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Abstract
An essential task in the open-pit mine optimizing process is determining the extraction time of material located in the 
ultimate pit, considering some operational and economic constraints. The proper design of pushbacks has a significant 
impact on the optimum production planning. On the other hand, some uncertainty sources such as in-situ grade cause 
both deviations from production and financial goals. This paper presents an extension of a multi-stage formulation for 
risk-based pushback designing that utilizes the ant colony optimization (ACO) algorithm to solve it. For more detailed 
studies, two different strategies were developed according to statistical and probabilistic issues. The data of Songun cop-
per mine located in NW Iran was used to evaluate the ability of the proposed approach in controlling the risk of deviation 
from production targets and increasing the project value. The results indicated the effectiveness of the proposed ap-
proach in pushback designing based on geological uncertainty. Examining different strategies showed that the technique 
based on multiple probability produces better solutions.
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1. Introduction

Long-term open pit mine production scheduling 
(OPMPS) aims to identify the extraction time and desti-
nation of extracted material. Due to a large number of 
blocks inside the ultimate pit limit, the pit divides into a 
series of sub-pits termed “pushbacks”, “cutbacks” or 
“phases” such that the net present value (NPV) is maxi-
mized (Hustrulid et al., 2006). Pushbacks greatly affect 
the meeting of production goals, postponing waste pro-
duction, providing a minimum mining width, and guar-
anteeing safe pit slopes. A popular procedure to design 
pushbacks starts with the generation of some nested pits, 
which is done by modifying the block economic value 
and repetitions of the ultimate pit limit algorithms, such 
as Lerchs-Grossman graph methodology. The resulting 
nested pits are then used as a good guide to choose a pos-
sible order of pushbacks (see Figure 1). This approach 
suffers from production of pits sizes and the probability 
of being disconnected by pushbacks (Meagher et al., 
2014). Nancel-Penard et al. (2021) propose an integer 
linear programming model (ILP) to maximize profit 
while respecting geospatial and design constraints, such 
as minimum width at the bottom of the mine and be-

tween successive pushbacks. Yarmuch et al. (2021) 
proposed an integer programming (IP) model to gener-
ate mineable pushbacks using a closeness factor that 
compares two designs. Another weakness of all conven-
tional approaches is ignoring any kind of uncertainty, 
which leads to create unrealistic pushbacks in terms of 
operational requirements. The major uncertainties in 
mining projects are classified as geological, technical, 
and economic uncertainties (Dimitrakopoulos, 1998). 
According to recent studies, geological uncertainty is 
considered as the main source of uncertainty due to the 
70% deviation from production and financial goals. 
(Vallee, 2000). A 10~25% NPV increment has been re-
ported due to using stochastic optimizers (Godoy et al., 
2004; Leite et al., 2009). Stochastic optimization meth-
ods based on the utilization of some ore body simula-
tions called “Realization” have attracted much more at-
tention over the past decade to overcome the inherent 
shortcomings of the conventional approaches. Original-
ly, risk analysis in mine planning based on realizations 
was discussed by Ravenscroft (1992). Gholamnejad et 
al. (2007) introduced a new method to integrate the 
grade uncertainty in the pushback design process based 
on the conventional approach with a little difference in 
the concept of parametric analysis. Unlike the regular 
decrement of the block value in the conventional nested 
pit design, the economic value of each block would be 
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reduced in each step proportional to the block uncertain-
ty in the proposed algorithm. This means that if there are 
two blocks with the same grade and different degrees of 
uncertainty, the economic value of the highly uncertain 
block will decrease more than the others. Consuegra et 
al. (2010) developed a stochastic integer programming 
(SIP) model to incorporate the grade uncertainty into the 
pushback design process. The approach involves gener-
ating nested pits, combining them to a certain number of 
pushbacks based on the obtained NPVs, and finally, gen-
erating a long-term production planning based on a dif-
ferent number of pushbacks using the SIP formulation 
(Dimitrakopoulos et al., 2008; Ramazan et al., 2012). 
Meagher et al. (2009) developed a parametric maxi-
mum-flow/minimum-cut approach to quantify the value 
of management flexibility in the production planning 
process in the presence of geological and economic un-
certainties. A parametric minimum cut algorithm is then 
applied to design the pushback that meets the production 
goals in the early stages by exploring blocks with a high 
probability of being ore, not only high value. Another 
stochastic pushback design approach based on paramet-
ric maximum flow algorithm was developed by Asad et 
al. (2013) to control the sizes of pushbacks. Goodfellow 
et al. (2013) developed a stochastic pushback design al-
gorithm for complex multi-process open-pit mines un-
der geological uncertainty that perturbs an initial design 
using the simulated annealing algorithm. Bai et al. 
(2018) developed a new algorithm to generate push-
backs that takes to account complex geometric require-
ments such as slopes, phase bench and bottom width, 
smoothness, and continuity. It is shown that almost all 
frameworks suffer from explicit integration of grade un-
certainty to create an optimal single solution, especially 
in large orebodies. The current study introduces a sto-
chastic model to design pushbacks considering the geo-
logical uncertainty which is solved by the Ant Colony 
Optimization (ACO) algorithm. This method is able to 
optimize large deposits with multiple processing desti-
nations and zones with variable slope angles. In this re-
search, first, the modeling procedure with two different 
strategies is outlined, and then the difference between 
obtained and deterministic solutions is discussed.

