF wind datasets to assess 
uncertainty arising from atmospheric forcing, demon-
strating the effectiveness of the ensemble approach in 
environmental risk forecasting. Nevertheless, their 
work was also built upon the commercial MEDSLIK-II 
oil spill modeling framework applied in the Aegean Sea. 
Neda et al. [6] calibrated the Delft3D FM hydrodynamic 
model using both Eulerian and Lagrangian data (includ-
ing ADCP drifter measurements), which improved simu-
lation accuracy. However, the validation relied solely on 
the R² metric, which may not provide a sufficiently ob-
jective or comprehensive assessment of model perform-
ance.

In Vietnam, Doan Quang Tri et al. [7] applied the 
MIKE 21 SA model to simulate oil dispersion in Lach 
Huyen Port, and Nguyen [8] introduced a reverse-time 
tracking method to identify spill origins in the East Sea.

The program, independently developed by the  
author, is capable of accurately predicting the drift of oil 
slicks, as validated through comparison with actual oil 
spill scenarios simulated using the MIKE software. This 
work contributes significantly to the scientific advance-
ment of oil spill modeling research in both Vietnam and 
the global context.

The paper presents the development of an oil spill 
simulation model based on the Lagrangian approach, 
tailored to the natural conditions of the Vietnamese ma-
rine environment, with a pilot application in the Hai 
Phong coastal region. The model allows for flexible ad-
justment of input parameters in the hydrodynamic 
module and enables control of output reliability through 
error evaluation indicators: Root Mean Square Error 
(RMSE), which measures the average deviation between 
observed and modeled values; Nash–Sutcliffe Efficiency 
(NSE), which evaluates predictive skill; and Percent Bias 
(PBIAS), thereby ensuring the credibility of the simula-
tion results.

2 Methods

2.1 Oil spill dispersion model 

2.1.1 Advection and diffusion processes 

This equation is formulated to simulate the trans-
port processes of substances in both surface and sub-
surface water layers. The substances are discretized 
into individual particles, which are influenced by trans-
port mechanisms arising from the surrounding mass 
movement.

a) Transport equation
The governing principle is defined by the following 

equation [9-11]:
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(2.1)

In this equation, c(x,y,t) represents the mean con-
centration; u(x,y,t) and v(x,y,t) denote the velocity com-
ponents, h(x,y,t) is the water depth (relative to MSL); 
Dx(x,y,t), Dy(x,y,t), Dxy(x,y,t) and Dyx(x,y,t) are the diffusion 
coefficients. The angle between the intrinsic current di-
rection and the x-axis is represented by:

v(x(t), t)
u(x(t), t)  

(2.2)

After converting coordinate system:

D D= D cos  (2.3)

cosD D= D sin  (2.4)

cosD = (D − D  (2.5)

with, DL and DT are diffusion coefficients respectively.

b) Langevin Equation
The equation describes the motion of an oil particle 

at position x(t) [12-14]:

A B
 

(2.6)

Here A(x, t) represents the current speed field; B(x, t) 
denotes the stochastic component simulating the diffu-
sion process of the oil; x(t) is a Gaussian white noise term 
(mean 0, variance 1), generated by a random number 
generator. Equation (2.6) can be rewritten as follows:

A B  (2.7)

With, dW(t) is a Wiener random process.
The discrete method for computing (2.7) uses the 

Euler implicit method:

Δ = )Δ )√Δ

Δ = )Δ )√Δ  
(2.8)

Where, xn is the particle position at the current time 
step tn; xn–1 is the particle position at the previous time 
step tn–1; ∆xn is the incremental displacement of the par-
ticle over the time step ∆t; A(xn–1,tn–1) is the drift term, 
representing the deterministic component of motion, 
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typically associated with the advective velocity field; 
B(xn–1,tn–1) is the diffusion coefficient, accounting for the 
magnitude of stochastic fluctuations due to turbulence or 
unresolved subgrid processes; Zn is a standard Gaussian 
random variable drawn from N (0,1), used to represent 
random perturbations; √Δ  is a discrete approxima-
tion of the Brownian motion increment ΔWn ~ N (0,∆t),  
used to model the stochastic diffusion process.

