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ABSTRACT

The method of boundary variation was applied to the solution of the boundary value problem with 
respect to the Reynolds differential equation for the lubricating layer in the sliding bearings of ship power 
plants and auxiliary ship equipment, which made it possible to obtain analytical representations for the 
hydrodynamic pressure, shear stresses, as well as the integral characteristics of the lubricating layer. 
This made it possible to build new, easy-to-use mathematical models for the load factor (carrying force 
factor) of the sliding pairs of the ship propulsion complex, considering the non-Newtonian properties 
of lubricants, i.e. in the case of the dependence of dynamic viscosity on pressure and temperature. 
Mathematical models take into account geometric parameters of bearings, operational parameters: 
relative radial clearance and relative eccentricity, angular velocity; as well as viscosity characteristics of 
lubricants, in particular, dynamic viscosity and piezo coefficient of viscosity of lubricants. A criterion for 
the presence of an oil layer in the working zone of the sliding pair at given operational characteristics 
and parameters of the sliding bearing is proposed, which considers the viscous characteristics of 
lubricants. The research results are illustrated in the form of tables and graphs.

1 Introduction

The ship’s propulsion system, which includes power 
plants and auxiliary ship equipment, is a complex engi-
neering system and consists of many different units and 
mechanisms (see, in particular, [1]). The durability of 
the entire engineering ship system depends on the du-
rability of each individual unit, the reliability of each of 
which is usually calculated separately. One of these im-
portant components is sliding pairs (sliding bearings), 
which are present both in the main power plants and in 
auxiliary equipment. In particular, these are the main 
and connecting rod necks of the crankshafts, the propel-
ler shaft bearings, the rudder shaft bearings. Research 
in this direction was carried out by many authors, par-
ticularly the fundamental theory of sliding bearings, 

which is presented in the work [2], and received further 
development in the works [3, 4, 5, 6]. A number of 
works are devoted to the study of the reliability of pro-
peller thrust shaft bearings, in particular, in work [7] 
various propeller shaft bearings were experimentally 
investigated with different lubrication methods, in pa-
per [8], with the help of numerical solutions of the Rey-
nolds equation tribological characteristics of a marine 
stern tube bearing were studied, considering bending 
deformation of stern shaft and cavitation. In works [9, 
10, 11], with the help of analytical solutions of the Rey-
nolds equation, various aspects of the durability of op-
eration of ship support sliding bearings were studied, in 
work [12] analytical dependences for the angles of the 
beginning and end of the working zone on the relative 
eccentricity ε0 and relative radial clearance δ0 were ob-
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tained in a pair of slips. Works [13, 14] are devoted to 
the study of operational characteristics, such as efficien-
cy of ship propellers and rudders. One of the main fac-
tors that affect the operation of sliding bearings is the 
viscosity characteristics of lubricants, in work [15] the 
classification of marine lubricants and their characteris-
tics are given. Studies [16 – 18] show that in connection 
with extreme operating modes, the behavior of lubri-
cants in the working zone of the sliding pairs of the ship 
system is non-Newtonian [2, 17] in nature, failure to 
take it into account leads to significant errors in design 
and forecasting trouble-free operation. Contamination 
of lubricants during operation and impurities [19, 20], 
which are used to improve the viscous characteristics of 
lubricants, also lead to non-Newtonian behavior of lu-
bricants. The calculation and forecasting of the trouble-
free operation of the sliding bearings of the ship 
propulsion system is usually based on the integral char-
acteristics of the sliding pair, such as, for example, the 
dimensionless load factor [2 – 5], which is used, in par-
ticular, in the criterion Sommerfeld [2, 4, 21].

The existing dependences of the coefficient ΦP on the 
relative eccentricity ε0 of the sliding pair are usually tab-
ular or graphical [2, 3, 21] and obtained for a small 
number of values ε0. In addition, the existing represen-
tations of the load factor are obtained only for Newtoni-
an lubricants and do not take into account their dynamic 
viscosity, which, taking into account the above, can lead 
to significant errors when calculating the sliding bear-
ings of the ship’s propulsion system.