2. Formulation of the general problem

Like OPMPS, the pushback design could also be ef-
ficiently modeled as an integer programming (IP) for-
mulation to maximize the NPV and subject to some 
technical constraints, i.e. Equations 1 to 9.

  (1)

Subject to:

 , for n = 1 to N, p = 1 to P (2)

Slope constraint: The extraction of each block de-
pends on the earlier extraction of its predecessors.

 , for m = 1 to N, p = 1 to P (3)

Where (the predecessor blocks of given block)
Reserve constraint: A block extracts only once.

 , for n = 1 to N (4)

Processing capacity: The total ore processed during 
each pushback should be within the allowable range.

 , for p = 1 to P (5)

 , for p = 1 to P (6)

Mining capacity: The total material mined during 
each pushback should be within the allowable range.

 , for p = 1 to P (7)

 , for p = 1 to P (8)

Average grade constraint: Controls the minimum al-
lowable average grade of material mined during each 
pushback.

 , for p = 1 to P (9)

Where:
•	 N is the total number of blocks,
•	 n is the block number,
•	 P is the total number of pushbacks,

Figure 1: Long-term mine planning process and including pushback design
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•	 p is the pushback number,
•	 Vn is discounted value of the  block,
•	 xn,p is a binary variable that represents the extraction 

of the nth block in pth pushback,

  if extraction is done in pushback p otherwise

•	 on indicates the material type of  block,

  if nth block is an ore block otherwise

•	 wn shows the weight of the  block,
•  and  indicate the maximum and minimum of 

processing capacity,
•  and  denote the maximum and minimum of 

mining capacity,
•	 Np shows the total number of blocks extracted in  

pushback,
•	 gn denotes the average grade of  block,
•  indicates the lower limit of average grade.

3.  Modification of pushback design 
algorithm considering the geological 
uncertainty

The formulation and the solving process in the pro-
posed approach is similar to the one used for mine pro-
duction scheduling using the ACO algorithm by Gilani 
et al. (2016). In the same way, goals, and constraints 
such as maximizing the NPV, meeting production goals, 
minimizing the stripping ratio, and ensuring the safety 
slope requirements for each phase have been considered. 
To specify the initial goals of each phase, an initial push-
back design is required, which can be created via con-
ventional algorithms. Then, the near-optimal pushback 
design yielding the mentioned goals is defined by the 

new proposed ACO algorithm. The final solution is a 
pushback design that mimics the same average tonnages 
of each pushback in the starting design and simultane-
ously minimizes the variability of the tonnages sent to 
the various destinations over the set of geological reali-
zations. Integration of geological uncertainty in the al-
gorithm was done using two new block models named 
“E-Type block model” and “Risk block model”. The E-
Type block model is the average of all realizations. The 
Risk block model was created by calculating the extrac-
tion probability of each block in each pushback using all 
realizations. The general IP formulation has been slight-
ly modified to account the variability of metal grade, 
which will be solved via the new proposed ACO algo-
rithm, both of which are described below.

3.1. Modified formulations

The modified formulation seeks to find a solution that 
has minimum deviation from a tonnage target over all 
realizations. In this way, a new probabilistic factor is 
added to Equation 1 as follows:

 maximize  (10)

subject to constraints (2) to (9),
Where:

•  represents the extraction probability of the nth 
blockin the pth pushback.

•	 Cpr is a coefficient cost related to  as follows:

 Cpr = 100 – , pr = 1,…,100 and (Cpr < Cpr–1)

•	 S is the total number of realizations,
•	 s is the realization number.
The values of  are the constituents of the Risk 

block model and are obtained using all realizations and 
their created pushbacks by conventional algorithms 
(Equation 11).

Figure 2: The classification of meta-heuristic optimization algorithms
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  (11)

Where  is a binary variable that takes 1 if the nth block 
of sth realization locates in pth pushback, and otherwise, 
takes 0. According to the objective function (Equation 
10), the blocks with high values of  will be located 
in the earlier pushbacks.

In the large-scale mines with millions of blocks, in 
other words millions of variables, solving the problem is 
very difficult or costly. On the other hand, the non-line-
arity of the objective function complicates the situation. 
So, meta-heuristics algorithms such as the ACO will be 
efficient and can simplify the formulation by implicitly 
obeying slopes and various other constraints (Gilani et 
al., 2016).