The equation describes the motion of an oil particle 
at position y(t) is the same method:

A B
 

(2.9)

A(y,t) represents the current speed field in the y di-
rection; B(y,t) denotes the stochastic component simu-
lating the diffusion process of the oil in the y direction; 
x(t) is a Gaussian white noise term (mean 0, variance 1), 
generated by a random number generator.

c) Advection process
This process is primarily driven by currents and 

wind, causing particles to move horizontally. The drift 
velocity is typically calculated as follows [15]:

U U U  (2.10)

Where: Uw is the wind velocity vector at 10 meters 
above the sea surface; Ua is the depth-integrated current 
velocity vector; cw(z) is the wind drift coefficient at 
depth z; and ca(z) is the advective current drift coeffi-
cient at depth z.

2.1.2 Mechanical Spreading 

This process occurs immediately following an oil 
spill and is primarily driven by two factors:
– The physicochemical properties of the oil (such as 

differences in density and surface tension);
– The diffusion process induced by waves, wind, and 

currents.
The oil slick is typically treated as a homogeneous 

mass, and the spreading process leads to thinner layers 
over time. The surface area of the spill evolves as a func-
tion of time t [16]:

 
(2.11)

In which, Ka is a constant; Aoil is the area of   oil spill; 
Voil is the volume of oil; Roil is the radius of oil spill.

 (2.12)

The volume of the oil spill is:

.ℎ  (2.13)

Where, hs is the initial thickness of the oil slick.

2.2 Material transport model 

2.2.1 Theoretical basis of Lagrange method 

Building upon the work of Garcia [17], the author 
simulates particle trajectories using three different 
schemes to evaluate the advantages and limitations of 
each approach. A two-dimensional flow field is consid-
ered: 

 (2.14)

 (2.15)

The material transport process is approximated us-
ing the Euler scheme for Y over time, and is thus ex-
pressed as follows:

 (2.16)

For the diffusion component:
– Time from start to 12 hours: 

( ) ( )  (2.17)

– Time greater than 12 hours:

( ) − 1.7)  (2.18)

Where b is the dispersion coefficient and t is time (in 
hours).

The random process x is defined to vary within the 
range of -1 to 1.

In the adopted material transport framework, the 
transported matter is discretized into multiple particle 
classes, each characterized by distinct physical and 
chemical properties such as decay rate, vertical settling 
or rising velocity, corrosion behavior, and dispersion co-
efficients. These attributes are individually defined for 
each particle class, allowing for a refined representation 
of heterogeneous material behavior. Additionally, class-
specific parameters such as minimum mass thresholds 
and maximum particle lifetime are specified to facilitate 
dynamic classification and removal of particles that have 
degraded below significant mass or exceeded the tempo-
ral bounds of interest. This selective deactivation enhanc-
es computational efficiency by reducing the total number 
of active particles within the simulation domain.

The transport dynamics are simulated using a La-
grangian discrete approach, wherein the continuum of 
material is represented as an ensemble of computation-
al particles. Each particle is assigned a discrete mass 
and spatial coordinates, and its trajectory and mass evo-
lution are computed as functions of time. Unlike Euleri-
an methods, particle movement in the Lagrangian 
framework is not constrained to the fixed nodes of a ref-
erence grid. Instead, the grid system is employed solely 
for the interpolation of environmental parameters—
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such as current velocity fields—at the particle’s instan-
taneous position. These interpolated values are then 
used to determine the drift velocity and subsequent ad-
vection of each particle. This approach allows for a 
more accurate and physically consistent simulation of 
transport phenomena in spatially and temporally varia-
ble environments.

2.2.2  Algorithm structure diagram and  
 computational programs 

Based on the computational approach for forecast-
ing marine oil spills using the Lagrangian method, along 
with the mathematical foundations supporting the dis-
cretization process and the necessary conditions for de-
veloping a computational model, the author has 
designed the algorithmic structure as illustrated below. 
Figure 1 presents the general algorithm of the oil spill 
simulation model. From this structure, different compu-
tational procedures are developed according to various 
information blocks using the Fortran programming lan-

guage. The program architecture consists of a main 
module and several auxiliary subroutines, which reduce 
complexity and enhance usability.

Figure 2 illustrates the block diagram for input data 
and initial condition setup. In this stage, each computa-
tional component is organized into modular subrou-
tines. The program reads temporal and environmental 
parameters, including spill timing, location, and release 
type. Once validated, these inputs initiate synchronized 
environmental data processing across spatial-temporal 
nodes for further simulation.

Figure 3 presents the block diagram for updating 
and processing environmental and oceanographic con-
ditions. Based on specified indices, the program initi-
ates the simulation using various input datasets. As 
these inputs often differ in spatial and temporal resolu-
tion, preprocessing steps are required to harmonize 
them onto a unified coordinate system and synchro-
nized computational grid. Once standardized, the proc-
essed data are passed to subsequent modeling stages.