The purpose of this work is to study the influence of 
non-Newtonian behavior of lubricants on the load fac-

tor ΦP of a sliding bearing and to build new adequate 
mathematical models for ΦP, which would be applicable 
for any geometric and operational characteristics of 
sliding bearings and take into account the viscous char-
acteristics of lubricants.

2 The formulation and mathematical model of 
the problem

Let the sliding bearing of length L, the radius of the 
sleeve R2, and the radius of the shaft (trunnion) R1 be 
loaded by an external force: F⃗  = (P;0). This force in the 
stable mode of operation of the sliding pair, that is, 
when the trunnion rotates at a constant speed ω0[с-1], 
will be balanced by hydrodynamic forces in the lubricat-
ing layer of the sliding pair. At the same time, there is a 
representation [2, 21]

P = 2R1 Lk1ΦP, (1)

where =
с

= 1Pа ,
 

=  the relative radial 

gap of the sliding bearing; δ = (R2 – R1) – the radial gap 

of the sliding bearing;  the dynamic viscosity of 
lubricants at atmospheric pressure. The load factor for a 
finite bearing ΦP is related to the load factor of an infi-
nite bearing ΦP

∞ as 

∞   
 (2)

where the dimensionless coefficient κ1 can be deter-
mined in different ways [2].

Figure 1 Slip pair model
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Therefore, to determine the load factor, it is suffi-
cient to determine the load factor of an infinite bearing 
ΦP

∞, that is, a bearing in which there is no leakage of lu-
bricants at the ends, the so-called flat problem of lubri-
cation theory (see Fig. 1). This problem is formulated in 
the form of a boundary value problem for the Reynolds 
differential equation [2, 3, 4, 5] with respect to the spe-
cific pressure distribution in the lubricating layer  
p̃(φ) = k1

–1p(φ), where p(φ) – the pressure in the lubricat-
ing layer, φ ∈ (φ1, φ2), φ1, φ2 – the beginning and end of 
the working zone of the lubricating layer. For non-Newto-
nian lubricants, dynamic viscosity depends on pressure 
and is determined using the Barus formula [2, 7]:

μ = μ0eξp(φ) = μ0eξ̃p̃(φ), ξ̃ = ξ⋅k1,  (3)

where where ξ [Pа–1] is the piezo coefficient of viscosity 
of lubricants, μ0 – dynamic viscosity at atmospheric 
pressure. Both parameters are determined experimen-
tally and depend on temperature [5, 17, 18].

After introducing a new unknown function:

q(φ) = e–ξ ̃⋅p̃(φ)), p̃(φ) = –ξ̃–1lnq(φ), (4)

we present the specified boundary value problem as 
follows:

ℎ ℎ , ,
 

(5)

q(φ1) = q(φ2) = 1; q'(φ2) = 0, (6)

where h̃(φ) = δ–1 h(φ) = 1 + ε0 cosφ, h(φ) – the thickness 
of the lubricating layer.

3 Determination of the specific pressure in 
the lubricating layer and the applicability 
criterion of the model for non-Newtonian 
lubricants

From equation (5), after integration, we get

ℎ С

ℎ
. (7)

Taking into account the first two conditions from (6) 
and Rolle’s theorem (see for example [22]), we can 
claim that there is a point φ0 on the interval (φ1, φ2), 
where q'(φ0) = 0. The last equality makes it possible to 
present the unknown С as С = –h̃0 = –1 – ε0сos(φ0), and 
to write the differential equation in the form

ℎ ℎ

ℎ
. (8)

It should be noted that at the point φ0 the function 
q(φ) reaches a minimum, and the relative hydrodynam-
ic pressure p̃(φ) reaches a maximum. 

