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Abstract
The lithological interpretation of well logs is a fundamental task in Earth science that can be accomplished with the ap-
plication of various machine learning algorithms. The current investigation attempts to evaluate the performance of the 
K-nearest-neighbour Density Estimate (KNN) and K-means cluster analysis methods for predicting lithology in a dataset 
of logs measured in the siliciclastic reservoir of the Shushufindi Oilfield of Ecuador. The comparison of lithological in-
terpretation is assembled using classical methods, such as qualitative interpretation and density-neutron cross plot. The 
lithological interpretation results showed that the supervised method KNN has a higher fitting level with the compari-
son interpretation data (87.3%, 1145 m predicted of 1311.1 m interpreted) than the results of the K-means method 
(71.6%, 939.7 m predicted of 1311.1 m interpreted). The geological nature of the reservoir creates a level of a discrep-
ancy because of the near geophysical responses between limestone and intermedia grain size rocks. The possibility of 
controlling this in the KNN algorithm makes it preferable for usage in these types of reservoir lithological interpretation.
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1. Introduction

For Earth science, the use and interpretation of well 
logs are fundamental for purposes such as stratigraphic 
interpretation, petrophysics characterization, rock me-
chanics behaviour and more. In the petroleum industry, 
their use is essential to estimate the pay zone and reservoir 
type. Frequently, well logs provide information for explo-
ration, drilling, production, and reservoir management 
activities (Bassiouni, 1994). The working flow of this 
analysis lists stratigraphy interpretation as an exhaustive 
and time-consuming step, which is the reason for the con-
stant development of diverse machine learning methods 
to be applied under the principle of geophysics response 
of lithology to various logging methods. Traditionally, the 
research has focused on increasing the accuracy of lithol-
ogy interpretation using debris logging, core logging, and 
cross plot techniques (Zhao et al., 2017). For example, 
Cheng et al. (2016) established the cross plot method and 
logging curve calculation method to identify siliciclastic 
rocks, and Khamees et al. (2021) used the neutron-densi-
ty cross plot, acoustic-density cross plot, and M−N cross 
plot with the same aims. Previous investigation results 

show the satisfactory use of these traditional methods in 
lithology identification, but with the emergence of deep 
learning, the application of machine learning methods is 
ensuring more dynamism and time-efficient workflows 
for the task (Ali et al., 2021).

Two popular methods are the K-nearest-neighbour 
density estimate (KNN), and K-means clustering. They 
allow discretising of known information, such as petro-
physical properties, in order to predict them in unknown 
zones, as Ali et al. (2021) do in shear Sonic logs. How-
ever, The KNN and K-means methods have different ap-
proaches. KNN uses learning information to predict new 
events, while K-means performs clustering to categorise 
the information and define the properties of a future event 
(Amonkar et al., 2022; Troccoli et al., 2022). In this 
study, KNN and K-means machine learning methods are 
applied for the lithological interpretation of seven bore-
holes in Shushufindi Oilfield. The target dataset includes 
natural gamma (GR), bulk density (RHOB), deep resistiv-
ity (RD), and photoelectric factor (PEF) geophysical reg-
isters. The aim is to evaluate each method’s performance 
in comparison with the results of a traditional cross-plot 
method and to analyse their applicability for a fast litho-
logical description of a large set of data in a reservoir 
dominated by siliciclastic sedimentary sequences, but 
with the presence of a few well-mapped limestone layers.
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2. Overview of the study area and dataset

Shushufindi Oilfield is a huge anticline reservoir of 
about 35 km in length and 6 to 7 km wide (Biedma et 
al., 2014). It is located in the Ecuadorian Amazon Basin, 
east of the South American country (see Figure 1). The 
Late-Cretaceous transpression event configured the ba-
sin morphology. It occurred before the subduction-in-
duced uplift of the Andean Range and the formation of 
the fore-arc basin. The mature giant Shushufindi Oil-
field, in the Sacha-Shushufindi Corridor, has a geologi-
cal structure similar to a flower that developed due to the 
compressional events of the Early Cretaceous and 
Turonian ages (Estupiñan et al., 2010).

The dominant lithological classes in the stratigraphic 
column of the reservoir are siliciclastic sediments (see 
Figure 2), with a secondary volume of limestones. The 
productive layers in Shushufindi Oilfield are the Napo 
“U” sandstone, Napo “T” sandstone, and Hollín sand-
stone (Ramirez, 2020). Meanwhile, Tena Basal and the 
superior Hollín are secondary reservoirs, scarce accu-
mulations of oil can also be found in “A” and “B” lime-
stones of the Napo Formation (Baby et al., 2004; Sala-
zar, 2014; Renss, 2016; Tomalá, 2020).