Figure 1 Oil Spill Calculation Program
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Read input data and  
initial conditions

Update and calculate 
environmental factors

Oil spill 
update
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of physical 
processes
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Increase time 
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Time to print correct results

Print correct results
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End
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Figure 2 Information processing 

Figure 3 Update and process information on environmental factors

Figure 4 Advection and diffusion processes

Figure 5 Processing model output

Figure 4 illustrates the block diagram for computing 
the advection and diffusion processes of surface oil 
spills. The associated subroutines govern the two-di-
mensional drift of the oil slick. Advection is modeled us-
ing surface dynamic forcing (wind, waves, and currents) 
represented in two horizontal dimensions. Diffusion is 
formulated based on oil properties and release volume, 
incorporating turbulent motion induced by environ-

mental conditions, as described in Equation (2.15) and 
(2.16). The outputs from this stage serve as inputs for 
subsequent oil spill dispersion calculations.

Figure 5 presents the output block diagram follow-
ing the oil spill dispersion computations. This stage ena-
bles the extraction of all relevant information regarding 
parameters and environmental variables involved in 
both the main and subroutine components of the model.
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Read bathymetry 
information 

and construct 
bathymetry in the 

mesh

Read oil spill 
information (time, 
location, volume, 

spill type)

Update and calculate environmental factors:

Meteorological 
information:

– Wind
– Air temperatire

Information on the 
sea surface:

– Waves

Sea surface 
information:
– Currents; 

– Water 
temperature; 

– Salinity

Calculation of physical processes:

Advection 
process

Diffusion  
process
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2.3 Criteria for assessing model accuracy and error 

2.3.1 Correlation coefficient (R) 

This coefficient is a statistical indicator used to eval-
uate the degree of association between the reference 
variable (Xnet) and the simulated variable (Xsim), based on 
the perspective of proportional deviation magnitude 
[18]. The formula for calculating this coefficient is ex-
pressed as follows:

∑ _ _

∑ *∑

_ =
1

_ =
1

 

 

∑ _ _

∑ *∑

_ =
1

_ =
1

 

 
(2.19)

This is a statistical indicator used to assess the dis-
crepancy in the relationship between two variables. 
Specifically:
– The value of the correlation coefficient lies within 

the range (−1.0; 1.0). If the simulation results fall 
outside this range (i.e., greater than 1.0 or less than 
−1.0), it indicates errors in the correlation measure-
ment process;

– A negative value of the correlation coefficient indi-
cates an inverse relationship between the two varia-
bles, commonly referred to as negative correlation. A 
value of −1 implies a perfect negative correlation;

– A positive value of the coefficient suggests a direct 
relationship, or positive correlation, with a value of 1 
indicating a perfect positive correlation;

– A value of 0 represents statistical independence be-
tween the two variables.

2.3.2 Root Mean Square Error (RMSE) 

This is an indicator used to measure and evaluate 
the relationship between the reference variable (Xnet) 
and the simulated variable (Xsim) based on the mean 
squared error (MSE) approach [19]. The smaller the 
value of this indicator, the closer the model output is to 
the observed data. The formula for calculating this indi-
cator is expressed as follows:

1
( )

 
(2.20)

RMSE is an indicator that measures the root mean 
square deviation; Here, Xi  and Yi  represent the ith values 
of the observed variable x and the simulated variable y, 
respectively; i denotes the index within the data series 
ranging from 1 to n; and n is the total number of ob-
served values for both variables x and y.

2.3.3 NASH Index 

This index can be calculated by the following equa-
tion [20]: 

∑ ( )
∑ ( ) =

1

∑ ( )
∑ ( ) =

1

 

(2.21)

In this context, Xi  and Yi  represent the ith values of the 
observed variable x and the simulated variable y, re-
spectively; Xmean and Ymean denote the mean values of the 
two variables; i is the index in the data series ranging 
from 1 to n; and n is the total number of observations 
for both x and y.

Table 1 below presents the classification of model 
accuracy based on the Nash–Sutcliffe Efficiency (NASH) 
coefficient.

The Nash–Sutcliffe Efficiency (NSE) coefficient re-
flects the degree of correlation between observed and 
simulated data. In principle, the closer the NSE value is 
to 1, the more reliable the model performance is. The 
variation of the NSE coefficient can be interpreted as 
follows:

NSE = 1: The simulation perfectly matches the ob-
served data, indicating absolute accuracy.
NSE = 0: The model has no correlation with the ob-
served data, implying no predictive capability. This 
case is rare.