The exact solution of the differential equation (8), 
which satisfies the second boundary condition (6), is 
given as

ℎ ℎ

ℎ ℎ

ℎ ℎ

ℎ ℎ
.
 

(9)

Having implemented the first boundary condition 
from (5), we obtain a condition for determining the an-
gle φ0, i.e.

( ) = 1; ⇒
( )

= 0. (10)

Next, using the second formula (4), we will find the 
distribution of the relative specific hydrodynamic pres-
sure p̃(φ) in the working layer of the sliding pair for a 
non-Newtonian lubricant

( ) = ℎ ℎ

ℎ
. (11)

The obtained distribution of the specific pressure of 
the lubricating layer for non-Newtonian lubricants, in 
addition to the relative eccentricity ε0, also contains a 

dimensionless parameter = ≥ 0. Note that for 
ξ ̃ → 0 the obtained solution (11) leads to the distribu-
tion of the relative specific hydrodynamic pressure for 
Newtonian lubricant.

The existence of a solution of the boundary value 
problem (5), (6) and the presence of a lubricating layer 
in the sliding pair depends on the value of the parame-
ter ξ ̃. Indeed, the obtained solution (9) can be consid-
ered correct only if the condition 0 < q(φ) ≤ 1 is fulfilled, 
which leads to the necessity of fulfilling the following 
condition:

) < ,  (12)

) = ( ) = 6
ℎ

.

Given that the function q(φ) at the point φ0 reaches a 
minimum, and at the points φ1, φ2 – a maximum, moreo-
ver q(φ1) = q(φ2) = 1, then the function q̃0(φ, ε0) at the 
points φ1, φ2 will reach a minimum, moreover q ̃0(φ1, ε0) 
= q ̃0(φ2, ε0) = 0, and at the point φ0 will reach a maxi-
mum: ). Therefore, 
the condition for the applicability of lubricants for the 
specified modes of operation of the sliding pair is the 
fulfillment of the criterion:

ξ ̃ < Kμ, Kμ = (q0 (ε0))–1. (13)
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Table 1 shows values Kμ for some values of relative 
eccentricity ε0, which show that the criterion Kμ satisfies 
the condition

9.2⋅10–4 ≤ Kμ < 15,  (14)

Criterion (13) makes it possible to evaluate the cor-
rectness of the use of specific non-Newtonian oils at the 
given technical parameters of the bearing and the given 
speed of rotation of the trunnion. This means that not 
considering the dependence of dynamic viscosity on 
pressure and temperature can distort the forecast of 
trouble-free operation of the sliding pair. 

The viscosity behavior of lubricants when the pres-
sure in the sliding bearing changes is determined by the 

viscosity gradient [2]: , which, according to 
formula (3), can be written as Gμ(p) = ξμ0⋅eξp(φ). It follows 
that the viscosity gradient at atmospheric pressure is 
equal to Gμ0 = ξμ0. On the other hand, from the represen-

tation = , we find = , this makes it possi-
ble to present the criterion (13) as follows

μ0 <
 

(15)

Conditions (15) make it possible to determine the 
maximum possible value of the viscosity gradient G*

μ0, 
that is, the maximum possible values of the product ξμ0, 
for different operating modes of the sliding pair in 
which the oil layer is preserved, in particular, table 2 
shows such values for sliding pairs of low- and medium-
speed engines at relative eccentricity ε0 = 0.5.

With the help of Table 2, it is possible to determine 
whether the viscosity parameters of the selected lubri-
cant are suitable for the specified operating modes of the 
sliding bearing of the ship’s propulsion system. Similar 
tables can be obtained for other values of relative eccen-
tricity ε0 under different operating modes. It should be 
noted that since for Newtonian lubricants ξ  ̃= 0, inequali-
ty (13) will always hold for Newtonian lubricants.