The dataset comprises four well-logging curves mea-
sured in seven wells located relatively close to each oth-

er (see Figure 1). The labels for the lithological classes 
are gained from bibliographic geological descriptions of 
the reservoir (Biedma et al., 2014; Zhang and Li, 2016; 
Ramirez, 2020). The geophysical logs used in the analy-
ses include gamma ray (GR), deep resistivity (RESD), 
bulk density (RHOB), and photoelectric (PEF) curves 
(see Figure 3). Each curve is a continuous variable 
mapped at 0.15 m vertical definition, and its particular 
measure magnitude unit, constituting a dataset of 8,603 
individual data points. Table 1 presents the preliminary 
statistics of the dataset.

Figure 1: Location of the investigated wells within the Shushufindi Oilfield, NE of Ecuador. Datum WGS84-18S

Table 1: Summary statistics of the Shushufindi Oilfield 
target dataset

Statistics Depth
(m)

GR
(°API)

RESD
(Ω.m)

RHOB
(g/cm3) PEF

MEAN 2960.9 84.93 20.88 2.49 3.23
STD 96.4 47.46 42.23 0.15 0.92
MIN 2767.0 8.32 0.83 1.34 1.58
25% 2892.4 49.01 4.83 2.40 2.39
50% 2951.2 76.90 9.35 2.51 3.25
75% 3018.6 116.09 22.28 2.58 3.88
MAX 3220.4 266.11 920.02 2.93 6.75
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3. Methods

In this study, two machine learning methods are ap-
plied over a dataset of continuous variables to use a 
quantitative approach with categorical results. The cor-
relation between specific lithology and geophysical re-
sponse is the fundamental basis for the application of the 
following methods.

3.1. Lithology interpretation

Some of the main traditional lithological interpreta-
tion methods are the neutron-density cross plot and the 
M-N lithology cross plot. Consequently, the traditional 
lithological interpretation of logs is applied to construct 
the performance control parameter curve, which is used 
to monitor the machine learning methods’ performance 
and to supply the unavailable hard lithological data 
(Khamees et al., 2021). Based on these two traditional 

lithological methods, four lithological classes are distin-
guished: clean sandstone, intermedia-grained rock, 
limestone, and shale rich rock. The four defined litho-
logical classes are interpreted for each log combining 
qualitative analysis of the curve shape (Zhao et al., 
2015; Erlström and Sopher, 2019; URL 1; URL 2; 
URL 3) and the neutron-density cross plot (Basal, 1998; 
Mamaseni et al., 2018; Imamverdiyev and Sukhostat, 
2019).

3.2. K-nearest neighbour (KNN) classifier

The K-nearest neighbour is a non-parametric method 
of estimating a probability density function. The algo-
rithm estimates a function that predicts the rock type (z) 
according to the log-well registered values. Every inter-
preted rock category x is a p-dimensional random vari-
able X. This means the interpretation of the rock type 
will depend on the pre-established variables z. The d(x,z) 

Figure 2: General stratigraphic column of Shushufindi Oilfield (left) adapted from Biedma et al. (2014), Estupiñan et al. 
(2010) and Ramirez (2020), and correlated with the lithological interpretation of Well SF_130 (right)
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Figure 3: Log sections of well SF_267. Conventional log curves are used to predict the lithology in the well location.
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represents the Euclidean distance between x and z. X is 
an example of z, consequently x is the rock type inter-
preted before the prediction (Mitra et al., 2002; Dela-
var, 2022). The hypersphere of radius r about z is desig-
nated by Equation 1.

	 � (1)

where:
Ar 	– volume of the hypersphere,
R 	 – radius of the hypersphere,
x 	 – categorical class,
X 	 – variable.
Then Equation 2 defines the density function:

	 � (2)

where:
fN(z) 	– function f to estimate z with N,
k(N) 	– sequence of positive integers from x1 to xN,
x 	 – rock type interpreted in a set of data.
The method is sensitive to the scale difference between 

variables in multidimensional space, so standardisation is 
required to eliminate the effect of scale differences in both 
training and test sets (Zhang et al., 2022). A specific ex-
planation of neighbourhood classifiers can be found in Hu 
et al. (2008). To select the effective value (n) of k, the er-
ror curves are plotted for different values of k (see Figure 
4) for the training and test data until the test error curve 
stabilises at the optimum value (URL 4).

