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Abstract
Landslides represent great dangers that can cause fatalities and huge property damage. To prevent or reduce all possible 
consequences that landslides cause, it is necessary to know the kinematics of the surface and undersurface sliding 
masses. Geodetic surveying techniques can be used for landslide monitoring and creating a kinematic model of the 
landslide. One of the most used surveying techniques for landslide monitoring is the photogrammetric survey by Un-
manned Aerial System. The results of the photogrammetric survey are dense point clouds, digital terrain models, and 
digital orthomosaic maps, where landslide displacements can be determined by comparing these results in two measure-
ment epochs. This paper presents a new data processing method with a novel approach for calculating landslide dis-
placements based on Unmanned Aerial System photogrammetric survey data. The main advantage of the new method 
is that it does not require the production of dense point clouds, digital terrain models, or digital orthomosaic maps to 
determine displacements. The applicability and accuracy of the new method were tested in a test field with simulated 
displacements of known values within the range of 20-40 cm in various directions. The new method successfully deter-
mined these displacements with a 3D accuracy of ±1.3 cm.
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1. Introduction

A landslide is the movement of a mass of rock, earth, 
or debris down a slope due to disturbances in soil stabil-
ity (Cruden, 1991). Landslides represent significant po-
tential dangers that can cause great material, economic, 
social, and human losses (Mihalić Arbanas and Arba-
nas, 2014) and are responsible for 9% of all world disas-
ters (Galli et al., 2008).

During the winter of 2012 to 2013, more than 900 land-
slides caused by natural processes were activated in con-
tinental Croatia, which caused significant material dam-
age (Arbanas et al., 2013). Croatia’s largest landslide is 
Kostanjek, located in the city of Zagreb. As a part of the 
continuous real-time monitoring system, a series of sen-
sors are installed on the Kostanjek Landslide to acquire 
information of landslide kinematics to react in time and 
prevent a potential catastrophe (Krkač et al., 2021, 2019). 
Understanding the behaviour of landslides and identify-
ing their possible triggering effects usually requires good 
knowledge of the kinematic surface and subsurface slid-
ing masses (Acar et al., 2008).

Besides the continuous real-time monitoring system, 
knowledge about the landslide kinematics can be ac-
quired by many different monitoring techniques, which 
differ according to the surveying principle. The most 
conventional monitoring technique is based on classical 
geodetic surveying using the precise level, total station 
or GNSS receiver, providing sparse spatial point cover-
age with very high survey accuracy. It is time-consum-
ing, but it can declare well-defined information about 
possible displacements and landslide movements (Afeni 
and Cawood, 2013; Artese and Perrelli, 2018; Kasper-
ski et al., 2010; Martha et al., 2010; Simeoni et al., 
2015; Sui et al., 2008; Tsai et al., 2012). Optical data 
acquired from airborne or satellite platforms can be an 
alternative solution for landslide mapping and monitor-
ing (Mondini et al., 2011; Nichol and Wong, 2005), 
where high-resolution data are very efficient in detecting 
individual landslides or groups of landslides providing 
important surface texture data (Fiorucci et al., 2011; 
Marcelino et al., 2009; Metternicht et al., 2005). How-
ever, terrain models produced by these techniques are 
not as accurate and precise as models produced by the 
Airborne Laser Scanning (ALS) technique (Baltsavias, 
1999) based on Light Detection And Ranging (LiDAR) 
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remote sensing technique measured from an aircraft (Yu 
et al., 2015), and it is a powerful tool for the fast collec-
tion of large densities of accurate and high spatial reso-
lution of landslides, improving better-analyzing surface 
topography (Abellán et al., 2010; Ardizzone et al., 
2007; Eeckhaut et al., 2007; Jaboyedoff et al., 2012, 
2009; Oppikofer et al., 2008; Tang et al., 2022; Teza et 
al., 2007). Still, it is pretty expensive for individual 
landslide studies (Westoby et al., 2012). Lidar measure-
ments can also be performed from the ground by Ter-
restrial Laser Scanning (TLS), providing a very high 
survey accuracy which improves a better understanding 
of changes and deformations of the landslide (Barbarel-
la and Fiani, 2013; Castagnetti et al., 2014; Luo et al., 
2017; Oppikofer et al., 2012; Spreafico et al., 2015). 
Still, it can be time-consuming and challenging when 
dealing with highly steep terrain (Westoby et al., 2012). 
The Synthetic-Aperture Radar (SAR) technique from 
aircraft or satellite platforms provides a wide coverage 
area with a high spatial resolution (Bardi et al., 2017; 
Bozzano et al., 2017; Du et al., 2017; Kang et al., 
2017; Mondini, 2017; Qi et al., 2017; Schlögel et al., 
2017; Yang et al., 2017; Zhao and Lu, 2018). The abil-
ity of microwave radar sensors to see through clouds in 
the presence or absence of daylight makes it a well-suit-
ed technique for quickly detecting and mapping indi-
vidual landslides, landslide populations of different 
types and sizes over a wide area, and different physio-
graphic characteristics (Adriano et al., 2020; Aimaiti et 
al., 2019; Burrows et al., 2019; Ge et al., 2019; Mon-
dini et al., 2021; Park and Lee, 2019).

In the last few decades, the monitoring technique 
based on Unmanned Aerial Systems (UAS) photogram-
metric surveying in cooperation with Structure from 
Motion (SfM) and Multi-View Stereo (MVS) image pro-
cessing algorithms have become a valuable technique 
for producing various terrain models (Ai et al., 2015; 
Eltner et al., 2016; Fraser and Cronk, 2009; James 
and Robson, 2014, 2012; Passalacqua et al., 2015; Re-
mondino and El-Hakim, 2006; Tarolli, 2014) and 
plays a vital role in landslide monitoring tasks (Clapuyt 
et al., 2017; Eker et al., 2018; Jakopec et al., 2021; 
Lin et al., 2010; Lucieer et al., 2014; Marendic et al., 
2017; Niethammer et al., 2012; Nikolakopoulos et al., 
2017, 2015; Pajares, 2015). This monitoring technique 
has become very desirable and affordable due to techno-
logical developments such as autopilot systems, light-
weight action cameras, miniature GNSS receivers, ad-
vances in carbon fiber airframes, and the development of 
new image processing methodologies based on comput-
er vision (Lucieer et al., 2014; Nikolakopoulos et al., 
2015; Smith et al., 2016). The monitoring by this tech-
nique is based on techniques that quantify the topo-
graphic changes between products delivered from the 
SfM-MVS image processing algorithm.

The most used technique to quantify the topographic 
changes is based on image correlation techniques, which 

detect corresponding features or patches in two images 
by correlating their intensity values to detect topograph-
ic changes. Many authors use this technique on georef-
erenced orthomosaic images produced from different 
survey epochs to determine horizontal landslide dis-
placement (Jakopec et al., 2021; Marendic et al., 2017; 
Niethammer et al., 2012; Peternel et al., 2017; Powers 
et al., 1996). One of the most used software that uses 
image correlation techniques is the Co-registration of 
Optically Sensed Images and Correlation (COSI-Corr) 
(Leprince et al., 2007), and many authors use it in their 
research to determine horizontal landslide displacements 
(Fernández et al., 2016; Lucieer et al., 2014; Turner 
et al., 2015). Furthermore, an often-used straightfor-
ward technique is DEM of difference (DoD), which in-
volves subtracting a later digital elevation model from 
an earlier digital elevation model, highlighting the 
change in one direction along the vertical axis (Abellán 
et al., 2009; Hsieh et al., 2016; Lague et al., 2013; 
Wheaton et al., 2009). However, the accuracy of calcu-
lated differences relies on the produced digital terrain 
models (DiFrancesco et al., 2020). Therefore, the DoD 
technique is not very suitable for calculating differences 
on a geometrically complex terrain with overhanging 
features and wide arrays of surface orientations, so to 
improve the DoD precision across some terrain surfaces, 
segments with similar directions can be grouped for sep-
arate analysis, but this can complicate processing and 
data interpretation (Barnhart and Crosby, 2013). Sev-
eral recent studies have used the DoD technique to ana-
lyze landslides (Fernández et al., 2016; Huang et al., 
2017; Peternel et al., 2017; Tanteri et al., 2017). One 
of the latest direct point cloud comparison techniques is 
Multiscale Model-to-Model Cloud Comparison (M3C2). 
This technique directly compares two point clouds and 
conducts change detection with minimal manual pro-
cessing (Lague et al., 2013). It is the mostly used in 
geosciences (Anders et al., 2020; Benjamin et al., 
2016; Bonneau and Hutchinson, 2019; Kromer et al., 
2015, 2017; Nourbakhshbeidokhti et al., 2019; 
Stumpf et al., 2015; van Veen et al., 2017) and excel-
lently quantifies topographic changes between products 
generated from UAS photogrammetric survey (Cook, 
2017; Eker et al., 2018; Esposito et al., 2017a, 2017b; 
James et al., 2017; Warrick et al., 2017).

All the mentioned techniques compare high-resolu-
tion products such as digital orthomosaic maps, digital 
terrain models, and dense point clouds produced from 
acquired images in two different UAS photogrammetric 
survey epochs to quantify the topographic changes (Elt-
ner et al., 2016; James and Robson, 2012). These 
products are generated by processing images by SfM 
and MVS algorithms, whose processing task is time-
consuming and demanding for a computer, especially in 
the case of processing by MVS algorithm (Crawford et 
al., 2021; Moritani et al., 2020, 2019).

This paper presents a new data processing method with 
a novel approach to calculating landslide displacements 
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from Unmanned Aerial System photogrammetric survey 
data, based exclusively on SfM algorithm steps without 
using the MVS algorithm. Therefore, it is faster and com-
putationally simpler than previously used methods.

2. Methods and Materials

In this section, the following is described: (i) the the-
ory behind the new data processing method, (ii) defining 
the test field with a simulated displacement, and (iii) 
mission planning and data acquisition.

2.1.  The Theory behind the New Data Processing 
Method

This section explains the theory workflow of the new 
data processing method through the following steps (see 
Figure 1): (1) image processing, (2) calculating dis-
placements from sparse point clouds, and (3) detecting 
and removing outliers.

(Alcantarilla et al., 2013), Speeded Up Robust Features 
(SURF) (Bay et al., 2006), Hessian Affine feature point 
detector, and Histogram of Oriented Gradients descrip-
tor (HAHOG) (Meza et al., 2018), Oriented Fast and 
Rotated Brief (ORB) (Rublee et al., 2011), and Scale 
Invariant Feature Transform (SIFT) (Lowe, 2004) which 
is the most widely used method in geosciences (Carriv-
ick et al., 2016). These methods are implemented in the 
Open Computer Vision (OpenCV) library (Kaehler and 
Bradski, 2017).

Once features have been detected on all images of 
both survey epochs, they need to be matched by some 
feature matching method. The Fast Library for Approxi-
mate Nearest Neighbors (FLANN) (Muja and Lowe, 
2009) matching method is used in this paper, which is 
also commonly used in photogrammetry (Fu and Cai, 
2016). One of the key steps of the proposed processing 
method is to run a feature matching algorithm simulta-
neously on images from both surveying epochs, which 
will later enable connecting reconstructed points of two 
separately processed surveying epochs and determina-
tion of the displacement vectors.