4 Determination of the distribution of viscous 
shear stresses in the lubricating layer for 
non-Newtonian lubricants

Shear stresses in the lubricating layer in the plane 
theory of lubrication allow the representation [2]

ℎ
+ ℎ)

 (16)

Using the relations: 

pn(φ) = k1p ̃n(φ), ( ) = , and entering the 

notations = , = , we will move to dimension-
less quantities in representation (16)

̃ = =
ℎ

+ − ℎ)
 

(17)

Considering the formula ′
′

, represen-
tation (17) will be rewritten as follows:

̃ =
ℎ
− ′ − ℎ) .

Table 1 Criterion values for some values of relative eccentricity ε0

ε0 0.01 0.1 0.3 0.4 0.5 0.6 0.7 0.75 0.80 0.90 0.95 0.99

Kμ 14.18 1.48 0.57 0.396 0.28 0.20 0.13 0.10 0.07 2.7·10-2 9.9·10-3 9.2·10-4

Table 2 The maximum possible values of the viscosity gradient G*
μ0·108 at ε0 = 0.5

δ0·103

ω0 [1/s (rpm)]

3.14  
(30)

6.28  
(60)

8.34  
(80)

10.47  
(100)

12.57  
(120)

14.66 
(140)

18.85  
(180)

28.27 
(270)

0.93 7.82 3.91 2.94 2.35 1.95 1.68 1.3 0.87

1.0 9.04 4.52 3.40 2.71 2.26 1.94 1.51 1.0

1.23 13.68 6.84 5.15 4.10 3.41 2.93 2.28 1.52

1.63 24.02 12.01 9.04 7.20 6.00 5.14 4.00 2.67

2.0 36.16 18.08 13.61 10.84 9.03 7.74 6.02 4.02

2.64 63.00 31.99 23.72 18.89 15.74 13.49 10.49 7.00

3.0 81.35 40.07 30.63 24.40 20.32 17.43 13.55 9.04

3.5 110.73 55.36 41.69 33.21 57.66 23.72 18.45 12.30

5.0 225.97 112.99 85.08 67.77 56.49 48.40 37.64 25.10
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Then, using formula (8), we get

̃ =
ℎ

+ 3 ℎ ℎ

ℎ
−ℎ)

 
(18)

Shear stresses for non-Newtonian lubricants, ac-
cording to formula (18), vary with the thickness of the 
lubricating layer. In particular, on the trunnion, with  
ỹ = h̃, we get:

φ̃h ̃
ℎ

= ℎ ℎ

ℎ
.
 

(19)

5 Determination of the load factor and the 
angle of the center line for non-Newtonian 
lubricants

In the projections on the X, Y axis, the balance of 
forces [2, 3, 4, 5] on the sliding bearing of length L in the 
absence of end leakage of lubricants is presented as fol-
lows (see Fig. 1)

εδ

εδ .
 

(20)

εδ εδ

εδ εδ .
 

(21)

In (20), (21) let us pass to dimensionless quantities, 
then, using the fact that k3 = δ0k1, and formula (1), we 
write

∞ = εδ εδ ̃

∞ = εδ εδ ̃ .
 

(22)

0 = εδ ̃

0 = εδ ̃ .
 

(23)

We will perform the integration by parts in the first 
integrals of the last equations, using the fact that  
p̃(φ1) = p̃(φ2) = 0, as a result, we will get

∞= − ′ ̃ ℎ . (24)

0 = ′ ̃φh . (25)

Having applied the trigonometric formulas for the 
addition of angles for sine and cosine, relations (24) and 
(25), we rewrite as follows

∞ = εδ
′ ̃φh + εδ

′ ̃φh

∞ = εδ
′ ̃φh + εδ

′ ̃φh .
 

(26)

′ ̃φh
′ ̃φh

′ ̃φh
′ ̃φh .