0 < NSE < 1: The model shows a certain degree of corre-
lation with the observed data. Depending on the specific 
value, the performance level can be categorized as:

0.0 < NSE < 0.2: Very low correlation (very poor per-
formance).
0.2 ≤ NSE < 0.4: Low correlation (poor performance).
0.4 ≤ NSE < 0.6: Moderate correlation (moderate 
performance).
0.6 ≤ NSE < 0.8: High correlation (good performance).
0.8 ≤ NSE < 1.0: Very high correlation (very good 
performance).

Table 1 Classification of NASH index accuracy level

NASH Index 0.0 – 0.2 0.2 – 0.4 0.4 – 0.6 0.6 – 0.8 0.8 – 1.0

Level Very low Low Moderate High Very high
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To ensure the reliability of the NSE value, it is essen-
tial to use a sufficiently large dataset that captures the 
full characteristics of the variable under evaluation. The 
longer and more accurate the dataset, the more meaning-
ful the NSE becomes in assessing model performance.

2.3.4 PBIAS Standard Deviation Index 

This is a composite indicator used to assess the de-
gree of agreement between the observed (measured) val-
ues (Xnet) and the simulated values (Xsim). The formula for 
calculating this indicator is expressed as follows [21]:

∑ ( )  100
∑

*

 (2.22)

Here, i denotes the index in the data series ranging 
from 1 to n, and n is the total number of observations 
for variables x and y.

PBIAS measures the tendency of the average simu-
lated streamflow values to be greater or smaller than 
the corresponding observed streamflow values. The op-
timal value is 0.0. Positive values indicate a model bias 
toward underestimation, while negative values indicate 
a bias toward overestimation [22].

Figure 6 illustrates the flowchart of the calibration 
steps used to verify the reliability of the hydrodynamic 
module through error evaluation indicators:

Figure 6 Calibration process block diagram

– Step 1 – Collection of observed data: Gather hydrolog-
ical data such as water level, discharge, current speed, 
and other relevant parameters at the study area from 
monitoring stations or reliable data sources.

– Step 2 – Initialization of model conditions: Input ini-
tial values into the model, including water levels, 

topographic parameters, bed characteristics, friction 
coefficients, etc., ensuring that these values accu-
rately represent the real-world conditions at the 
start of the simulation.

– Step 3 – Initial simulation and comparison with ob-
served data: Run the model using the initialized con-
ditions. Compare the simulation results (e.g., water 
level, current speed) with observed data to identify 
errors and discrepancies.

– Step 4 – Parameter adjustment: Based on the differ-
ences between simulation outputs and observed 
data, adjust the initial parameters (e.g., modify water 
levels, friction coefficients) to minimize errors. Re-
run the model after each adjustment and continue 
comparing until the simulation error falls within an 
acceptable threshold.

2.4 Data base for oil spill modelling 

2.4.1 Bathymetry 

The bathymetry data for the Hai Phong marine area 
and its vicinity comprise the following sources: 
– Terrestrial and underwater data (including bathym-

etry and nautical charts) provided by the Depart-
ment of Survey and Mapping and the Navy at scales 
of 1:25,000, 1:100,000, and 1:500,000, published in 
the years 2000, 2005, 2010, and 2015;

– Bathymetric data and nautical charts from the Min-
istry of Natural Resources and Environment at a 
scale of 1:50,000, published in 2000 and 2005;

– Online data from GEBCO (General Bathymetric Chart 
of the Oceans), which aims to provide standardized 
and publicly available global ocean depth datasets. 

These disparate datasets, initially referenced to dif-
ferent coordinate systems, were subsequently trans-
formed and unified into a common geodetic reference 
framework. The author then utilized the MIKE modeling 
system to generate the computational mesh and bathy-
metric field required for subsequent simulations.

2.4.2 Meteorology 

The meteorological data utilized in this study include 
records from a fixed meteorological station managed by 
the Ministry of Natural Resources and Environment 
(MONRE) and global reanalysis datasets obtained from 
international online sources.
– The fixed meteorological station used is the Hon Dau 

station (as presented in Table 2 and Figure 7).
– The data source employed is the global ERA5 reanal-

ysis dataset provided by the European Centre for 
Medium-Range Weather Forecasts (ECMWF), ex-
tracted for the location at 107°00’E – 20°30’N (as 
shown in Figure 8).
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As the global wind data from the ERA5 reanalysis by 
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) at the location 107°00’E – 20°30’N are 
available at an hourly temporal resolution and situated 
near the outer boundary, they were selected for incor-
poration into the computational model.