MATLAB script implements the following steps for 
machine learning applying the KNN method (Pratama, 
2019): First, the target dataset is examined to create the 
training classifier set using the established parameters of 
the variables. Then, the best number of K is selected by 
the nearest-neighbour number and metric distance. Fi-
nally, cross-validation assesses the performance of the 
method before the algorithm is applied to the additional 
blind wells.

3.3. K-means cluster analysis

K-means cluster analysis is a simple not-supervised 
statistical method that orders the objects of a multivari-
ate dataset into groups using the information of similari-
ties given by metric distance. The method is sensitive to 
the scale difference between variables, so normalisation 
of the data set is required. Then, each object is desig-
nated into a non-overlapping group of great homogene-
ity and large differences from other groups. For further 
explanation, see Ali and Sheng-Chang (2020), Isfan et 
al. (2021) and Szabó et al. (2021). Mathematically, the 
method is expressed by Equation 3:

	 � (3)

Where:
J 	 – objective criterion,
xi 	– analysed objects, i= 1,…, n,
cj 	– cluster centroid, j= 1,.., k,
k 	 – optimal number of clusters.

Figure 4: Comparison of the lithological interpretation curve (left) and lithological prediction 
results of the Nearest Neighbour Number method. Lithological results of well SF_267 plotted 

for values of K=2 (centre) and K=5 (right).
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The objective criterion converges at the minimum 
sums of square deviation of objects xi, from the cluster 
centroid cj. The “City Block” distance metric is incorpo-
rated for this study. Here, each cluster centroid is the 
component-wise median of the points in the cluster, as 
Equation 4 expresses:

	 � (4)

Where:
D – sum of lengths between points,

 – distance of xk from the centroid in component i,
 – distance of xk from the centroid in component j.

In K-means clustering, the optimum number of clus-
ters (k) is selected using the Elbow curve method (see 
Figure 5). The algorithm computes the sum of distance 
for different values of k, and each pair of parameters is 
plotted in a curve where the inflexion point may be the 
optimum value of k (URL 5; Troccoli et al., 2022). The 
K-means clustering algorithm starts heuristically choos-
ing the first centroids. This means it starts with a ran-

domly selected set of centroid locations. Next, it runs a 
series of iterations to test different solutions until the 
lowest sum of distances among the iterations is obtained 
and the local minimum solution is found (URL 6).

The K-means clustering algorithm is applied using 
MATLAB, following several steps (Szabó et al., 2019; 
Ali and Sheng-Chang, 2020): first, the optimum num-
ber of clusters (k) is selected by minimisation of the SSE 
(Sum of Squared Error) considering the prior lithologi-
cal information. Then, the K-means technique groups 
the values into each cluster and reiterates until the data 
points have been distributed to their nearest centroid 
(see Figure 6). Finally, to validate the similarity between 
values in each cluster, a silhouette distribution is plotted 
(Isfan et al., 2021).

4. Results

The literature describes the Hollín Formation as clean 
siliciclastic sandstone in the stratigraphic column of the 
Ecuadorian Amazon Basin. This is easily identifiable in 

Figure 5: Elbow curve of the 
target dataset used to determine 
the optimum number of clusters

Figure 6: K-means clustering  
of the target data set: 3D diagram 

of point distribution into four 
clusters
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the well logs by the monotonous shape with occasional 
spikes reflecting the small granulometric variation with-
in the formation, and the lower shale volume of the reg-
isters. The Napo Formation has the richest shale rocks in 
its lower and middle members (see Figure 2). The main 
limestone layers separate facies, and they are clearly de-
fined from the characteristic geophysical response val-
ues in neutron porosity, gamma ray, deep resistivity, and 
density log curves. Finally, the shaly sandstone and san-
dy shale are considered the intermedia lithology group, 
complementing the sedimentary sequence of the basin. 
Intermedia rock layers present strong identifiable char-
acteristics in the shale volume curve.

Considering the qualitative analysis and the neutron-
density cross plot results, the defined rock classes are 
clean sandstone, intermedia rocks, limestone, and shale 
rich rock. The parameter values of each class defined for 
each variable (log type) in this reservoir are summarised 
in Table 2. More detailed information about lithological 
interpretation can be found in Asquith (1982).