 

(27)

Using representations (9) and (17), we obtain the 
following formula for calculating the load factor

ΦP
∞ =Ac

+sinφεδ + As
+cosφεδ. (28)

The following notations are introduced here

Ac
± = ±2δ0 j1

c + (3 ∓ 1.5h̃0δ0)j2
c – 3h̃0 j3

c; 
As

± = ±2δ0 j1
s + (3 ∓ 1.5h̃0δ0)j2

s – 3h̃0 j3
s.

=
( )

, =
( ) .

The given representations contain the angle φεδ of 
deviation of the center line from the vertical axis, for its 
determination we use the relation (27), which we re-
write as follows

As

–
sinφεδ = Ac

–
cosφεδ . (29)

From here, we get the following equation to deter-
mine the angle φεδ

εδ = .
 

(30)

From relation (30) the following representations fol-

low εδ =
) )

, εδ =
) ) , then formula (28) 

will be rewritten as follows

∞ ) =
) )

. (31)

Note that the load factor (31) depends both on the 
relative eccentricity ε0, and on the dimensionless 

parameter = , which depends on the viscous 
characteristics of the lubricants and on the modes of op-
eration of the sliding pair, that is, it is a function of two 
variables ΦP

∞ = ΦP
∞(ε0, ξ̃), while ε0 ∈ (0;1), ξ̃ ∈ [0; Kμ). For 

non-Newtonian lubricants ξ ̃ = 0, at the moment, it is 
precisely for such a case that the values of the load coef-
ficient are known [2-5], which are obtained in the form 
of tables. A further task is to obtain, in a form conven-
ient for use, the value of the load factor ΦP

∞ = ΦP
∞(ε0, ξ̃) 

for non-Newtonian lubricants.
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6 Numerical modeling of the operation of the 
sliding pair for non-Newtonian lubricants 
and construction of mathematical models of 
the load factor

The results obtained above make it possible to carry 
out a numerical simulation of the operation of the slid-
ing pair, and to determine the load factor of the lubricat-
ing layer for non-Newtonian lubricants.

The difficulty of numerical modeling of hydrody-
namic processes in a sliding pair is that the boundaries 
of the working zone of the lubricating layer φ1, φ2 are 
not known in advance. To overcome this problem, it is 
proposed to apply the method of successive approxima-
tion or the method of boundary variation, which con-
sists in the following. By varying the parameters φ1, φ2, 
we will achieve the fulfillment of the following condi-
tions that follow from the proposed mathematical 
model:

( ) ( ) = 0,
′( ) = 0,

 = 360  .∘  

(32)

Note that the third condition in (32) is valid for a 
half-sliding bearing, in which the supply of lubricants 
occurs at the point of connection of the liners, i.e., per-
pendicular to the vertical axis Y. It should also be noted 
that when applying the boundary variation method, we 

will obtain approximate values of the parameters φ1, φ2 
with any specified accuracy, and instead of conditions 
(32), we will use the conditions

| ( )| ( ) = 0,
′( ) ,

|  − 360∘| .  

(33)

Here ek, (k = 1,3) – the accuracy of the calculations, 
while for practical calculations, it is enough to fulfill the 
conditions e1 < 10–10, e2 < 10–5, e3 < 10–4. The fulfillment 
of the condition p̃(φ2) = 0 is achieved by choosing the 
representation of the solution of the differential equa-
tion (8).

We will present some results of the implementation 
of the proposed numerical modeling approach. In par-
ticular, the research results showed that the properties 
of the lubricant do not affect the characteristic angles 
φ1, φ2, φ0, but significantly affect the load factor. Table 3 
shows the values of the angles φ1, φ2, φ0 and values of 
the load factor ΦP

∞(ε0, 0), and its logarithm ln ΦP
∞(ε0, 0) at 

ξ̃  = 0, for different values of the relative eccentricity ε0.
Based on the obtained data (Table 3), we will build a 

mathematical model of the load factor for Newtonian lu-
bricants ΦP

∞(ε0, 0). Considering the significant difference 
in the values of the coefficient ΦP