Table 2 Information about Hon Dau meteorological and hydrological station 

Station Name
Position

Place Longitude (oE) Latitude (oN)
Hon Dau Hon Dau island, Do Son district, Hai Phong city 106o 48’ 0.0” 20o 40’ 0.0”

Figure 7 Wind speed variation at Hon Dau Station 
(Jan 2020 – Dec 2023)

Table 3 Information on Hydrological Stations 

Station Name
Position

Place Longitude (oE) Latitude (oN)
Hon Dau Hon Dau island, Do Son district, Hai Phong city 106o 48’ 0.0” 20o 40’ 0.0”
Do Nghi Tam Hung Ward, Thuy Nguyen City, Hai Phong City 106o 33’ 20o 56’

Figure 8 ERA5 global wind speed variation (ECMWF) at 
107°00’E – 20°30’N (Jan 2020 – Dec 2023)

Figure 9 Water level variation at Cua Cam Station 
(Jan 2020 – Dec 2023)

Figure 10 Water level variation at Do Nghi Station 
(Jan 2020 – Dec 2023) 

2.4.3 Hydrology 

The hydrological data consist of records from fixed 
hydrological stations managed by the Ministry of Natu-
ral Resources and Environment (MONRE). The data 
from these conventional stations were collected on an 
hourly basis. The hydrological stations utilized within 
the study area include the Cua Cam station and the Do 
Nghi station (see Table 3, Figure 9, and Figure 10).
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2.4.4 Oceanography 

The hydrographic data includes the fixed hydro-
graphic station used at Hon Dau (Figure 11):

aged by the Ministry of Natural Resources and Environ-
ment (MONRE), along with global reanalysis datasets 
obtained from international online sources.

The generation of the computational mesh is a critical 
step in the modeling and forecasting of tidal dynamics. 
The computational domain defined in the model encom-
passes the Hai Phong coastal area, bounded by longitudes 
106°37.2’ E to 107°06.6’ E and latitudes 20°34.1’ N to 
20°56.4’ N within the UTM Zone 48 coordinate system. 
The computational grid is an unstructured triangular 
mesh, with higher resolution applied to areas of elevated 
oil spill risk such as the Cua Cam estuary, the Do Nghi es-
tuary, and the Hai Phong port region. In these zones, the 
maximum area of each mesh element does not exceed 1.5 
km². The study domain consists of 14,522 nodes and 
24,851 elements [23], with a minimum allowable inter-
nal angle of 32°, as shown in Figure 12.

3.1.2 Simulation calculation conditions and  
 initial conditions 

The modeling program adopts the integrated MIKE 
21/3 FM system, utilizing two modules: the Hydrody-
namic module and the Oil Spill module within ECO Lab. 
The simulation is configured with two open water 
boundaries at Cua Cam and Do Nghi, along with the 
coastal boundaries. In addition, for the oil spill module, 
it is necessary to specify parameters such as the type of 
oil, the spill source, and other essential input parame-
ters (Figure 13 and 14).

Figure 12 Domain and mesh 

Figure 11 Water level variation at Hon Dau station 
(Jan 2020 – Dec 2022)

3 Results

3.1 Hydrodynamic simulation results 

3.1.1 Domain, mesh and bathymetry 

The meteorological, hydrological, and oceanographic 
data utilized in this dissertation include observations 
from the Hon Dau Meteorological–Oceanographic Sta-
tion, the Do Nghi Hydrological Station, and the Cua Cam 
Hydrological Station, all of which are fixed stations man-
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Figure 13 Selection of calculation conditions for the hydrodynamic module

Figure 14 Select calculation conditions for oil spill module

3.1.3 Results of Calibration and Validation of the  
 Hydrodynamic Model
The calibration results were assessed through com-

parisons between observed water levels from nautical 
charts (Hobs), national benchmark observations 
(Hobs_01), and simulated outputs (Hsim). The findings 
indicate a high level of agreement in both phase and 
amplitude. In instances where the hydrodynamic simu-
lation did not meet accuracy requirements, further re-
finements were made to initial input parameters such 
as time step, wind fields, wave data, viscosity, and bot-
tom friction. The overall outcomes demonstrate the  

stability of the computational model, reinforcing its reli-
ability and validity.