The next step of processing is SfM reconstruction, 
which is used for reconstructing camera positions, exter-
nal and internal camera calibration parameters, and, 
most importantly, reconstruction of the scene’s geome-
try (sparse point cloud) (Fisher et al., 2016; Granshaw, 
1980; Snavely et al., 2008; Szeliski, 2011; Triggs et al., 
2000; Ullman, 1979). Reconstruction of the scene using 
the SfM algorithm is done separately for the first and 
second surveying epochs.

The results of the reconstruction using the SfM algo-
rithm are sparse point clouds. The sparse point cloud 
consists of a spatial structure of feature points, whose 
reconstruction is obtained by the triangulation process 
based on matches and features, determined in steps of 
feature detection and feature matching (Hodlmoser et 
al., 2013). Each sparse point cloud represents recon-
structed feature points that relate exclusively to the first 
and exclusively to the second epoch.

Since the SfM algorithm reconstructs the sparse point 
clouds in local coordinate systems (Carrivick et al., 
2016), the next step is to associate them with the same 
global coordinate system by an indirect or direct georef-
erencing approach. The indirect georeferencing uses a 
minimum of three Ground Control Points (GCPs) estab-
lished on the field to calculate a unique seven-parameter 
linear similarity transformation parameter between the 
local and global coordinate system (Carrivick et al., 
2016; Oniga et al., 2020). However, establishing GCPs 
can sometimes be time-consuming and unfeasible (Ga-
brlik et al., 2018). Moreover, it is beneficial because the 
GCPs are applied for camera self-calibration in a bundle 
adjustment to refine the reconstruction (Bolkas, 2019; 
Eltner and Schneider, 2015; Jaud et al., 2019). In con-
trast to indirect georeferencing, direct georeferencing 
uses camera position determined with Real-Time Kine-

Figure 1: Flowchart of the new data processing method

2.1.1. Image Processing

At the very beginning, the new data processing meth-
od starts with the feature detection on all images ac-
quired in two different epochs. The feature on the image 
represents a distinctive area of an image texture that is 
likely to be identifiable in other images (James and 
Robson, 2012). Numerous methods can be used for de-
tecting features on images. Some of these methods are 
the following: Accelerated KAZE Features (AKAZE) 
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matic (RTK) or the Post-Processed Kinematic (PPK) 
GNSS method (Tsai et al., 2010; Turner et al., 2014; 
Zhang et al., 2019). In this case, there is no need to es-
tablish the GCPs in the field (Verhoeven et al., 2012). 
Although indirect georeferencing is more time-consum-
ing than direct georeferencing, it is more accurate than 
direct georeferencing and provides reliable positioning 
(Fazeli et al., 2016; Gabrlik et al., 2018; Padró et al., 
2019; Zhang et al., 2019).

2.1.2.  Calculating Displacements from Sparse 
Point Clouds

Considering feature matching is done simultaneously 
for features in both epochs, numerous reconstructed fea-
ture points exist which can be linked together between 
the two georeferenced sparse point clouds based on the 
matching results. Displacement vectors are determined 
by subtracting coordinates of the linked (common) fea-
ture points in two surveying epochs:

 , ,

  (1)

Where:
∆E, ∆N, ∆H –  displacement in east, north, and height 

direction,
i –  identification name of the common fea-

ture point,
t1, t2 –  denote the first and second epoch.

2.1.3. Detecting and Removing Outliers

Since the algorithm calculates displacement vectors 
from all common feature points, it can be assumed that 
some of them will be outliers that need to be removed 
from the data. Detecting and removing outliers can be 
done by performing the Leave-One-Out Cross-Valida-
tion (LOOCV) process based on the kriging interpola-
tion (Mesić Kiš, 2017; Pebesma, 2004; Pebesma and 
Wesseling, 1998). That process must be performed sep-
arately for displacements in each coordinate direction 
(ΔE, ΔN, and ΔH), stored in three separate datasets.

Before starting the LOOCV processes, it is possible 
to filter datasets to make these processes more efficient 
in terms of the necessary processing power and time. 
Guided by cognition that the features’ reliability increas-
es with the number of images on which they can be 
found (Shah et al., 2015; URL 5, 2022), displacement 
vectors can be filtered based on the number of images on 
which each feature point is found.

The most reliable displacements are kept in the data-
sets by this filtering. Remaining outliers in datasets can 
be detected and removed by the mentioned LOOCV pro-
cess based on the kriging interpolation method.

The LOOCV is a cross-validation method where the 
whole dataset is partitioned into i subsets (S1 … Si), 
called folds. The number of folds equals the number of 

observations in the dataset. A validation process is ap-
plied i times, for 1 to i, each time using the union of all 
observations other than Si as the training set and using Si 
observation as the test set (Sammut and Webb, 2017). 
In this paper, the observations are calculated displace-
ments in each coordinate direction.

Detecting and removing outliers starts with calculat-
ing parameters for kriging interpolation (semivariogram 
models) for displacements in each dataset. These param-
eters are then used to interpolate displacements by the 
kriging method for each coordinate direction while run-
ning the LOOCV processes. In the LOOCV process, the 
residuals are calculated as a difference between the pre-
dicted and observed displacement values. Finally, z-
score values represent the distance between the predict-
ed and the observed displacement value in standard de-
viation units, which are calculated separately for each 
component of the vector (East, North, and Height) as a 
ratio between the residual and standard deviation of the 
predicted value:

  (2)

Where:
zscorei –  residual divided by standard deviation of the 

predicted value for each vector component,
 – predicted value,

xi  – observed value,
si  – standard deviation of the predicted value,
i  – an index of the data in the datasets.
Guided by the 3-sigma rule, z-score values can indi-

cate the presence of outliers in the dataset (Hawkins, 
1980; Jaba, 2007; Kutterer et al., 2003; Lehmann, 
2013). Based on the z-score (∆E, ∆N, and ∆H) values 
calculated for each displacement in datasets, it is possi-
ble to detect outliers among the vectors. Since each dis-
placement vector consists of three displacement compo-
nents, it is necessary to calculate the z-score (3D) value 
for the whole vector, not just for its components. The z-
score (3D) value of the displacement vector can be cal-
culated as the square root of the sum of the squared z-
score values in each coordinate direction:

 

  (3)

Where:
zscorei (3D) –  residual divided by standard deviation 

of the predicted value of the whole 
vector,

i  – an index of the displacement vector.
To apply the 3-sigma rule to the displacement vectors, 

it is necessary to calculate a threshold, the max_zscore 
(3D) value, above which all vectors with a z-score (3D) 
value greater than that threshold will be considered out-
liers. The threshold can be calculated as the root of the 
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sum of the squares of the threshold above which dis-
placement in each separate coordinate direction can be 
considered as an outlier:

 

  (4)

Guided by the 3-sigma rule, the max_zscore (∆E, ∆N, 
and ∆H) value in each coordinate direction equals 3, 
which means that the max_zscore (3D) value equals 5.2, 
and any displacement vector with a higher z-score (3D) 
value than max_zscore (3D) is considered an outlier.

2.2. Test Field

The UAS photogrammetric surveys were carried out 
on a test field in the village Kapela Kalnička in the Re-
public of Croatia (see Figure 2). The location coordi-
nates are 46° 11’ 3.4” in the north and 16°24’ 4.0” in the 
east, related to the World Geodetic System 84 (WGS 
84). The surface of the test field is predominantly hori-
zontal, without significant height differences, mainly 
covered with grass, and consists of some humans-built 
artificial objects, such as paths, one house, and a mini 
football pitch (40 m by 25 m flat concrete surface). A 
football pitch was used as a test field where landslide 
movements were simulated. Landslide movements are 
simulated by moving tarpaulins placed on the top of the 
pitch. Two large tarpaulins (20 x 15 m) with random pat-
terns and lines drawn to each tarpaulin were used (see 
Figure 3).

The landslide simulation was done by moving tarpau-
lins in different directions and magnitudes relative to the 
initial positions. Each tarpaulin was marked with 35 
control points (CPs) in the grid of 3 m cell size (see Fig-
ure 4) to test the accuracy of the new data processing 
method.

The referent coordinates of the CPs in each epoch 
were determined with sub-centimeter level accuracy by 
measurements with the total station. The measurements 
were done with Leica TPS1201 total station, with an an-
gle measurement accuracy of 1” and a distance measure-
ment accuracy of 2mm+2ppm (URL 2, 2022). The refer-
ence network used to determine the CPs position in each 
survey epoch consisted of four points (1P, 2P, 3P, and 
4P) stabilized in each corner of the concrete surface. The 
reference network is of great importance, and therefore 
steps below explain the process of surveying and deter-
mining the coordinates of the reference network points:

1.  the initial coordinates of reference network points 
were determined by GNSS Real-Time-Kinematic 
(RTK) method using the differential corrections 
from the CROatian POsitioning System (CRO-
POS). Each point was measured in two independ-
ent measurement repetitions (one repetition con-
sists of 3 consecutive measurements, each lasting 
30 seconds) with a time interval of at least 2 hours. 
The accuracy that can be achieved with this tech-
nique is within 2 cm horizontally and within 4 cm 
vertically (Bačić et al., 2009; Jakopec et al., 
2013; Milec et al., 2015; URL 1, 2022);

Figure 2: Location of the test field in Croatia (Open Street Map)



Jakopec, I.; Marendić, A.; Grgac, I. 88

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2022,  
pp. 83-101, DOI: 10.17794/rgn.2022.5.8

2.  the total station was set up by the free-station (re-
section) method related to the initial coordinates of 
network points, after which the network points 
were again measured to determine their final coor-
dinates;

3.  the final coordinates of the network points were 
used in both survey epochs to set up the total sta-
tion to determine the true (referent) coordinates of 
the CPs.

Further, seven GCPs have been established on the test 
field for UAS indirect georeferencing (see Figure 4). 
The appearance of the GCPs was a flat square plate with 
50 cm long sides on which the chessboard pattern was 
painted in black and white colors (see Figure 5). The 
GCPs coordinates were determined by the GNSS RTK 
method using the CROPOS, using an identical measure-
ment procedure, as well as when determining the initial 
coordinates of the network reference points.

2.3. Mission Planning and Data Acquisition

To test the proposed data processing method for de-
termining landslide displacements, it was necessary to 
conduct a UAS photogrammetric survey. The first step 
of the UAS photogrammetric survey is to make a flight 
plan for the UAS mission. Weather forecast is one of the 
crucial parameters in a UAS mission planning since 
poor weather conditions (like high and low tempera-
tures, clouds, wind, icing, low visibility, fog, and rain) 
could potentially postpone the mission (Kinney et al., 
2005; Lindner et al., 2016; Thibbotuwawa et al., 
2020). Only one mission was planned for this research, 
and it was used in both surveying epochs. The mission 
was planned and defined in Universal Ground Control 
Software (UgCS) (URL 6, 2021).