The confusion charts display the interpretation results 
of each method, considering all the values in the target 

dataset. They summarise the distribution of concordance 
and discrepancy between the prediction and the litho-
logical interpreted control parameter for each class. For 
example, the KNN method agrees with 91.4% of the 
data assigned as clean sandstone in the control parame-
ter. This percentage represents 85.1% of the total pre-
dicted data by the method for this class. The remaining 
14.9% reassigns data that is interpreted as intermedia 
rock to this class (see Figure 7).

The KNN method’s global results agree with the con-
trol parameter in 7,513 data points (1145 m) from the 
total 8,603 (1311.1 m) in the target dataset. This repre-
sents agreement of 87.3%. An important fact to note is 
that the limestone class has 71.9% agreement, even 
though it represents 82.5% of the total predicted values 
in this class (see Figure 7).

The K-means method global results agree with the 
control parameter in 6,166 data points (939.7 m) from 
the total 8,603 in the target dataset. This represents 
71.6% agreement between them. Here, the limestone 
class has 90.3% agreement with the control parameter, 
even though it represents only 36.6% (114.8 m) of the 

Table 2: Parameters of the variables of each lithological class for the Shushufindi Oilfield  
with defined limits to calculate the training data set of KNN method

Rock type GR
(API)

Density
(g/cm3)

Deep resistivity 
(Ohm.m)

Photoelectric 
factor ()

Clean Sandstone  0 >, =< 40 1.52 >, < 2.69 0.9 >, =< 921 < 4.5
Intermedia Rock  40 >, < = 100 1.11 >, < 2.77 0.9 >, =< 700 < 4.5
Shale Rich 100 > 1.17 >, < 2.88 0.83 >, =< 294 < 4.5
Limestone < 2.71 >= 4.5

Figure 7: Confusion chart of the KNN 
method results showing correlation between 

prediction vs. interpretation of the target 
data set. Blue represents the percentage of 

predicted data assigned to the same class as 
the interpretation, red is the percentage of 

data that differed.

Figure 8: Confusion chart of the K-means 
method results showing correlation between 

prediction vs. interpretation of the target 
data set. Blue represents the percentage of 

predicted data assigned to the same class as 
the interpretation, red is the percentage of 

data that differed.
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total predicted values for this class. The K-means shares 
the cluster of limestone class with values interpreted as 
intermedia rock at 51.8% (1068 points or 163 m), shale 
rich at 8.8% (182 points or 27.7 m), and clean sandstone 
at 2.7% (56 points or 8.53 m) (see Figure 8).

Figure 9 is an example of a graphical representation 
of the predicted stratigraphy. Here, the discrepancy of 
the limestone class (light blue blocks) is visible in a cor-
related cross-section of the boreholes SF_226, SF_130, 
and SF_267.

5. Discussion

According to Figure 7 and Figure 8, the KNN meth-
od used for lithological prediction with 5K has higher 
effectiveness in lithological determination than the K-
means method. The key problem with the K-means 
method is the confusion between limestone and interme-
dia rock. In interpretation, the separation between lime-
stone and another rock type is based only on the photo-
electric log, whereas K-means uses all borehole logs for 
grouping. We corroborate this in Figure 8, where the 
K-means method confuses 1,068 points of intermedia 
rock with limestone. On the other hand, the KNN meth-

od estimates a function that predicts the litho-types us-
ing all the interpreted data, as it is a supervised statistical 
method. For the same litho-type, the KNN method con-
fuses only 84 points of intermedia rock with limestone.

Human inadvertence limits well log interpretation, 
especially when a huge quantity of data is analysed. 
Consequently, the KNN method makes well log analysis 
more effective. Furthermore, the KNN method can be 
considered a tool for well log interpretation, just as clas-
sical cross plot techniques are nowadays, with the ad-
vantage that any exceptional case could be added to the 
first interpretation in order to use it as training data.

The intermediate rock litho-type represents a gradual 
change from sandstone to shale, within which sandy 
shale and shaly sandstone litho-types may exist. The 
methods are applied so that these types of subcategories 
are grouped, since neither the KNN prediction nor the 
K-means method can be applied to differentiate these 
categories. The difference between these categories is 
subjective to the percentage of clay.