Figure 15 illustrates the correlation between simu-
lated water levels (Hsim) and observed values from the 
national monitoring station (Hobs_01) at the Hon Dau 
station, based on x and y coordinates. While there is a 
maximum amplitude difference of approximately 2 me-
ters, the trend and magnitude of variation remain highly 
consistent. According to Table 4, correlation coefficients 
at all stations exceed 0.95, confirming the high accuracy 
of the model. Table 4 also presents the average compari-
son between measured and simulated data at Hon Dau 
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station, with all statistical error indicators meeting ac-
ceptable thresholds. Specifically, the Nash-Sutcliffe effi-
ciency coefficient (NASH = 0.795) falls within the range 
of high model performance (0.6–0.8), the PBIAS reflects 
minimal bias, and the RMSE value of 0.383 remains well 
below the 0.5 benchmark, further supporting model 
precision.

The results obtained from the model calibration and 
subsequent validation confirm that the hydrodynamic 
model demonstrates considerable stability and accura-
cy. The author proceeded to conduct further simula-
tions incorporating the combined effects of wind, tidal 
forces, and river water level fluctuations at monitoring 
locations such as Cua Cam and Do Nghi hydrological sta-
tions. The alignment between simulated results and ob-
served data at the Hon Dau marine station during the 
same period was examined through time series compar-

isons of water level fluctuations, supported by key sta-
tistical performance indicators including the correlation 
coefficient (R), root mean square error (RMSE), Nash–
Sutcliffe efficiency (NSE), and percent bias (PBIAS).

On that basis, the hydrodynamic simulation was ap-
plied for February 2023, coinciding with the timeframe 
during which an unidentified oil spill incident was re-
ported near Ben Got, Lach Huyen, Hai Phong. Table 5 
presents the simulation outcomes evaluated at Hon Dau 
station, reflecting both the observed and simulated av-
erage values, as well as associated error metrics. Over-
all, the indicators suggest a high level of model accuracy, 
with correlation coefficients exceeding 0.95. The NSE 
value falls within the range of very high predictive per-
formance (0.8–1.0), while PBIAS values also confirm 
high reliability, showing a tendency toward overestima-
tion (values<0). Additionally, the RMSE of 0.169 re-
mains significantly below the 0.5 threshold, further 
validating the model’s precision.

Figure 16 and 17 illustrates the hydrodynamic simu-
lation results corresponding to high tide and low tide 
phases. The analysis shows that high-velocity flow 
zones are predominantly located in regions such as the 
outer Nam Trieu channel, Lach Tray estuary, Cai Trap 
canal, and the Lach Huyen fairway. During high tide, cur-
rent speeds are generally moderate to low. The current 
direction changes in response to tidal fluctuations, fol-
lowing two distinct patterns:

At high tide, when the tide is rising, seawater in-
trudes inland, and the current typically flows from the 
sea toward the river systems.

At low tide, as the water level falls, the current direc-
tion reverses, and the current moves from the rivers 
back out to the sea.

Table 4 Statistical accuracy assessment of Hon Dau water level (Jan 1–16, 2020)

Station 
Name

Elevation 
benchmark

Actual 
average

Average 
calculation

Evaluation index

R RMSE NASH PBIAS (%)

Hon Dau
Nautical Chart 2.020

0.437
0.985 1.628 -2.718 79.390

National 0.160 0.985 0.383 0.795 -160.786

Table 5 Statistical accuracy assessment of Hon Dau water level (Feb 26 – Mar 11, 2023)

No. Characteristic
Hon Dau Station

Not calibrated Calibrated

1 Actual average 1,956 0,096

2 Average calculation 0,153

3

Evaluation index

R 0,975 0,975

4 RMSE 1,695 0,169

5 NASH -4,597 0,944

6 PBIAS (%) 92,185 -58,606

Figure 15 Water level comparison at Hon Dau station 
(Feb 26 – Mar 11, 2023)
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Figure 16 Low tide level at 01:00 on Feb 27, 2023

Figure 17 High tide level at 13:00 on Mar 3, 2023
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Figure 18 Fate of oil spill from Feb 26 to Mar 11, 2023

Table 6 Selected Parameters of the Oil Spill Transport Model

No. Content Parameters
1 Input layers Standardized according to the model (DHI Oil Weathering Model 2013)
2 Spill Sources Lach Huyen estuary area near Got wharf
3 Type of oil spill Oil spill source in first step calculation

4 Advection and Diffusion The horizontal diffusion coefficient is set at 0.025 m²/s;
The vertical dispersion coefficient is 1.0 × 10⁻⁵ m²/s.

5 Advection Using data sources from hydrodynamic models
6 Bottom Roughness Using data sources from hydrodynamic models
7 Output Based on hydrodynamic data and time step

Additionally, current speed varies spatially. Under 
high tide conditions, current speed tends to increase pro-
gressively from the open sea toward the river mouths. 
Conversely, during low tide, current speed diminishes as 
it moves seaward from the inner riverine areas.