The UAS surveys were performed using quadcopter 
DJI Phantom 4 Pro v2.0, with a built-in 1-inch, 20 Meg-
apixels CMOS camera sensor. The camera lens offers a 
Field Of View (FOV) of 84° with a focal length range of 
8.8 mm/24 mm (35 mm format equivalent) and an aper-
ture of f/2.8 – f/11, with autofocus from 1 m to infinity 

Figure 3: The appearance of the tarpaulins from the ground

Figure 4: Distribution of the reference network points, CPs, 
and GCPs on tarpaulins

Figure 5: The appearance of (a) CP marks, and (b) GCP marks

(a) (b)
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(URL 4, 2022). The most significant feature is that the 
camera has a mechanical shutter that does not cause geo-
metric distortion (Kuželka and Surový, 2018).

A double-grid UAS flight (in perpendicular direc-
tions) was planned (see Figure 6), which is recommend-
ed for creating 3D models of the earth’s surface (Röder 
et al., 2017). The flight altitude was set at 20 m above 
ground level, leading to the average ground sample dis-
tance (GSD) of 0.60 cm/px. It is good to note that the 
accuracy of the UAS photogrammetric survey mainly 
depends on the flight altitude (Brückl et al., 2006). Lon-
gitudinal overlap was set at 80% and transversely at 85% 
between images. The camera’s tilt was set at 70° (where 
0° means that the camera looks horizontal and 90° means 
that the camera looks straight down). The camera shutter 
was set to take a photo every 4.23 m. The flight speed 
was set to 1.40 m/s.

new data processing method in practice, and (ii) accura-
cy of determining landslide displacement by the new 
data processing method.

3.1.  Application and Testing of the New Data 
Processing Method

Processing UAS images by the new data processing 
method was done in the software OpenSfM. The OpenS-
fM is open-source software for geographical alignment 
and robustness, with the primary purpose of producing a 
robust and scalable reconstruction model (URL 3, 2020). 
As described in section 2.1.1., the first step in data pro-
cessing is to detect features on images collected in both 
surveying epochs. The most common SIFT method was 
used for feature detection. Approximately 77.8 million 
features were found on all 843 images, which gives an 
average of 92.3 thousand features per image.

The next step is to match all these features. The 
FLANN method was used for the matching process. The 
results in Table 1 indicate that 14.7 million matches 
were found among all image pairs. For this method, 
matches found between two images are crucial, where 
one image is from the first, and the other is from the 
second surveying epoch, so they are called common 
matches. Over 3 million common matches were detected 
between the images in both epochs.

A similar number of features were found in the first and 
second epochs, while more matches were detected be-
tween the features on the first epoch images (see Table 1).

The total number of all matched feature points (points 
with features matched between at least two images) 
found in the first and second epochs counts 1 936 904, 
whereas 129 153 are common feature points because 
they are matched between the images of both epochs. 
The ratio between common and all feature points 

Figure 6: Planned waypoints of UAS mission  
in software UGCS

This planned mission was surveyed twice, once be-
fore and another time after moving tarpaulins, with an 
interval of 3 hours. The first survey was executed at 1 
pm (first survey epoch), and the second flight was exe-
cuted at 4 pm (second survey epoch). The weather con-
ditions were favorable for a UAS survey. The sky was 
cloudy with no precipitation, the air temperature was 
between 12-19°C, and the wind speed was up to 6 m/s 
with a few gusts. The camera was set on auto mode, 
which means that parameters were automatically adjust-
ed during the flights. So, the shutter speed ranged from 
f/5 to f/8, and the aperture ranged from 1/200 to 1/1250). 
The ISO parameter remained unchanged during the 
flights and equaled 100. A total of 422 images were ac-
quired in the first survey epoch, and 421 images were 
acquired in the second survey epoch.

3. Results

This section presents the processing of the collected 
UAS photogrammetric survey data and analysis of de-
termined displacements. Therefore, it is divided into two 
subsections for better presentation: (i) application of the 

Table 1: Total number of features, matches, and matching 
feature points

Features Matches
Matched 
feature 
points

All 77 809 980
(100.00%)

14 716 671
(100.00%)

1 936 904
(100.00%)

Epoch 1 37 925 904
(49.00%)

6 805 084
(46.24%)

956 044
(49.36%)

Epoch 2 39 884 076
(51.00%)

4 828 112
(32.81%)

851 707
(43.97%)

Common
(Epoch 1 & Epoch 2)

3 083 475
(20.95%) 

129 153
(6.67%)

Common
(Epoch 1)

2 262 311
(61.30%)*

Common
(Epoch 2)

1 386 846
(38.70%)*

*  The proportion relative to the common matches (Epoch 1 & 
Epoch 2)
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amounts to 6.67%, which means it is possible to deter-
mine displacements of approximately every fifteenth 
feature point.

Comparing the number of common feature points and 
the number of common matches shows that each feature 
point is detected on 23 images on average. Determining 
which proportion of these 23 images is related to a par-
ticular epoch shows that 61.30% are related to the first 
and 38.70% to the second epoch. In other words, on av-
erage, each common feature point is detected on approx-
imately 14 images of the first epoch and approximately 
9 images of the second epoch.

The discrepancy between the number of features, 
matches, and matched feature points between the two 
epochs is most likely because the UAS surveys were 
performed at different times of the day. The elevation 
angle of the Sun was lower during the second surveying 
epoch, leading to greater shadows on the images caused 
by the obscuring of the sun’s light rays by plant vegeta-
tion, primarily trees, in the surroundings of the test field.

Further, two SFM reconstructions were performed. 
The first reconstruction was based on matches and fea-
tures related exclusively to the images of the first epoch, 
and the second reconstruction was based on matches and 
features related exclusively to the images of the second 
epoch. A total of 1 085 197 potential matched feature 
points participated in the first reconstruction, out of 
which 11.90% are common feature points, and the rest 

are detected exclusively on the images of the first survey 
epoch. A total of 980 860 potential matched feature 
points participated in the second reconstruction, out of 
which 13.17% are common feature points, and the rest 
are detected exclusively on the images of the second sur-
vey epoch.

The final production of SfM reconstructions process-
es was two sparse point clouds, where one is related to 
the first, and the second is related to the second survey 
epoch. Out of all potential feature points which partici-
pated in the first reconstruction process, 81.86% 
(888 420) were finally reconstructed, and in the second 
reconstruction, 83.55% (819 521) of them were finally 
reconstructed (see Table 2).

The final numbers of reconstructed points in both ep-
ochs are fewer than the number of potential candidates 
because, during the reconstruction process, the geomet-
rically incorrect matches are filtered out by the Random 
Sample Consensus (RANSAC) method (Choi et al., 
2009; Fischler and Bolles, 1981). Furthermore, in the 
matches used in reconstruction processes, some poten-
tial feature points have been matched between only one 
image of the one epoch and one or more images of the 
other epoch. These feature points cannot be reconstruct-
ed in an epoch where they are detected on only one im-
age (Aliakbarpour et al., 2015).

Since the sparse point clouds are in local (arbitrary) 
coordinate systems, they need to be transformed into a 
global coordinate system, enabling the calculation of 
displacement vectors between common feature points. 
This research used indirect georeferencing based on 7 
GCPs, whose horizontal coordinates were determined in 
the Croatian Terrestrial Reference System 1996 in the 
Transverse Mercator projection (HTRS96/TM), and the 
height coordinates were determined in the Croatian Ref-
erence Height System 1971 (HVRS71). The total num-
ber of all reconstructed feature points in both survey 
epochs equals 1 707 941, and the total number of com-

Figure 7: All reconstructed points of both 
survey epochs and common points between 
them

Table 2: The number of all potential matched feature points 
and the reconstructed feature points

All 
potential 

points 

Points 
founded on 

only one 
image

Reconstructed 
points

All Common

Epoch 1 1 085 197 77 721 888 420
29 423

Epoch 2 980 860 79 707 819 521
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Figure 8: Horizontal and vertical 
displacement vectors between both  

survey epochs

Figure 9: The simulated landslide area and 
common feature points found on at least five 

images in both epochs

Figure 10: Correct and outlier displacement 
vectors
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Table 3: The statistics of predicted (new data processing method) and referent (total station) displacements vector values  
for each tarpaulin

Tarpaulin Statistics 
values

Predicted displacement Referent displacement
∆E [cm] ∆N [cm] ∆H [cm] ∆E [cm] ∆N [cm] ∆H [cm]

East
(n=35)

Min 25.5 19.1 -2.3 25.4 20.4 -0.7
Max 37.2 29.6 1.8 36.1 29.1 0.4

Range 11.7 10.5 4.1 10.7 8.7 1.1
Mean 31.5 23.5 0.0 31.4 24.3 0.0

West
(n=35)

Min -32.5 -25.1 -1.6 -32.5 -24.8 -0.4
Max -23.1 -14.3 3.3 -23.5 -13.6 0.4

Range 9.4 10.8 4.9 9.0 11.2 0.8
Mean -27.9 -19.3 0.1 -28.5 -18.7 0.0

Table 4: Statistic of residuals between predicted and referent 
displacement vectors values.

Residuals
∆E [cm] ∆N [cm] ∆H [cm]

Min -0.8 -1.9 -2.7
Max 1.9 0.8 3.3
Range 2.7 2.7 6.1
Mean 0.3 -0.7 0.1
St. Dev. ±0.6 ±0.5 ±0.9

Table 5: RMSE of determining displacements with the new 
data processing method.

RMSE
∆E [cm] ∆N [cm] ∆H [cm]

1D ±0.6 ±0.8 ±0.9
2D & 1D ±1.0 ±0.9
3D ±1.3

mon feature points between both survey epochs is 29 423 
(see Table 2). Their distribution is shown in Figure 7.

In the next step, displacements in the east, north, and 
height direction were calculated as differences between 
the coordinates of common points. Looking at the distri-
bution of calculated displacement vectors (see Figure 
8), it can be concluded that numerous displacement vec-
tors differ significantly from others and can be declared 
as outliers. Hence, we need to remove them from our 
datasets before any subsequent calculations.

The dataset is filtered before running the outlier remov-
al process, which means that only vectors between feature 
points found on at least five images in both epochs were 
kept, by which the number of displacements vector was 
reduced from 29 423 to 10 213 (see Figure 9).

They were further validated to detect and remove out-
lier displacement vectors from datasets by performing 
LOOCV processes based on the kriging interpolation 
method, as explained in section 2.1.3. The total number 
of removed outlier displacement vectors was 180 (see 

Figure 10). After removing all outliers from datasets, 
10033 displacement vectors remained.

3.2. Accuracy of the New Data Processing Method

The landslide displacements determined by the pro-
posed processing method (predicted displacement vec-
tors) were compared with the displacements calculated 
from total station measurements (referent displacement 
vectors) to determine the accuracy of the new data pro-
cessing method. A comparison was made for all 70 CPs 
(i.e. 35 per tarpaulin). The referent values of the dis-
placements were defined as coordinate differences be-
tween the CPs in the first and second survey epoch. The 
predicted displacement vectors at the CPs were deter-
mined by applying the kriging interpolation method.