∞(ε0, 0) when the rela-
tive eccentricity ε0 changes from zero to one, it is advis-
able to first switch to the logarithmic scale of values, 

Table 3 Values of characteristic angles φ1, φ2, φ0, ΦP
∞(ε0, 0), and ln ΦP

∞(ε0, 0)

ε0 φ1 φ2 φ0 ΦP
∞(ε0, 0) ln ΦP

∞(ε0, 0)

0.001 11.8 254.2 106.09 0.005119448 -5.2747087
0.01 27.7 248.1 111.89 0.047132780 -3.0547866
0.05 30.71 244.34 115.46 0.226615030 -1.4845026

0.1 32.07 241 118.998 0.445096540 -0.8094641
0.2 34.53 234.34 125.65 0.871441053 -0.1376071
0.3 37.12 228.07 131.93 1.302500647 0.264286
0.4 39.96 222.08 137.92 1.769230085 0.5705445
0.5 43.15 216.34 143.66 2.321115383 0.8420478
0.6 46.8 210.75 149.25 3.051276333 1.11556

0.65 48.87 207.98 152.02 3.539085732 1.2638684
0.7 51.14 205.193 154.81 4.168138110 1.4274694

0.75 53.68 202.37 15763 5.026191142 1.6146625
0.8 56.61 199.449 160.55 6.287959295 1.8386366

0.85 60.08 196.37 163.63 8.362471388 2.123754
0.9 64.45 192.981 167.02 12.473578036 2.5236127

0.925 67.22 191.075 168.93 16.567325438 2.8074324
0.95 70.69 188.9043 171.10 24.739155358 3.2083872

0.975 75.59 186.1956 173.80 49.224964865 3.8964009
0.99 80.38 183.87853 176.12 122.65244716 4.8093547
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that is, to first conduct simulations for the logarithm of 
the load coefficient ln ΦP

∞(ε0, 0). So, using the data in Ta-
ble 3, with the help of regression analysis [23, 24], we 
will get the following representations

ln ΦP
∞(ε0, 0) = 

= 1.8229ε0 – 0.3094 ctg(3.01287ε0 – 3.0838). (34)

ΦP
∞(ε0, 0) = e1.8229ε0 – 0.3094 ctg(3.01287ε0 – 3.0838). (35)

Figures 2 and 3 show the dependence of the loga-
rithm of the load factor and the load factor on the relative 
eccentricity ε0, which are obtained using dependencies 
(34), (35) – solid curves in both figures, and linear spline 

Figure 2 The value of the logarithm of the load factor 
ln(ΦP

∞(ε0, 0))
Figure 3 The value of the load factor ΦP

∞(ε0, 0)

Figure 4 Dependence of the load factor ΦP
∞ on ξ̃  at ε0 = 0.05 Figure 5 Dependence of the load factor ΦP

∞ on ξ̃  at ε0 = 0.1

approximation of the data in Table 3 – dotted lines. So, we 
have an almost complete coincidence of the results, 
which confirms the adequacy of the obtained mathemati-
cal models (34), (35).

Using formula (31), let’s analyze how the value of 
the load factor ΦP

∞ = ΦP
∞(ε0, ξ̃) depends on the viscosity 

characteristics of lubricants and the modes of operation 
of the sliding bearing. To do this, we will obtain graphi-
cal dependences ΦP

∞ of the parameter ξ̃  at different val-
ues of relative eccentricity ε0, in particular, such 
dependences are shown in Figures 4 – 11, respectively, 
for the values of ε0 = 0.05, ε0 = 0.1, ε0 = 0.3, ε0 = 0.5, ε0 = 
0.7, ε0 = 0.8, ε0 = 0.9, ε0 = 0.95.
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Figure 6 Dependence of the load factor ΦP
∞ on ξ̃  at ε0 = 0.3 Figure 7 Dependence of the load factor ΦP