3.2 Oil spill simulation results 

3.2.1 Oil Spill Simulation Results Using the MIKE  
 Model 

To simulate the oil spill incident that occurred in Hai 
Phong in February 2023, the MIKE 21/3 Coupled FM 
module was utilized. The initial modeling conditions 
were systematically defined to ensure the accuracy and 
reliability of the simulation framework (Table 6).

Figure 18 presents a composite trajectory of oil parti-
cle movement from February 26 to March 11, 2023. Influ-
enced by external environmental forces, the oil slick was 

predominantly concentrated in the Nam Trieu channel, 
Lach Huyen channel, and the Hai Phong Bay area.

In February 2023, an unidentified oil slick was de-
tected near the Lach Huyen port area (Figure 19). Ini-
tially influenced by ebb tide conditions, the slick drifted 
seaward, moving beyond Berths No. 3 and 4. On Febru-
ary 27, the slick showed a tendency to shift in a north-
northwest direction, approaching the vicinity of the 
VinFast factory port. In the following days, the prevail-
ing movement of the oil slick alternated between south-
east and northwest directions.

3.2.2 Oil spill calculation program using  
 Lagrange method 

Based on the theoretical framework and algorithmic 
flowchart for forecasting oil spill dispersion in the marine 
environment using the Lagrangian approach (Figure 1), 
the author developed a computational application using 
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Figure 19 Oil spill and droplet locations at 04:00 on Feb 27, 2023

Figure 20 Main oil spill simulation calculation program 

Fortran language. The model structure is organized into 
the following components (Figure 20).

According to the block diagram presented in Figure 
2, the program begins by reading input data, including 
computational domain, simulation period and time step, 
and other auxiliary information required for the simula-
tion (see Figure 21).

Figure 21 Program to read input information

As illustrated in the block diagram in Figure 3, the 
program processes environmental factors (e.g., waves, 
wind, air temperature) by harmonizing them onto a uni-
fied coordinate system and computational mesh, ensur-
ing temporal synchronization across all datasets (see 
Figure 22).
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Figure 22 Subroutine for updating and processing 
environmental factors

Figure 23 Subroutine for calculating advection and diffusion 
of oil particles 

Figure 24 Subroutine to print calculation results 

The advection and diffusion processes of surface oil 
spills are computed using the algorithm illustrated in 
the block diagram in Figure 4. This module plays a criti-
cal role in determining the movement of oil particles 
under the influence of hydrodynamic environmental 
factors (see Figure 23).

After computing the movement of oil particles, this 
subroutine extracts all relevant information related to 
the oil spill process, as depicted in the block diagram in 
Figure 5 (see Figure 24).

3.2.3 Analysis and comparison of results of two  
 oil spill models 

Figure 25 illustrates a comparative analysis of oil 
slick trajectories represented by particle positions sim-
ulated using the MIKE model (depicted as purple 
squares) and the custom-built model (represented as 
green circles) on Feb 27, 2023 (after one day), under 
the oil spill scenario at Ben Got, Lach Huyen estuary 
[24]. In the initial phase, the trajectories generated by 
both models show a high degree of consistency. Howev-
er, in the subsequent days, particles in the custom mod-
el tend to drift southward, spreading more extensively 
across Hai Phong Bay, whereas particles in the MIKE 
model exhibit a southward movement predominantly 
directed into the Nam Trieu channel.

Table 7 presents a detailed comparison of three pa-
rameters: the average distance from the spill origin to 
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the nearest particle position is 2,966.632 meters for the 
MIKE model and 2,962.996 meters for the custom mod-
el, resulting in a minimal difference of 3.6 meters. The 
maximum deviation between the nearest particle posi-
tions of the two models is 365.298 meters, with an aver-
age discrepancy of 63.647 meters. All statistical 
performance indicators meet the required standards: 
the correlation coefficient (R) exceeds 0.95; the Nash–
Sutcliffe efficiency (NASH) is 0.998, indicating excellent 
agreement (within the range 0.8–1.0); and the percent 
bias (PBIAS) is 0.123%, approaching the optimal value 

Figure 26 Correlation of oil particle distances: 
MIKE vs. custom model (Feb 26 – Mar 4, 2023)

Figure 25 Oil Slick at 04:00 on Feb 27, 2023 (after one day)

Table 7 Comparison of Statistical Accuracy in Oil Particle 
Distances between the MIKE and Custom Model  
(Feb 26 – Mar 4, 2023)