The predicted vectors indicate that the average move-
ment of the east tarpaulin was 39.3 cm in the northeast 
direction (53°), and for the west tarpaulin, it was 33.9 
cm in the southwest direction (235°). Regarding refer-
ence values, they indicate that the average movement of 
the east tarpaulin was 39.7 cm in the northeast (52°), and 
for the west tarpaulin, it was 34.1 cm in the southwest 
direction (237°). By comparing these results, we can no-
tice that the predicted and referent vector values are 
nearly identical because average vector magnitudes did 
not differ more than 0.4 cm and more than 2° in any di-
rection (see Table 3). Further, the average values of the 
vertical displacements were equal to zero, which was 
expected since tarpaulins were moved along the flat hor-
izontal area. The range between displacements for each 
coordinate direction is not equal to zero, indicating that 
tarpaulins were not moved evenly along the entire sur-
face.

Displacement residuals are calculated as a difference 
between referent and displacement values determined 
by the proposed method (see Table 4). The residuals in 
the horizontal direction range between -1.9 cm to 1.9 
cm, and in the vertical direction are between -2.7 cm and 
3.3 cm. The mean values of residuals in the east direc-
tion are 0.3 cm, -0.7 cm in the north direction, and 0.1 
cm in the vertical direction. The standard deviation in 
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the east direction is ±0.6 cm, in the north direction is 
±0.5 cm, and in the vertical direction, it is ±0.6 cm. The 
results indicate that the displacements are determined 
with a centimeter-level precision in both horizontal and 
vertical directions. The graphical presentation of the dis-
placement residuals is shown in Figure 11.

Root Mean Square Error (RMSE) of determining dis-
placements is used to measure achieved accuracy (see 
Table 5).

A comparison of the precision and accuracy (St. Dev 
vs. RMSE) indicates that displacements determined by 
the new method are not influenced by any systematic 
errors, which can be confirmed by looking at Figure 11. 
The graphical presentation of determined horizontal and 
vertical displacements is shown in Figure 12.

4. Discussion

The ability to determine displacements from UAS 
photogrammetric survey using the suggested novel pro-
cessing method is presented in the previous section. The 
presented test case shows that displacements with a 
magnitude of 20 cm can be determined without any is-
sues. Further, accuracy analysis of determining displace-
ments showed the potential of detecting displacements 
with a magnitude of only a few centimeters since RMSE 
values were approximately 1 cm.

However, it is important to note that the flight altitude 
in this research was 20 m above the ground, and the test 
field area was relatively small compared to an actual 
landslide. It is questionable what the results would be if 

Figure 11: Horizontal and vertical 
residuals of the new data processing 

method

Figure 12: Landslide map with 
horizontal and vertical displacements
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there were higher altitudes and a larger area. Further-
more, the tarpaulins were moved on a flat football pitch, 
which led to no height differences between epochs. 
Therefore, future work should investigate how higher 
flight altitudes over a larger area with diverse topogra-
phy will affect the accuracy of the new data processing 
method.

The UAS surveys performed at different times of day 
will have a difference in light direction and shadows. 
Having different shadows in two measurement epochs 
will impact feature detection and feature matching, af-
fecting the accuracy of determining displacements. This 
was not considered in this paper since tarpaulins were 
placed on a flat terrain, and therefore, there were no 
shadows on the collected images. Nevertheless, the in-
fluence of the different shadows between different ep-
ochs could be investigated by adding three-dimensional 
features on top of the tarpaulins.

Many factors influenced the achieved accuracy. The 
most influential is the UAS flight altitude because it sig-
nificantly affects the GSD value along with the used 
camera for capturing images. In other words, the lower 
the flight altitude, the lower the GSD value will be, 
which will lead to the possibility of detecting very small 
magnitudes of landslide displacement with great accu-
racy. Moreover, future work will be related to additional 
testing of the new data processing method with images 
acquired from different UAS flight altitudes since the 
UAS flight altitude significantly dictates the GSD value 
on acquired images, and thus the accuracy of determin-
ing displacement.

Accuracy is also affected by the positioning accuracy 
of the GCPs. Therefore, they must be well signalized 
and accurately determined on the field. In other words, 
the GCPs must be well visible and recognizable in the 
acquired images, which will lead to accurate georefer-
enced and refined sparse point clouds.

Since the GSD value is affected by the change in the 
distance between the camera and the observed object, it 
is desirable during UAS mission planning to set the ve-
hicle to fly relatively above the ground, which would 
lead to the GSD value being as stable as possible during 
UAS measurements on each acquired image.

Also, using the appropriate vehicle and camera for the 
given task is essential. Choosing proper vehicle flight 
altitude, speed, and image overlap is important. When 
choosing a suitable camera and its parameters, the most 
important indicators are the quality of camera lenses and 
their distortion, sensor type and size, and shutter type. 
The most crucial steps of the suggested method are fea-
ture detecting and feature matching. Improvements in 
these steps could produce more matched points between 
two surveying epochs, potentially increasing the accu-
racy and reliability of determining displacements. In this 
paper, features were detected using the SIFT method and 
matched using the FLANN method. Potentially, one 
could use different methods or combine multiple meth-

ods to get better results. Thus, future work could test 
several types of feature detection and feature matching 
methods in processing images with the algorithm of the 
new method to decide which of them can give the most 
accurate results.

This paper presented the feasibility of the suggested 
method in ideal conditions on a relatively small test 
field. In future work, it is necessary to show the applica-
bility of the suggested method for determining displace-
ments of actual landslides, where the surface consists of 
diverse, complex topography. This will significantly 
complicate the possibility of detecting and matching fea-
ture points on images of a landslide. The Kostanjek 
Landslide can serve this purpose since it already has an 
established continuous real-time monitoring system.

Furthermore, in future work, the new method should 
be compared with existing methods where the determi-
nation of displacement is based on comparisons of dense 
point clouds, digital terrain models, and digital orthomo-
saics, whose production is based on processing UAS im-
ages with the SfM-MVS algorithm.

5. Conclusions

Landslides represent great danger that can cause fa-
talities and huge property damage. Understanding the 
behaviour of landslides and identifying their possible 
triggering effects usually requires a good knowledge of 
the kinematics surface and subsurface sliding masses.

Geodetic surveying techniques can be used for land-
slide monitoring and creating a kinematic model of the 
landslide. The monitoring technique based on the Un-
manned Aerial Systems (UAS) photogrammetric survey 
is increasingly used for landslide monitoring. This arti-
cle presents a novel approach to processing UAS photo-
grammetric survey data for landslide monitoring.

The proposed method relies on matching features be-
tween images acquired in two different survey epochs, 
which enables the calculation of the displacements be-
tween the points of the two sparse point clouds. There-
fore, there is no need to produce dense point clouds, 
digital terrain models, or orthomosaic maps, making it 
faster than previous methods.

The UAS photogrammetric surveys were performed 
on the test field with simulated displacements to demon-
strate the method’s applicability. The simulated dis-
placements ranged between 20 and 40 cm and were 
simulated in an area of approximately 600 square me-
ters. These simulated displacements were determined 
using the new data processing method and compared to 
the actual values determined by total station measure-
ments. In the defined test field, the horizontal displace-
ments were determined with an accuracy of ±1.0 cm, 
and the vertical displacements were determined with an 
accuracy of ±0.9 cm. These results indicate that the 3D 
displacements have been determined with an accuracy 
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of ±1.3 cm. These results were obtained based on the 
processing of images collected from a height of 20 me-
ters above the ground, which is essential to emphasize 
because UAS flight altitude plays one of the essential 
roles in defining the final accuracy of displacement vec-
tor determination.

Finally, it can be concluded that the proposed data 
processing method can successfully and accurately de-
termine landslide displacements, which allows for the 
detailed definition of landslide surfaces.

6. References

Abellán, A., Calvet, J., Vilaplana, J.M., Blanchard, J. (2010): 
Detection and spatial prediction of rockfalls by means of 
terrestrial laser scanner monitoring. Geomorphology, 119, 
162–171. https://doi.org/10.1016/j.geomorph.2010.03.016

Abellán, A., Jaboyedoff, M., Oppikofer, T., Vilaplana, J.M. 
(2009): Detection of millimetric deformation using a ter-
restrial laser scanner: experiment and application to a 
rockfall event. Natural Hazards and Earth System Scienc-
es, 9, 365–372. https://doi.org/10.5194/nhess-9-365-2009

Acar, M., Ozludemir, M.T., Erol, S., Celik, R.N., Ayan, T. 
(2008): Kinematic landslide monitoring with Kalman fil-
tering. Natural Hazards and Earth System Science, 8, 213–
221. https://doi.org/10.5194/nhess-8-213-2008

Adriano, B., Yokoya, N., Miura, H., Matsuoka, M., Koshimu-
ra, S. (2020): A Semiautomatic Pixel-Object Method for 
Detecting Landslides Using Multitemporal ALOS-2 Inten-
sity Images. Remote Sensing, 12, 561. https://doi.org/ 
10.3390/rs12030561

Afeni, T.B., Cawood, F.T. (2013): Slope Monitoring using To-
tal Station: What are the Challenges and How Should 
These be Mitigated? South African Journal of Geomatics, 
2, 41–53.

Ai, M., Hu, Q., Li, J., Wang, M., Yuan, H., Wang, S. (2015): A 
Robust Photogrammetric Processing Method of Low-Alti-
tude UAV Images. Remote Sensing, 7, 2302–2333. https://
doi.org/10.3390/rs70302302

Aimaiti, Y., Liu, W., Yamazaki, F., Maruyama, Y. (2019): 
Earthquake-Induced Landslide Mapping for the 2018 
Hokkaido Eastern Iburi Earthquake Using PALSAR-2 
Data. Remote Sensing, 11, 2351. https://doi.org/10.3390/
rs11202351

Alcantarilla, P., Nuevo, J., Bartoli, A. (2013): Fast Explicit 
Diffusion for Accelerated Features in Nonlinear Scale 
Spaces, in: Procedings of the British Machine Vision Con-
ference 2013. British Machine Vision Association, pp. 
13.1-13.11. https://doi.org/10.5244/C.27.13

Aliakbarpour, H., Palaniappan, K., Seetharaman, G. (2015): 
Robust Camera Pose Refinement and Rapid SfM for Mul-
tiview Aerial Imagery—Without RANSAC. IEEE Geosci-
ence and Remote Sensing Letters, 12, 2203–2207. https://
doi.org/10.1109/LGRS.2015.2457299

Anders, K., Winiwarter, L., Lindenbergh, R., Williams, J.G., 
Vos, S.E., Höfle, B. (2020): 4D objects-by-change: Spati-
otemporal segmentation of geomorphic surface change 
from LiDAR time series. ISPRS Journal of Photogramme-

try and Remote Sensing, 159, 352–363. https://doi.
org/10.1016/j.isprsjprs.2019.11.025

Arbanas, S., Arbanas, Ž., Bernat, S., Krkač, M., Kalinić, P., 
Martinović, K., Sajko, J., Fabris, N., Antolović, A. (2013): 
Upravljanje kriznim situacijama uslijed pokretanja klizišta 
(Management of the crisis situations caused by landslide 
activations). V. Konferencija Hrvatske platforme za sman-
jenje rizika od katastrofa. (in Croatian)

Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., Reichen-
bach, P. (2007): Identification and mapping of recent rain-
fall-induced landslides using elevation data collected by 
airborne Lidar. Natural Hazards and Earth System Scienc-
es, 7, 637–650. https://doi.org/10.5194/nhess-7-637-2007

Artese, S., Perrelli, M. (2018): Monitoring a Landslide with 
High Accuracy by Total Station: A DTM-Based Model to 
Correct for the Atmospheric Effects. Geosciences, 8, 46. 
https://doi.org/10.3390/geosciences8020046

Bačić, Ž., Marjanović, M., Bosiljevac, M. (2009): CROPOS 
– Croatian Positioning System CROPOS, in: FIG Working 
Week 2009 – Surveyors Key Role in Accelerated Develop-
ment.