∞ on ξ̃  at ε0 = 0.5

Figure 8 Dependence of the load factor ΦP
∞ on ξ̃  at ε0 = 0.7 Figure 9 Dependence of the load factor ΦP

∞ on ξ̃  at ε0 = 0.8

Figure 10 Dependence of the load factor ΦP
∞ on ξ̃  at ε0 = 0.9 Figure 11 Dependence of the load factor ΦP

∞ on ξ̃  at ε0 = 0.95
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The graphs of the load factor versus the parameter ξ̃ 
for different values of the relative eccentricity ε0 shown 
in Figures 4-11 show a significant influence of the vis-
cous properties of lubricants on ΦP

∞ = ΦP
∞(ε0, ξ̃). The in-

crease in the values of the latter can exceed 200 % 
compared to Newtonian lubricants at all values ε0, while 
even an insignificant increase in the parameter ξ̃  rela-
tive to zero leads to a significant (up to 30%) increase in 
the values of the load factor, which confirms the need to 
take into account the viscous characteristics of lubri-
cants when determining ΦP

∞ .
The calculation of the values of the load factor ac-

cording to formula (29) is associated with the need to 
sequentially calculate several integrals that at ε0 → 1 ap-
proach improper integrals, which leads to significant 
problems in their calculation and complicates their ap-
plication. To avoid this problem, we will build suitable 
mathematical models for the load factor

To build mathematical models for ΦP
∞ = ΦP

∞(ε0, ξ̃), 
which would consider both parameters ε0 and ξ̃ , and 
would be easy to apply, we will present the load factor as

ΦP
∞(ε0, ξ̃)= ΦP

∞(ε0, 0) ⋅ Q(ε0, ξ̃). (36)

For the load factor for Newtonian lubricants ΦP
∞(ε0, 0), 

we use representation (35), for the function Q(ε0, ξ̃), 
taking into account the condition Q(ε0, 0) = 1, with the 

help of regression analysis methods [23, 24], the follow-
ing dependence is obtained

Q(ε0, ξ̃) = 1 + ξ̃eq2ξ̃2 + q0. (37)

Table 4 shows the values for the coefficients in rep-
resentation (37) for different values of the relative ec-
centricity ε0.

Given the nonlinearity of the representation (37) with 
respect to ξ̃ , let’s check the adequacy of these models. 
Figures 12-27 show the dependences for the function 
Q(ε0, ξ̃) from ξ̃  which the solid lines are obtained using 
the mathematical model (37), and the spline approxima-
tion of the data obtained using the formula (31) are the 
dotted lines, respectively for the values of ε0 = 0.01, 
ε0 = 0.1, ε0 = 0.3, ε0 = 0.5, ε0 = 0.7, ε0 = 0.8, ε0 = 0.9, ε0 = 0.975.

In all figures, the graphs are almost identical, which 
indicates the adequacy of the obtained mathematical 
model (37) for all values of ε0. 

To determine the coefficients of mathematical mod-
els (37) for any values of relative eccentricity ε0 , using 
the data in Table 4, regression analysis methods [23, 
24], we obtain the following representations

q0 = 0.67187ε0 – 0.751011⋅ctg(2.83199ε0 – 2.95319). (38)

= . (39)

Table 4 Coefficients of the mathematical model (37)