Average Distance from the Spill 
Location to the Nearest Particle 
Position [m]

MIKE 2966.632

Building 2962.996

Minimum Distance Between 
MIKE and Custom Model Particle 
Positions [m]

Maximum 365.298

Average 63.647

Evaluation Metrics for the 
Distance from the Spill Origin 
to the Nearest Particle Positions 
between the MIKE and Custom 
Models

R 0.999

RMSE 66.158

NASH 0.998

PBIAS (%) 0.123

of zero. Figure 26 displays a first-order regression plot 
comparing particle distances from both models. The lin-
ear pattern of the plot confirms a high level of consist-
ency between the two simulation approaches.

4 Discussion
This study introduces an effective approach to en-

hance oil spill simulation accuracy using refined hydro-
dynamic modeling combined with a Lagrangian discrete 
particle method. The model leverages multiple statisti-
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cal metrics, including the correlation coefficient (R), 
Root Mean Square Error (RMSE), Nash-Sutcliffe Effi-
ciency (NSE), and Percent Bias (PBIAS), ensuring a sys-
tematic calibration process. High statistical alignment 
with observational data was achieved (R > 0.95, RMSE < 
0.5, NSE between 0.795 – 0.944), indicating strong mod-
el reliability.

The comparative evaluation with the established 
MIKE 21 FM model confirmed the proposed model’s va-
lidity, as both models yielded closely aligned initial parti-
cle trajectories. Over extended simulations, minor 
deviations emerged due to intrinsic computational differ-
ences. However, the positional discrepancy between 
models remained minimal, averaging approximately 63.6 
meters. This minor divergence reinforces the robustness 
and practicality of the developed methodology for opera-
tional forecasting and environmental risk assessment.

Model accuracy was notably influenced by the quali-
ty and resolution of input environmental datasets, in-
cluding bathymetric, meteorological, and oceanographic 
data. Hence, continuous updates and integration of real-
time observations are recommended to further enhance 
predictive performance. Future research should extend 
model validation across diverse environmental condi-
tions, thereby broadening applicability and enhancing 
preparedness for various oil spill scenarios. 

5 Conclusions

This study demonstrates a successful application of 
advanced hydrodynamic modeling combined with error 
evaluation techniques to improve oil spill simulations in 
the Hai Phong coastal region. By integrating statistical 
metrics (R, RMSE, NSE, PBIAS), the model achieved high 
accuracy and alignment with observational data, con-
firming its reliability.

The developed Lagrangian particle-based simulation 
model produced results closely matching those from the 
MIKE 21 FM system. Despite minor variations in parti-
cle trajectories, the average positional difference re-
mained small (~63.6 m), underscoring the model’s 
robustness.

Accurate environmental datasets played a critical 
role in enhancing simulation fidelity, highlighting the 
need for high-resolution and continuously updated in-
put data. This framework supports more reliable fore-
casting and efficient emergency response in marine 
environments.

5.1 Limitations of the study 

The model has not yet been validated or calibrated 
using current velocity data; calibration has so far been 
limited to water level data from observation stations. 
This limitation is primarily due to the high cost and 
technical complexity of flow measurement equipment, 

which makes it difficult to deploy widely across multi-
ple locations. Furthermore, current velocity data are 
typically collected during short-term measurement 
campaigns at a limited number of sites and are rarely 
available as continuous long-term records, posing chal-
lenges for comprehensive model validation. The ap-
proach of using only water level data for validation is, 
however, common practice in both national and interna-
tional hydrodynamic modeling studies. 

In addition, the current model focuses solely on the 
positional accuracy of the oil slick and does not yet in-
corporate or validate ecological, environmental, or eco-
nomic impacts resulting from oil spills.

5.2 Recommendations for future research 

Future research should focus on enhancing the mod-
el’s operational capabilities by incorporating real-time 
environmental data—such as wind, wave, and current 
forecasts—from observation networks or remote sens-
ing systems. This would enable the model to support 
near-real-time spill prediction and emergency response 
applications.

To improve the model’s utility in environmental risk 
assessment and decision-making, future studies should 
also integrate ecological and environmental impact 
evaluation modules, allowing the simulation results not 
only to forecast oil slick trajectories but also to estimate 
potential damage to marine ecosystems, protected are-
as, and socio-economic assets (e.g., aquaculture zones, 
port operations, and tourism infrastructure).

Such advancements will strengthen the model’s rel-
evance for comprehensive marine pollution manage-
ment, strategic planning, and sustainable coastal zone 
governance.
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