Baltsavias, E.P. (1999): A comparison between photogramme-
try and laser scanning. ISPRS Journal of Photogrammetry 
and Remote Sensing, 54, 83–94. https://doi.org/10.1016/
S0924-2716(99)00014-3

Barbarella, M., Fiani, M. (2013): Monitoring of large landslides 
by Terrestrial Laser Scanning techniques: field data collec-
tion and processing. European Journal of Remote Sensing, 
46, 126–151. https://doi.org/10.5721/EuJRS20134608

Bardi, F., Raspini, F., Frodella, W., Lombardi, L., Nocentini, 
M., Gigli, G., Morelli, S., Corsini, A., Casagli, N. (2017): 
Monitoring the Rapid-Moving Reactivation of Earth 
Flows by Means of GB-InSAR: The April 2013 Capriglio 
Landslide (Northern Appennines, Italy). Remote Sensing, 
9, 165. https://doi.org/10.3390/rs9020165

Barnhart, T., Crosby, B. (2013): Comparing Two Methods of 
Surface Change Detection on an Evolving Thermokarst 
Using High-Temporal-Frequency Terrestrial Laser Scan-
ning, Selawik River, Alaska. Remote Sensing, 5, 2813–
2837. https://doi.org/10.3390/rs5062813

Bay, H., Tuytelaars, T., Van Gool, L. (2006): SURF: Speeded 
Up Robust Features, in: Lecture Notes in Computer Sci-
ence (Including Subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics). pp. 404–
417. https://doi.org/10.1007/11744023_32

Benjamin, J., Rosser, N., Brain, M. (2016): Rockfall detection 
and volumetric characterisation using LiDAR, in: Land-
slides and Engineered Slopes. Experience, Theory and 
Practice. CRC Press, pp. 389–395. https://doi.org/10.1201/
b21520-38

Bolkas, D. (2019): Assessment of GCP Number and Separa-
tion Distance for Small UAS Surveys with and without 
GNSS-PPK Positioning. Journal of Surveying Engineer-
ing, 145, 04019007. https://doi.org/10.1061/(ASCE)SU. 
1943-5428.0000283

Bonneau, D.A., Hutchinson, D.J. (2019): The use of terrestrial 
laser scanning for the characterization of a cliff-talus 
 system in the Thompson River Valley, British Columbia, 



Jakopec, I.; Marendić, A.; Grgac, I. 96

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2022,  
pp. 83-101, DOI: 10.17794/rgn.2022.5.8

Canada. Geomorphology, 327, 598–609. https://doi.org/ 
10.1016/j.geomorph.2018.11.022

Bozzano, F., Mazzanti, P., Perissin, D., Rocca, A., De Pari, P., 
Discenza, M. (2017): Basin Scale Assessment of Land-
slides Geomorphological Setting by Advanced InSAR 
Analysis. Remote Sensing, 9, 267. https://doi.org/10.3390/
rs9030267

Brückl, E., Brunner, F.K., Kraus, K. (2006): Kinematics of a 
deep-seated landslide derived from photogrammetric, GPS 
and geophysical data. Engineering Geology, 88, 149–159. 
https://doi.org/10.1016/j.enggeo.2006.09.004

Burrows, K., Walters, R.J., Milledge, D., Spaans, K., Dens-
more, A.L. (2019): A New Method for Large-Scale Land-
slide Classification from Satellite Radar. Remote Sensing, 
11, 237. https://doi.org/10.3390/rs11030237

Carrivick, J.L., Smith, M.W., Quincey, D.J. (2016): Structure 
from Motion in the Geosciences. John Wiley & Sons, Ltd, 
Chichester, UK. https://doi.org/10.1002/9781118895818

Castagnetti, C., Bertacchini, E., Corsini, A., Rivola, R. (2014): 
A reliable methodology for monitoring unstable slopes: 
the multi-platform and multi-sensor approach, in: Michel, 
U., Schulz, K. (Eds.), Earth Resources and Environmental 
Remote Sensing/GIS Applications V. p. 92450J. https://
doi.org/10.1117/12.2067407

Choi, S., Kim, T., Yu, W. (2009): Performance Evaluation of 
RANSAC Family, in: Procedings of the British Machine 
Vision Conference 2009. British Machine Vision Associa-
tion, pp. 81.1-81.12. https://doi.org/10.5244/C.23.81

Clapuyt, F., Vanacker, V., Schlunegger, F., Van Oost, K. (2017): 
Unravelling earth flow dynamics with 3-D time series de-
rived from UAV-SfM models. Earth Surface Dynamics, 5, 
791–806. https://doi.org/10.5194/esurf-5-791-2017

Cook, K.L. (2017): An evaluation of the effectiveness of low-
cost UAVs and structure from motion for geomorphic 
change detection. Geomorphology, 278, 195–208. https://
doi.org/10.1016/j.geomorph.2016.11.009

Crawford, B., Swanson, E., Schultz-Fellenz, E., Collins, A., 
Dann, J., Lathrop, E., Milazzo, D. (2021): A New Method 
for High Resolution Surface Change Detection: Data Col-
lection and Validation of Measurements from UAS at the 
Nevada National Security Site, Nevada, USA. Drones, 5, 
25. https://doi.org/10.3390/drones5020025

Cruden, D.M. (1991): A simple definition of a landslide. Bul-
letin of the International Association of Engineering Geo-
logy -Bulletin de l’Association Internationale de Géologie 
de l’Ingénieur, 43, 27–29. https://doi.org/10.1007/BF025 
90167

DiFrancesco, P.-M., Bonneau, D., Hutchinson, D.J. (2020): 
The Implications of M3C2 Projection Diameter on 3D 
Semi-Automated Rockfall Extraction from Sequential Ter-
restrial Laser Scanning Point Clouds. Remote Sensing, 12, 
1885. https://doi.org/10.3390/rs12111885

Du, Y., Xu, Q., Zhang, L., Feng, G., Li, Z., Chen, R.-F., Lin, 
C.-W. (2017): Recent Landslide Movement in Tsaoling, 
Taiwan Tracked by TerraSAR-X/TanDEM-X DEM Time 
Series. Remote Sensing, 9, 353. https://doi.org/10.3390/
rs9040353

Eeckhaut, M. Van Den, Poesen, J., Verstraeten, G., Vanacker, 
V., Nyssen, J., Moeyersons, J., Beek, L.P.H. van, Vande-

kerckhove, L. (2007): Use of LIDAR-derived images for 
mapping old landslides under forest. Earth Surface Pro-
cesses and Landforms, 32, 754–769. https://doi.org/10. 
1002/esp.1417

Eker, R., Aydın, A., Hübl, J. (2018): Unmanned aerial vehicle 
(UAV)-based monitoring of a landslide: Gallenzerkogel 
landslide (Ybbs-Lower Austria) case study. Environmental 
Monitoring and Assessment, 190, 28. https://doi.org/10. 
1007/s10661-017-6402-8

Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abel-
lán, A. (2016): Image-based surface reconstruction in geo-
morphometry – merits, limits and developments. Earth 
Surface Dynamics, 4, 359–389. https://doi.org/10.5194/
esurf-4-359-2016

Eltner, A., Schneider, D. (2015): Analysis of Different Meth-
ods for 3D Reconstruction of Natural Surfaces from Paral-
lel-Axes UAV Images. The Photogrammetric Record, 30, 
279–299. https://doi.org/10.1111/phor.12115

Esposito, G., Mastrorocco, G., Salvini, R., Oliveti, M., Starita, 
P. (2017a): Application of UAV photogrammetry for the 
multi-temporal estimation of surface extent and volumet-
ric excavation in the Sa Pigada Bianca open-pit mine, Sar-
dinia, Italy. Environmental Earth Sciences, 76, 103. https://
doi.org/10.1007/s12665-017-6409-z

Esposito, G., Salvini, R., Matano, F., Sacchi, M., Danzi, M., 
Somma, R., Troise, C. (2017b): Multitemporal monitoring 
of a coastal landslide through SfM-derived point cloud 
comparison. The Photogrammetric Record, 32, 459–479. 
https://doi.org/10.1111/phor.12218

Fazeli, H., Samadzadegan, F., Dadrasjavan, F. (2016): Evalu-
ating the potential of RTK-UAV for automatic point cloud 
generation in 3D rapid mapping. ISPRS – International 
Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences, XLI-B6, 221–226. https://
doi.org/10.5194/isprsarchives-XLI-B6-221-2016

Fernández, T., Pérez, J., Cardenal, J., Gómez, J., Colomo, C., 
Delgado, J. (2016): Analysis of Landslide Evolution Af-
fecting Olive Groves Using UAV and Photogrammetric 
Techniques. Remote Sensing, 8, 837. https://doi.org/10. 
3390/rs8100837

Fiorucci, F., Cardinali, M., Carlà, R., Rossi, M., Mondini, 
A.C., Santurri, L., Ardizzone, F., Guzzetti, F. (2011): Sea-
sonal landslide mapping and estimation of landslide mobi-
lization rates using aerial and satellite images. Geomor-
phology, 129, 59–70. https://doi.org/10.1016/j.geomorph. 
2011.01.013

Fischler, M.A., Bolles, R.C. (1981): Random sample consen-
sus: A Paradigm for Model Fitting with Applications to 
Image Analysis and Automated Cartography. Communica-
tions of the ACM, 24, 381–395. https://doi.org/10.1145 
/358669.358692

Fisher, R.B., Breckon, T.P., Dawson-Howe, K., Fitzgibbon, A., 
Robertson, C., Trucco, E., Williams, C.K.I. (2016): Diction-
ary of Computer Vision and Image Processing, 2nd ed, Jour-
nal of Electronic Imaging. John Wiley & Sons, Ltd, Chich-
ester, UK. https://doi.org/10.1002/9781119286462

Fraser, C.S., Cronk, S. (2009): A hybrid measurement ap-
proach for close-range photogrammetry. ISPRS Journal of 



97 A Novel Approach to Landslide Monitoring based on Unmanned Aerial System Photogrammetry

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2022,  
pp. 83-101, DOI: 10.17794/rgn.2022.5.8

Photogrammetry and Remote Sensing, 64, 328–333. htt-
ps://doi.org/10.1016/j.isprsjprs.2008.09.009

Fu, C., Cai, D. (2016): EFANNA : An Extremely Fast Approx-
imate Nearest Neighbor Search Algorithm Based on kNN 
Graph.