ε0 q0 q2 ln q2

0.01 -3.5411150 0.0068989 -4.9763933

0.05 -1.9268959 0.1602953 -1.83073754

0.075 -1.6070517 0.3843729 -0.956142104

0.1 -1.3027678 0.6349967 -0.454135477

0.2 -0.7150877 1.9915983 0.688937482

0.3 -0.4290377 4.4340544 1.48931438

0.4 -0.0672397 8.7571866 2.169874689

0.5 0.2436698 16.8462948 2.824130739

0.6 0.5877585 33.0865478 3.499126789

0.7 0.8695756 86.8106042 4.463728782

0.75 1.2387295 124.3104544 4.822782101

0.8 1.4806932 249.5533835 5.519672854

0.825 1.6584834 363.046061 5.894529716

0.85 1.9309120 512.3755801 6.239057911

0.9 2.3932262 1829.0499931 7.511551982

0.925 2.9030019 3573.0125801 8.181164379

0.95 3.4144470 12644.425962 9.444971762

0.975 4.4663414 88762.1098311 11.39371515
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Figure 12 The value of Q from ξ̃  at ε0 = 0.01 Figure 13 The value of Q from ξ̃  at ε0 = 0.1

Figure 14 The value of Q from ξ̃  at ε0 = 0.3 Figure 15 The value of Q from ξ̃  at ε0 = 0.5

Figure 16 The value of Q from ξ̃  at ε0 = 0.7 Figure 17 The value of Q from ξ̃  at ε0 = 0.8
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7 Conclusions

So, it has been proven that the non-Newtonian be-
havior of the lubricant significantly affects the value of 
the load factor ΦP

∞ = ΦP
∞(ε0, ξ̃). For the latter, a new, easy-

to-use, adequate mathematical model was obtained, 
which is determined by formulas (2), (36) and repre-
sentations (35), (37) – (39). Note that the existing rep-
resentations for the load factor are usually tabular or 
graphical [2, 3, 4, 21], obtained for Newtonian lubri-
cants and depend only on ε0 . The obtained mathemati-
cal model for the load factor, unlike the existing ones, in 
addition to the relative eccentricity ε0 , also takes into 
account the relative radial gap δ0, the speed of rotation 
of the trunnion ω0, as well as the viscosity gradient of 
lubricants Gμ0 = ξμ0. This is especially important for the 
application of the Sommerfeld criterion [2, 3, 21] when 
calculating the durability ship’s sliding bearings in con-
nection with the non-Newtonian behavior of ship’s lu-
bricants [15, 19].

The developed criterion (13), (15) makes it possible 
to determine at which values of the viscosity gradient 
Gμ0, the hydrodynamic pressure in the lubricating layer 
of the sliding pair will be finite, and the sliding bearing 
is in conditions of liquid friction. Calculations also show 
that the smaller the relative eccentricity ε0, the greater 
the possible range of changes in values Gμ0 (see Table 1). 
In addition, the maximum possible value G*

μ0 at a given 
relative eccentricity ε0 increases with an increase in the 
relative radial clearance δ0 and decreases with an in-
crease in the angular velocity ω0 (see Table 2).

The obtained results are of particular importance for 
monitoring the trouble-free operation of the sliding 
bearings of the ship’s propulsion complex, which are 
constantly in extreme operating modes. This is because 

the viscosity gradient Gμ0 of marine lubricants during 
operation is constantly changing [16, 19, 20], either due 
to pollution or due to the use of various impurities. 
Therefore, in our opinion, during the long-term opera-
tion of the ship’s propulsion system, it is necessary to 
conduct the following monitoring:
• determine, after a certain period of operation Т*, the 

viscosity gradient of marine lubricants Gμ0 and check 
the fulfillment of criterion (15);

• before using additives, determine the viscosity gra-
dient Gμ0 of the mixture of marine lubricant and ad-
ditives and check the fulfillment of criterion (15). 
The indicated monitoring, in our opinion, should be 

performed within the shipping company in specialized 
laboratories, with the help of, for example, work meth-
ods [16, 17, 18]. The time interval can be determined 
experimentally for each type of engine, for different op-
erating conditions.

The proposed approach can be applied to obtain ad-
equate mathematical models for other important char-
acteristics of the ship’s sliding bearings, in particular, 
the coefficient of hydrodynamic friction [2, 3, 4, 5].
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Figure 18 The value of Q from ξ̃  at ε0 = 0.9 Figure 19 The value of Q from ξ̃  at ε0 = 0.975
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