For the KNN method, we analyse the number of 
neighbours that best corresponds with reduced discrep-
ancies in prediction and lithological interpretation. This 
is a requirement when the KNN method is applied, since 

Figure 9: Stratigraphic cross-section correlating wells SF_226, SF_130, SF_267. Gamma ray and deep resistivity curves are 
plotted next to the lithological interpretation results of KNN and K-means methods.
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it is based on the adequate search for neighbours towards 
the point to be predicted. With the Shushufindi Oilfield 
data, the number of neighbours that gives the best results 
is 5K (see Figure 4). The KNN method depends a great 
deal on the learning data. If training data is correct in the 
results, we guarantee a prediction with an agreement of 
over 80%. However, the method cannot be applied 
alone, since greater certainty must be had in the interpre-
tation. For this reason, it is recommended as a comple-
mentary method in stratigraphic interpretation practices.

To improve the application of the K-means method, it 
is recommended to first separate the limestone from the 
other litho-types. This is because all logs are used in the 
method to place the centroids. However, limestone only 
requires a photoelectric log to be differentiated from the 
rest of the litho-types. Alternatively, we should only ap-
ply the method in siliciclastic reservoirs.

There is a margin of uncertainty for both methods, even 
if the confusion with limestone is not considered. With the 
KNN method, this margin of error represents 3.7% of the 
total points analysed, and for the K-means method this 
margin of error is 8.8% of the total points analysed. This 
allows us to recommend both methods for lithological in-
terpretation, with the limitation that the K-means method 
is subject to inefficiency in differentiating limestone.

6. Conclusion

Lithology is interpreted from 8,603 points at a scale 
of 0.15 m of depth per point from 7 wells throughout the 
Shushufindi Oilfield. We identify mainly four litho-
types: sandstone, intermedia rock, shale rich rock, and 
limestone. We corroborate the lithological interpretation 
with the stratigraphy that exists in the area (see Figure 
2). The methods used for the lithological interpretation 
are qualitative and the classical methods with Neutron-
Density cross plot. For the application of the KNN meth-
od, we interpret 1,532 points from well SF_130, repre-
senting 233.5 m of the stratum. The lithology of the total 
of the 8,603 points represents 1,311.1 m. Of the total 
points, the KNN method with 5K correctly predicts 
87.3%, which means 7,513 points or 1,145 m. Of the 
total of 8,603 interpreted points, the K-means method 
correctly classifies 71.6%, which represents 6,166 
points, or 939.7 m. We found a fundamental problem for 
using this method in the differentiation of limestone, 
since it confused 1,068 points that represent 163 m, 
which is 12.7% of the total interpreted information.

In conclusion, the KNN method was found to be the 
more effective method to interpret the lithology in the res-
ervoir of the Shushufindi Oilfield. The KNN method re-
quires more time for application than the K-means cluster 
analysis but allows us to avoid the ambiguity of the data 
by the parameterisation of the computation through the 
training data set. Meanwhile, the K-means method proved 
to be ineffective for this specific reservoir because of the 
high level of ambiguity due to confusion between the in-

termedia rock type and limestone class. Another feasible 
solution, out of the scope of this study, may be the appli-
cation of a complex clustering technique, like hierarchical 
clustering, which sounds promising for lower error be-
cause of its subdivision of clusters.
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Sažetak

Usporedna analiza metode najbližega susjedstva vrste K te klasterske analize vrste 
K-sredine u svrhu litološke interpretacije bušotinske karotaže naftnoga polja 
Shushufindi u Ekvadoru

Litološka interpretacija karotaže predstavlja jednu od temeljnih interpretacija u geoznanostima, a moguće ju je ostvariti 
primjenom različitih algoritama strojnoga učenja. U ovome istraživanju testirane su metode najbližega susjedstva (engl. 
skr. NN) vrste K (za procjenu gustoće) i klasterske analize vrste K-sredine kod predviđanja litologije iz karotažnih poda-
taka izmjerenih u siliciklastičnome ležištu naftnoga polja Shushufindi u Ekvadoru. Usporedba litološke interpretacije 
napravljena je korištenjem kvalitativne interpretacije te karotaže gustoće i neutrona. Rezultati su pokazali kako KNN 
bolje predviđa na temelju interpretiranih podataka (87,3 %, tj. 1145 m predviđeno od interpretiranih 1311,1 m) nego rezul-
tati dobiveni klasterskom analizom K-sredina (71,6 %, tj. 939,7 m predviđeno od interpretiranih 1311,1 m). Geologija leži-
šta uvjetuje određenu razinu odstupanja zbog vrlo sličnih geofizičkih odgovora između vapnenaca i srednjozrnatih kla-
stita. Mogućnost kontrole u KNN-u čini algoritam preporučljivim za litološku interpretaciju sličnih ležišta.

Ključne riječi: 
strojno učenje, ležište, litologija, Shushufindi
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