Gabrlik, P., Cour-Harbo, A. la, Kalvodova, P., Zalud, L., Ja-
nata, P. (2018): Calibration and Accuracy Assessment in a 
Direct Georeferencing System for UAS Photogrammetry. 
International Journal of Remote Sensing, 39, 4931–4959. 
https://doi.org/10.1080/01431161.2018.1434331

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., Reichen-
bach, P. (2008): Comparing landslide inventory maps. 
Geomorphology, 94, 268–289. https://doi.org/10.1016/j.
geomorph.2006.09.023

Ge, Gokon, Meguro, Koshimura (2019): Study on the Inten-
sity and Coherence Information of High-Resolution 
ALOS-2 SAR Images for Rapid Massive Landslide Map-
ping at a Pixel Level. Remote Sensing, 11, 2808. https://
doi.org/10.3390/rs11232808

Granshaw, S.I. (1980): Bundle adjustment methods in engi-
neering photogrammetry. The Photogrammetric Record, 
10, 181–207. https://doi.org/10.1111/j.1477-9730.1980.
tb00020.x

Hawkins, D.M. (1980): Identification of Outliers, Identifica-
tion of Outliers. Springer Netherlands, Dordrecht. https://
doi.org/10.1007/978-94-015-3994-4

Hodlmoser, M., Micusik, B., Kampel, M. (2013): Sparse Point 
Cloud Densification by Combining Multiple Segmentation 
Methods, in: 2013 International Conference on 3D Vision. 
IEEE, pp. 438–445. https://doi.org/10.1109/3DV.2013.64

Hsieh, Y.-C., Chan, Y.-C., Hu, J.-C. (2016): Digital Elevation 
Model Differencing and Error Estimation from Multiple 
Sources: A Case Study from the Meiyuan Shan Landslide 
in Taiwan. Remote Sensing, 8, 199. https://doi.org/10.3390/
rs8030199

Huang, H., Long, J., Lin, H., Zhang, L., Yi, W., Lei, B. (2017): 
Unmanned aerial vehicle based remote sensing method for 
monitoring a steep mountainous slope in the Three Gorges 
Reservoir, China. Earth Science Informatics, 10, 287–301. 
https://doi.org/10.1007/s12145-017-0291-9

Jaba, E. (2007): The “3 sigma” rule used for the identification 
of the regional disparities. The yearbook of the “Gh. Zane” 
Institute of Economic Research, 16, 47–56.

Jaboyedoff, M., Choffet, M., Derron, M.-H., Horton, P., Loye, 
A., Longchamp, C., Mazotti, B., Michoud, C., Pedrazzini, 
A. (2012): Preliminary Slope Mass Movement Suscepti-
bility Mapping Using DEM and LiDAR DEM, in: Terrig-
enous Mass Movements. Springer Berlin Heidelberg, Ber-
lin, Heidelberg, pp. 109–170. https://doi.org/10.1007/978-
3-642-25495-6_5

Jaboyedoff, M., Demers, D., Locat, J., Locat, A., Locat, P., 
Oppikofer, T., Robitaille, D., Turmel, D. (2009): Use of 
terrestrial laser scanning for the characterization of retro-
gressive landslides in sensitive clay and rotational land-
slides in river banks. Canadian Geotechnical Journal, 46, 
1379–1390. https://doi.org/10.1139/T09-073

Jakopec, I., Marendić, A., Paar, R., Grgac, I., Tomić, H., 
Krkač, M., Letunić, T. (2021): Periodic Monitoring of the 

Kostanjek Landslide Using UAV, in: Springer Proceedings 
in Earth and Environmental Sciences. pp. 236–245. https://
doi.org/10.1007/978-3-030-51953-7_20

Jakopec, I., Šugar, D., Bačić, Ž. (2013): Ispitivanje točnosti 
VPPS usluge CROPOS-a (Testing accuracy of CROPOS 
VPPS service), in: 3. CROPOS Konferencija. pp. 141–149. 
(in Croatian)

James, M.R., Robson, S. (2014): Mitigating systematic error 
in topographic models derived from UAV and ground-
based image networks. Earth Surface Processes and Land-
forms, 39, 1413–1420. https://doi.org/10.1002/esp.3609

James, M.R., Robson, S. (2012): Straightforward reconstruc-
tion of 3D surfaces and topography with a camera: Accu-
racy and geoscience application. Journal of Geophysical 
Research: Earth Surface, 117. https://doi.org/10.1029/ 
2011JF002289

James, M.R., Robson, S., D’Oleire-Oltmanns, S., Nietham-
mer, U. (2017): Optimising UAV topographic surveys pro-
cessed with structure-from-motion: Ground control quali-
ty, quantity and bundle adjustment. Geomorphology, 280, 
51–66. https://doi.org/10.1016/j.geomorph.2016.11.021

Jaud, M., Passot, S., Allemand, P., Le Dantec, N., Grandjean, 
P., Delacourt, C. (2019): Suggestions to Limit Geometric 
Distortions in the Reconstruction of Linear Coastal Land-
forms by SfM Photogrammetry with PhotoScan® and 
MicMac® for UAV Surveys with Restricted GCPs Pattern. 
Drones, 3. https://doi.org/10.3390/drones3010002

Kaehler, A., Bradski, G. (2017): Learning OpenCV 3: Com-
puter vision in C++ with the OpenCV library.

Kang, Y., Zhao, C., Zhang, Q., Lu, Z., Li, B. (2017): Applica-
tion of InSAR Techniques to an Analysis of the Guanling 
Landslide. Remote Sensing, 9, 1046. https://doi.org/10. 
3390/rs9101046

Kasperski, J., Delacourt, C., Allemand, P., Potherat, P., Jaud, 
M., Varrel, E. (2010): Application of a Terrestrial Laser 
Scanner (TLS) to the Study of the Séchilienne Landslide 
(Isère, France). Remote Sensing, 2, 2785–2802. https://
doi.org/10.3390/rs122785

Kinney, G.W., Hill, R.R., Moore, J.T. (2005): Devising a 
quick-running heuristic for an unmanned aerial vehicle 
(UAV) routing system. Journal of the Operational Re-
search Society, 56, 776–786. https://doi.org/10.1057/pal-
grave.jors.2601867

Krkač, M., Bernat Gazibara, S., Sečanj, M., Arbanas, Ž., 
Mihalić Arbanas, S. (2019): Continuous monitoring of the 
Kostanjek landslide, in: Proceedings of the 4th Regional 
Symposium on Landslides in the Adriatic – Balkan Re-
gion. Društvo za geotehniku u Bosni i Hercegovini, pp. 
43–48. https://doi.org/10.35123/ReSyLAB_2019_7

Krkač, M., Bernat Gazibara, S., Sečanj, M., Sinčić, M., Miha-
lić Arbanas, S. (2021): Kinematic model of the slow-mov-
ing Kostanjek landslide in Zagreb, Croatia. Rudarsko-Ge-
olosko-Naftni Zbornik, 36, 59–68. https://doi.org/10.17 
794/rgn.2021.2.6

Kromer, R., Abellán, A., Hutchinson, D., Lato, M., Edwards, 
T., Jaboyedoff, M. (2015): A 4D Filtering and Calibration 
Technique for Small-Scale Point Cloud Change Detection 
with a Terrestrial Laser Scanner. Remote Sensing, 7, 
13029–13052. https://doi.org/10.3390/rs71013029



Jakopec, I.; Marendić, A.; Grgac, I. 98

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2022,  
pp. 83-101, DOI: 10.17794/rgn.2022.5.8

Kromer, R.A., Abellán, A., Hutchinson, D.J., Lato, M., Cha-
nut, M.A., Dubois, L., Jaboyedoff, M. (2017): Automated 
terrestrial laser scanning with near-real-time change detec-
tion – Monitoring of the Séchilienne landslide. Earth Sur-
face Dynamics, 5, 293–310. https://doi.org/10.5194/es-
urf-5-293-2017

Kutterer, H., Heinkelmann, R., Tesmer, V. (2003): Robust Out-
lier Detection in VLBI Data Analysis, in: Proceedings of 
the 16th Working Meeting on European VLBI for Geidesy 
and Astrometry. Leipzig/Frankfurt, pp. 247–256.

Kuželka, K., Surový, P. (2018): Mapping Forest Structure Us-
ing UAS inside Flight Capabilities. Sensors, 18, 2245. 
https://doi.org/10.3390/s18072245

Lague, D., Brodu, N., Leroux, J. (2013): Accurate 3D com-
parison of complex topography with terrestrial laser scan-
ner: Application to the Rangitikei canyon (N-Z). ISPRS 
Journal of Photogrammetry and Remote Sensing, 82, 10–
26. https://doi.org/10.1016/j.isprsjprs.2013.04.009

Lehmann, R. (2013): 3σ-Rule for Outlier Detection from  
the Viewpoint of Geodetic Adjustment. Journal of Survey-
ing Engineering, 139, 157–165. https://doi.org/10.1061/
(ASCE)SU.1943-5428.0000112

Leprince, S., Barbot, S., Ayoub, F., Avouac, J.-P. (2007): Auto-
matic and Precise Orthorectification, Coregistration, and 
Subpixel Correlation of Satellite Images, Application to 
Ground Deformation Measurements. IEEE Transactions 
on Geoscience and Remote Sensing, 45, 1529–1558. htt-
ps://doi.org/10.1109/TGRS.2006.888937

Lin, J., Tao, H., Wang, Y., Huang, Z. (2010): Practical applica-
tion of unmanned aerial vehicles for mountain hazards sur-
vey, in: 2010 18th International Conference on Geoinfor-
matics. IEEE, pp. 1–5. https://doi.org/10.1109/GEOIN-
FORMATICS.2010.5567777

Lindner, G., Schraml, K., Mansberger, R., Hübl, J. (2016): 
UAV monitoring and documentation of a large landslide. 
Applied Geomatics, 8, 1–11. https://doi.org/10.1007/
s12518-015-0165-0

Lowe, D.G. (2004): Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer 
Vision, 60, 91–110. https://doi.org/10.1023/B:VISI.0000 
029664.99615.94

Lucieer, A., Jong, S.M. de, Turner, D. (2014): Mapping land-
slide displacements using Structure from Motion (SfM) 
and image correlation of multi-temporal UAV photogra-
phy. Progress in Physical Geography: Earth and Environ-
ment, 38, 97–116. https://doi.org/10.1177/03091333135 
15293

Luo, L., Ma, W., Zhang, Z., Zhuang, Y., Zhang, Y., Yang, J., 
Cao, X., Liang, S., Mu, Y. (2017): Freeze/Thaw-Induced 
Deformation Monitoring and Assessment of the Slope in 
Permafrost Based on Terrestrial Laser Scanner and GNSS. 
Remote Sensing, 9, 198. https://doi.org/10.3390/rs9030198

Marcelino, E.V., Formaggio, A.R., Maeda, E.E. (2009): Land-
slide inventory using image fusion techniques in Brazil. 
International Journal of Applied Earth Observation and 
Geoinformation, 11, 181–191. https://doi.org/10.1016/j.
jag.2009.01.003

Marendic, A., Paar, R., Tomic, H., Roic, M., Krkac, M. (2017): 
Deformation monitoring of Kostanjek landslide in Croatia 

using multiple sensor networks and UAV, in: INGEO 2017 
– 7th International Conference on Engineering Surveying.

Martha, T.R., Kerle, N., Jetten, V., Van Westen, C.J., Vinod 
Kumar, K. (2010): Landslide volumetric analysis using 
cartosat-1-derived DEMs. IEEE Geoscience and Remote 
Sensing Letters, 7, 582–586. https://doi.org/10.1109/
LGRS.2010.2041895

Mesić Kiš, I. (2017): Contribution to the application and ter-
minology of geostatistical mapping methods in Croatia – 
Universal Kriging. Rudarsko-Geolosko-Naftni Zbornik, 
32, 31–35. https://doi.org/10.17794/rgn.2017.4.3

Metternicht, G., Hurni, L., Gogu, R. (2005): Remote sensing 
of landslides: An analysis of the potential contribution to 
geo-spatial systems for hazard assessment in mountainous 
environments. Remote Sensing of Environment, 98, 284–
303. https://doi.org/10.1016/j.rse.2005.08.004

Meza, J., Marrugo, A.G., Sierra, E., Guerrero, M., Meneses, J., 
Romero, L.A. (2018): A Structure-from-Motion Pipeline 
for Topographic Reconstructions Using Unmanned Aerial 
Vehicles and Open Source Software, in: Communications 
in Computer and Information Science. pp. 213–225. htt-
ps://doi.org/10.1007/978-3-319-98998-3_17

Mihalić Arbanas, S., Arbanas, Ž. (2014): Landslide mapping 
and monitoring : Review of conventional and advanced 
techniques, in: Symposium of Macedonian Association for 
Geotechnics. pp. 57–72.

Milec, K., Bačić, Ž., Premužić, M., Šugar, D. (2015): Testiran-
je BiHPOS VPSP i CROPOS VPPS servisa (Testing of 
BiHPOS VPSP and CROPOS VPPS services), in: III. Kon-
gres o Katastru u BiH. (in Croatian)

Mondini, A. (2017): Measures of Spatial Autocorrelation 
Changes in Multitemporal SAR Images for Event Land-
slides Detection. Remote Sensing, 9, 554. https://doi.
org/10.3390/rs9060554

Mondini, A.C., Guzzetti, F., Chang, K.-T., Monserrat, O., 
Martha, T.R., Manconi, A. (2021): Landslide failures de-
tection and mapping using Synthetic Aperture Radar: Past, 
present and future. Earth-Science Reviews, 216, 103574. 
https://doi.org/10.1016/j.earscirev.2021.103574

Mondini, A.C., Guzzetti, F., Reichenbach, P., Rossi, M., Car-
dinali, M., Ardizzone, F. (2011): Semi-automatic recogni-
tion and mapping of rainfall induced shallow landslides 
using optical satellite images. Remote Sensing of Environ-
ment, 115, 1743–1757. https://doi.org/10.1016/j.rse.2011. 
03.006

Moritani, R., Kanai, S., Date, H., Niina, Y., Honma, R. (2020): 
Plausible reconstruction of an approximated mesh model 
for next-best view planning of SfM-MVS. The Interna-
tional Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, XLIII-B2-2, 465–471. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020- 
465-2020

Moritani, R., Kanai, S., Date, H., Niina, Y., Honma, R. (2019): 
Quality Prediction of Dense Points Generated by Structure 
from Motion for High-Quality and Efficient As-Is Model 
Reconstruction. The International Archives of the Photo-
grammetry, Remote Sensing and Spatial Information Sci-
ences, XLII-2/W13, 95–101. https://doi.org/10.5194/isprs-
archives-XLII-2-W13-95-2019



99 A Novel Approach to Landslide Monitoring based on Unmanned Aerial System Photogrammetry

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2022,  
pp. 83-101, DOI: 10.17794/rgn.2022.5.8

Muja, M., Lowe, D.G. (2009): Fast approximate nearest 
neighbors with automatic algorithm configuration, in: Pro-
ceedings of the Fourth International Conference on Com-
puter Vision Theory and Applications. SciTePress – Sci-
ence and and Technology Publications, pp. 331–340. htt-
ps://doi.org/10.5220/0001787803310340

Nichol, J., Wong, M.S. (2005): Satellite remote sensing for 
 detailed landslide inventories using change detection and 
image fusion. International Journal of Remote Sensing,  
26, 1913–1926. https://doi.org/10.1080/01431160512331
314047

Niethammer, U., James, M.R., Rothmund, S., Travelletti, J., 
Joswig, M. (2012): UAV-based remote sensing of the 
 Super-Sauze landslide: Evaluation and results. Engineer-
ing Geology, 128, 2–11. https://doi.org/10.1016/j.enggeo. 
2011.03.012

Nikolakopoulos, K., Kavoura, K., Depountis, N., Kyriou, A., 
Argyropoulos, N., Koukouvelas, I., Sabatakakis, N. 
(2017): Preliminary results from active landslide monitor-
ing using multidisciplinary surveys. European Journal of 
Remote Sensing, 50, 280–299. https://doi.org/10.1080/227
97254.2017.1324741

Nikolakopoulos, K.G., Kavoura, K., Depountis, N., Argyro-
poulos, N., Koukouvelas, I., Sabatakakis, N. (2015): Ac-
tive landslide monitoring using remote sensing data, GPS 
measurements and cameras on board UAV, in: Michel, U., 
Schulz, K., Ehlers, M., Nikolakopoulos, K.G., Civco, D. 
(Eds.), Earth Resources and Environmental Remote Sens-
ing/GIS Applications VI. p. 96440E. https://doi.org/10. 
1117/12.2195394

Nourbakhshbeidokhti, S., Kinoshita, A., Chin, A., Florsheim, 
J. (2019): A Workflow to Estimate Topographic and Volu-
metric Changes and Errors in Channel Sedimentation after 
Disturbance. Remote Sensing, 11, 586. https://doi.org/10. 
3390/rs11050586

Oniga, V.-E., Breaban, A.-I., Pfeifer, N., Chirila, C. (2020): 
Determining the Suitable Number of Ground Control 
Points for UAS Images Georeferencing by Varying Num-
ber and Spatial Distribution. Remote Sensing, 12, 876. 
https://doi.org/10.3390/rs12050876

Oppikofer, T., Bunkholt, H.S.S., Fischer, L., Saintot, A., Her-
manns, R.L., Carrea, D., Longchamp, C., Derron, M.H., 
Michoud, C., Jaboyedoff, M. (2012): Investigation and 
monitoring of rock slope instabilities in norway by terres-
trial laser scanning. Landslides and Engineered Slopes: 
Protecting Society through, 2, 1235–1241.

Oppikofer, T., Jaboyedoff, M., Keusen, H.-R. (2008): Collapse 
at the eastern Eiger flank in the Swiss Alps. Nature Geosci-
ence, 1, 531–535. https://doi.org/10.1038/ngeo258

Padró, J.C., Muñoz, F.J., Planas, J., Pons, X. (2019): Compari-
son of four UAV georeferencing methods for environmen-
tal monitoring purposes focusing on the combined use 
with airborne and satellite remote sensing platforms. In-
ternational Journal of Applied Earth Observation and Geo-
information, 75, 130–140. https://doi.org/10.1016/j.jag. 
2018.10.018

Pajares, G. (2015): Overview and Current Status of Remote 
Sensing Applications Based on Unmanned Aerial Vehicles 

(UAVs). Photogrammetric Engineering & Remote Sens-
ing, 81, 281–330. https://doi.org/10.14358/PERS.81.4.281

Park, Lee (2019): On the Use of Single-, Dual-, and Quad-
Polarimetric SAR Observation for Landslide Detection. 
ISPRS International Journal of Geo-Information, 8, 384. 
https://doi.org/10.3390/ijgi8090384

Passalacqua, P., Belmont, P., Staley, D.M., Simley, J.D., Ar-
rowsmith, J.R., Bode, C.A., Crosby, C., DeLong, S.B., 
Glenn, N.F., Kelly, S.A., Lague, D., Sangireddy, H., Schaf-
frath, K., Tarboton, D.G., Wasklewicz, T., Wheaton, J.M. 
(2015): Analyzing high resolution topography for advanc-
ing the understanding of mass and energy transfer through 
landscapes: A review. Earth-Science Reviews, 148, 174–
193. https://doi.org/10.1016/j.earscirev.2015.05.012

Pebesma, E.J. (2004): Multivariable geostatistics in S: the 
gstat package. Computers & Geosciences, 30, 683–691. 
https://doi.org/10.1016/j.cageo.2004.03.012

Pebesma, E.J., Wesseling, C.G. (1998): Gstat: a program for 
geostatistical modelling, prediction and simulation. Com-
puters & Geosciences, 24, 17–31. https://doi.org/10.1016/
S0098-3004(97)00082-4

Peternel, T., Kumelj, Š., Oštir, K., Komac, M. (2017): Moni-
toring the Potoška planina landslide (NW Slovenia) using 
UAV photogrammetry and tachymetric measurements. 
Landslides, 14, 395–406. https://doi.org/10.1007/s10346-
016-0759-6

Powers, P.S., Chiarle, M., Savage, W.Z. (1996): A digital pho-
togrammetric method for measuring horizontal surficial 
movements on the Slumgullion earthflow, Hinsdale Coun-
ty, Colorado. Computers & Geosciences, 22, 651–663. 
https://doi.org/10.1016/0098-3004(96)00008-8

Qi, S., Zou, Y., Wu, F., Yan, C., Fan, J., Zang, M., Zhang, S., 
Wang, R. (2017): A Recognition and Geological Model of 
a Deep-Seated Ancient Landslide at a Reservoir under 
Construction. Remote Sensing, 9, 383. https://doi.
org/10.3390/rs9040383

Remondino, F., El-Hakim, S. (2006): Image-based 3D Model-
ling: A Review. The Photogrammetric Record, 21, 269–
291. https://doi.org/10.1111/j.1477-9730.2006.00383.x

Röder, M., Hill, S., Latifi, H. (2017): Best practice tutorial: 
Technical handling of the UAV “DJI Phantom 3 Profes-
sional” and processing of the acquired data.

Rublee, E., Rabaud, V., Konolige, K., Bradski, G. (2011): 
ORB: An efficient alternative to SIFT or SURF, in: 2011 
International Conference on Computer Vision. IEEE, pp. 
2564–2571. https://doi.org/10.1109/ICCV.2011.6126544

Sammut, C., Webb, G.I. (2017): Encyclopedia of Machine 
Learning and Data Mining. Springer US, Boston, MA. 
https://doi.org/10.1007/978-1-4899-7687-1

Schlögel, R., Thiebes, B., Mulas, M., Cuozzo, G., Notarnicola, 
C., Schneiderbauer, S., Crespi, M., Mazzoni, A., Mair, V., 
Corsini, A. (2017): Multi-Temporal X-Band Radar Inter-
ferometry Using Corner Reflectors: Application and Vali-
dation at the Corvara Landslide (Dolomites, Italy). Remote 
Sensing, 9, 739. https://doi.org/10.3390/rs9070739

Shah, R., Deshpande, A., Narayanan, P.J. (2015): Multistage 
SFM: A Coarse-to-Fine Approach for 3D Reconstruction. 
https://doi.org/10.48550/ARXIV.1512.06235



Jakopec, I.; Marendić, A.; Grgac, I. 100

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2022,  
pp. 83-101, DOI: 10.17794/rgn.2022.5.8

Simeoni, L., Ferro, E., Tombolato, S. (2015): Reliability of 
Field Measurements of Displacements in Two Cases of 
Viaduct-Extremely Slow Landslide Interactions, in: Engi-
neering Geology for Society and Territory – Volume 2. 
Springer International Publishing, Cham, pp. 125–128. 
https://doi.org/10.1007/978-3-319-09057-3_11

Smith, M.W., Carrivick, J.L., Quincey, D.J. (2016): Structure 
from motion photogrammetry in physical geography. Pro-
gress in Physical Geography: Earth and Environment, 40, 
247–275. https://doi.org/10.1177/0309133315615805

Snavely, N., Seitz, S.M., Szeliski, R. (2008): Modeling the 
World from Internet Photo Collections. International Jour-
nal of Computer Vision, 80, 189–210. https://doi.org/ 
10.1007/s11263-007-0107-3

Spreafico, M.C., Perotti, L., Cervi, F., Bacenetti, M., Bitelli, 
G., Girelli, V.A., Mandanici, E., Tini, M.A., Borgatti, L. 
(2015): Terrestrial Remote Sensing techniques to comple-
ment conventional geomechanical surveys for the assess-
ment of landslide hazard: The San Leo case study (Italy). 
European Journal of Remote Sensing, 48, 639–660. htt-
ps://doi.org/10.5721/EuJRS20154835

Stumpf, A., Malet, J.P., Allemand, P., Pierrot-Deseilligny, M., 
Skupinski, G. (2015): Ground-based multi-view photo-
grammetry for the monitoring of landslide deformation 
and erosion. Geomorphology, 231, 130–145. https://doi.
org/10.1016/j.geomorph.2014.10.039

Sui, L., Wang, X., Zhao, D., Qu, J. (2008): Application of 3D 
laser scanner for monitoring of landslide hazards. The In-
ternational Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, 37, 277–282.

Szeliski, R. (2011): Computer Vision, Media, Texts in Com-
puter Science. Springer London, London. https://doi.org/ 
10.1007/978-1-84882-935-0

Tang, Y., Guo, Z., Wu, L., Hong, B., Feng, W., Su, X., Li, Z., 
Zhu, Y. (2022): Assessing Debris Flow Risk at a Catchment 
Scale for an Economic Decision Based on the LiDAR DEM 
and Numerical Simulation. Frontiers in Earth Science, 10, 
1–21. https://doi.org/10.3389/feart.2022.821735

Tanteri, L., Rossi, G., Tofani, V., Vannocci, P., Moretti, S., 
Casagli, N. (2017): Multitemporal UAV Survey for Mass 
Movement Detection and Monitoring, in: Mikos, M., Ti-
wari, B., Yin, Y., Sassa, K. (Eds.), Advancing Culture of 
Living with Landslides. Springer International Publishing, 
Cham, pp. 153–161. https://doi.org/10.1007/978-3-319-
53498-5_18

Tarolli, P. (2014): High-resolution topography for understand-
ing Earth surface processes: Opportunities and challenges. 
Geomorphology, 216, 295–312. https://doi.org/10.1016/j.
geomorph.2014.03.008

Teza, G., Galgaro, A., Zaltron, N., Genevois, R. (2007): Ter-
restrial laser scanner to detect landslide displacement 
fields: a new approach. International Journal of Remote 
Sensing, 28, 3425–3446. https://doi.org/10.1080/0143116 
0601024234

Thibbotuwawa, A., Bocewicz, G., Nielsen, P., Banaszak, Z. 
(2020): UAVs Fleet Mission Planning Subject to Weather 
Fore-Cast and Energy Consumption Constraints, Advanc-
es in Intelligent Systems and Computing. Springer Inter-

national Publishing. https://doi.org/10.1007/978-3-030-23 
946-6_8

Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W. 
(2000): Bundle Adjustment — A Modern Synthesis, in: 
Triggs B., Zisserman A., Szeliski R. (Eds) Vision Algo-
rithms: Theory and Practice. pp. 298–372. https://doi.
org/10.1007/3-540-44480-7_21

Tsai, M., Chiang, K., Huang, Y. (2010): The development of a 
direct georeferencing ready UAV based photogrammetry 
platform. International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences – ISPRS 
Archives, 38.

Tsai, Z.-X., You, G.J.Y., Lee, H.-Y., Chiu, Y.-J. (2012): Use of 
a total station to monitor post-failure sediment yields in 
landslide sites of the Shihmen reservoir watershed, Tai-
wan. Geomorphology, 139–140, 438–451. https://doi.
org/10.1016/j.geomorph.2011.11.008

Turner, D., Lucieer, A., de Jong, S. (2015): Time Series Ana-
lysis of Landslide Dynamics Using an Unmanned Aerial 
Vehicle (UAV). Remote Sensing, 7, 1736–1757. https://
doi.org/10.3390/rs70201736

Turner, D., Lucieer, A., Wallace, L. (2014): Direct Georefer-
encing of Ultrahigh-Resolution UAV Imagery. IEEE 
Transactions on Geoscience and Remote Sensing, 52, 
2738–2745. https://doi.org/10.1109/TGRS.2013.2265295

Ullman, S. (1979): The Interpretation of Structure from Mo-
tion. Proceedings of the Royal Society of London, 203, 
405–426.

van Veen, M., Hutchinson, D.J., Kromer, R., Lato, M., Ed-
wards, T. (2017): Effects of sampling interval on the fre-
quency – magnitude relationship of rockfalls detected 
from terrestrial laser scanning using semi-automated 
methods. Landslides, 14, 1579–1592. https://doi.org/10. 
1007/s10346-017-0801-3

Verhoeven, G., Doneus, M., Briese, C., Vermeulen, F. (2012): 
Mapping by matching: a computer vision-based approach 
to fast and accurate georeferencing of archaeological aeri-
al photographs. Journal of Archaeological Science, 39, 
2060–2070. https://doi.org/10.1016/j.jas.2012.02.022

Warrick, J.A., Ritchie, A.C., Adelman, G., Adelman, K., Lim-
ber, P.W. (2017): New Techniques to Measure Cliff Change 
from Historical Oblique Aerial Photographs and Structure-
from-Motion Photogrammetry. Journal of Coastal Re-
search, 33, 39–55. https://doi.org/10.2112/JCOASTRES-
D-16-00095.1

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., 
Reynolds, J.M. (2012): ‘Structure-from-Motion’ photo-
grammetry: A low-cost, effective tool for geoscience ap-
plications. Geomorphology, 179, 300–314. https://doi.
org/10.1016/j.geomorph.2012.08.021

Wheaton, J.M., Brasington, J., Darby, S.E., Sear, D.A. (2009): 
Accounting for uncertainty in DEMs from repeat topo-
graphic surveys: improved sediment budgets. Earth Sur-
face Processes and Landforms, 35, 136–156. https://doi.
org/10.1002/esp.1886

Yang, Z., Li, Z., Zhu, J., Preusse, A., Yi, H., Hu, J., Feng, G., 
Papst, M. (2017): Retrieving 3-D Large Displacements of 
Mining Areas from a Single Amplitude Pair of SAR Using 



101 A Novel Approach to Landslide Monitoring based on Unmanned Aerial System Photogrammetry

Rudarsko-geološko-naftni zbornik i autori (The Mining-Geology-Petroleum Engineering Bulletin and the authors) ©, 2022,  
pp. 83-101, DOI: 10.17794/rgn.2022.5.8

Offset Tracking. Remote Sensing, 9, 338. https://doi.
org/10.3390/rs9040338

Yu, X., Hyyppä, J., Karjalainen, M., Nurminen, K., Karila, K., 
Vastaranta, M., Kankare, V., Kaartinen, H., Holopainen, 
M., Honkavaara, E., Kukko, A., Jaakkola, A., Liang, X., 
Wang, Y., Hyyppä, H., Katoh, M. (2015): Comparison of 
Laser and Stereo Optical, SAR and InSAR Point Clouds 
from Air- and Space-Borne Sources in the Retrieval of 
Forest Inventory Attributes. Remote Sensing, 7, 15933–
15954. https://doi.org/10.3390/rs71215809

Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanack-
er, V., Van Oost, K. (2019): Evaluating the potential of 
post-processing kinematic (PPK) georeferencing for UAV-
based structure- from-motion (SfM) photogrammetry and 
surface change detection. Earth Surface Dynamics, 7, 
807–827. https://doi.org/10.5194/esurf-7-807-2019

Zhao, C., Lu, Z. (2018): Remote Sensing of Landslides—A 
Review. Remote Sensing, 10, 279. https://doi.org/10.3390/
rs10020279

URL 1: https://www.cropos.hr/servisi/vpps (accessed 17th 
March 2022)

URL 2: https://www.manualsdir.com/manuals/164878/leica-
tps1200.html (accessed 11th May 2022)

URL 3: https://github.com/mapillary/OpenSfM (accessed 23rd 
September 2020)

URL 4: https://www.dji.com/hr/phantom-4-pro-v2/specs (ac-
cessed 16th April 2022)

URL 5: https://support.pix4d.com/hc/en-us/articles/2025586 
79-Quality-report-specifications (accessed 10th March 
2022)

URL 6: https://www.ugcs.com (accessed 12th February 2021)

SAŽETAK

Novi pristup praćenja pomaka klizišta pomoću bespilotnih  
fotogrametrijskih sustava

Klizišta predstavljaju velike opasnosti koje mogu uzrokovati katastrofalne ljudske žrtve te nanijeti veliku materijalnu 
štetu. Da bi se spriječile ili umanjile sve moguće posljedice koje klizišta prouzročuju, važno je poznavati kinematiku 
kretanja površinskih i podzemnih kliznih masa klizišta. Geodetske tehnike izmjere mogu se koristiti za potrebe praćenja 
te za izradu kinematičkoga modela klizišta. U današnje vrijeme jedna od najčešće korištenih geodetskih tehnika za po-
trebe praćenja klizišta jest fotogrametrijsko snimanje pomoću bespilotnih zrakoplovnih sustava. Rezultati su takvih 
snimanja gusti oblaci točaka, digitalni modeli terena te digitalne ortomozaik karte, a na temelju usporedbe tih rezultata 
u dvjema mjernim epohama mogu se odrediti pomaci klizišta. Ovaj rad predstavlja novu metodu obrade podataka s 
novim pristupom za određivanje pomaka klizišta na temelju podataka fotogrametrijskoga snimanja bespilotnim zrako-
plovnim sustavima. Glavna je prednost nove metode u tome što ne zahtijeva izradu gustih oblaka točaka, digitalnih 
modela terena ili digitalnih ortomozaik karata za određivanje pomaka. Primjenjivost i točnost nove metode ispitane su 
na testnome polju sa simuliranim pomacima poznatih vrijednosti čiji su se iznosi kretali u rasponu od 20 do 40 cm u 
različitim smjerovima. Nova metoda uspješno je odredila te pomake s 3D točnošću od ±1,3 cm.

Ključne riječi:
klizište, praćenje klizišta, bespilotni zrakoplovni sustavi, struktura iz pokreta, fotogrametrija
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