3.2. The implementation of the ACO procedure

The meta-heuristic algorithms as summarized in Fig-
ure 2 can be classified into two classes: nature-based 
and human-inspired algorithms. In the first class, the 
searching mechanism is inspired by biological or phy-
sical phenomena. However, in the second class, the 
 human phenomena are used to explore the search  
space. The nature-based algorithms could be classified 
into evaluation-based, physic-based, math-based, and 
swarm-based algorithms (Poormirzaee et al., 2021).

The ACO is a swarmed-based algorithm that has been 
successfully applied to solve many engineering prob-
lems such as assignment problems, vehicle routing, and 

traveling salesman due to its efficiency (Dorigo et al., 
2019). The proposed technique uses the ACO algorithm 
to solve the modified IP formulation. The application of 
the ACO approach in OPMPS was been introduced by 
Sattarvand et al. (2009, 2013). The ACO algorithm de-
veloped by Dorigo et al. (2004) was inspired by the 
search behaviour of ants. Naturally, ants wander ran-
domly to find food, then return to their colony after find-
ing it, and finally deposit a chemical substance called a 
“pheromone”. The pheromone trails help other ants to 
travel non-randomly by transmitting a message to them. 
The amount of the pheromone in the paths depends on 
the their lengths, the number of ants passing through 
them, and the rates of deposition and evaporation of the 
pheromone. In long distances, where the reduction of the 
pheromone is greater than its deposition, eventually no 
trace of the pheromone remains. However, in shorter 
routes, the pheromone deposition overcomes its reduc-
tion and this leads to the attraction of other ants. Figure 
3 illustrates the pseudo-code of the proposed ACO ap-
proach to design the mining pushbacks considering the 
grade uncertainty. The basic principle in ACO is to start 
with a sub-optimal solution and gradually improve it in 
several steps during its own specific process.

3.2.1.  Initial solution and pheromone 
initialization

The primary process of the algorithm is assigning 
some initial pheromones to blocks. In this regard, the 

Figure 3: Pseudo code of the ACO Algorithm to pushback design  
considering geological uncertainty
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pheromone values ( ) are initialized based on the initial 
solution, which represents the attractiveness of the nth 
block to locate on the pit limit of the pth pushback. The 
primary pushback design stores as an array of blocks  
( ) whose elements will take a pushback number (1 to 
p). The initial values of pheromone (τ0) assigned in a 
way that the pit limits or an imaginary layer just above 
the topography surface take the higher values (Sat-
tarvand, 2009; Sattarvand et al., 2013). Two new rules 
are considered to apply geological uncertainty: creating 
the initial pushback design by the conventional approach 
for the E-Type block model, and further pheromone dep-
osition based on the  values (Equation 12):

  (12)

Where Cτ is a coefficient to control the impact of 
 on pheromone initialization. The experiments in-

dicate that the uniform initial pheromone leads to in-
crease the running time (Dorigo et al., 2004). Thus, the 
initial pushback design was improved by utilizing the 
deterministic version of ACO (Dtrm-ACO) in order to 
generate the initial solution.

3.2.2. Schedule encoding and decoding

Due to the special structure of the ACO which is 
based on path searching, the initial pushback design 
should be represented in the same shape. In this way, the 
process of searching the depth of pushbacks will be done 
in the columns of block instead of a 3D block model, and 
any subsequent process would be carried out on these 
columns. Consequently, any 3D pushback design ( ) 
was encoded by a 2D array (pitdepth(i,j,p)), which indi-
cates the depth of  pushback along column (i,j).

The data stored in pitdepth(i,j,p) represents the deepest 
surface of pth pushback, so a decoding process should be 
done to determine the blocks of pth pushback. In this re-
gard, a transformation procedure is performed from the 
first pushback, and all blocks of column (i,j) located be-
tween pitdepth(i,j,p) and pitdepth(i,j,p–1) are considered as  
pth pushback. It should be noted that the topography is 
considered as the previous pit depth for the first push-
back.

3.2.3. Iterations

In each iteration, the pit depth determination process 
is performed only for ore-containing columns. The pher-
omone value of each block reflects its attractiveness to 
be selected as the deepest block of pushback in the col-
umn under investigation. In the next step, the pheromone 
updation process is performed so that the blocks around 
the previous non-optimal pit give higher values based on 
the quality of the previous solutions. Determining the 
depth, normalizing, and updating the pheromone are de-
scribed in the following sub-sections as the three main 
steps of each iteration.

3.2.3.1. Depth determination

This process involves determining the depth of ores 
containing columns based on their pheromone values 
and some other heuristic information, such as the eco-
nomic value of the blocks, in order to create a non-nor-
malized pushback. To do that, a probabilistic rule named 
“random proportional rule” is used by artificial ant  to 
choose the  block as the pit floor of the given column:

  (13)

Where τn and ηn are the pheromone value and heuris-
tic information of the nth block, respectively. The relative 
influence of the pheromone value and the heuristic infor-
mation is represented by two parameters, α and β. The 

 is the set of feasible choices of ant k. In this study, by 
choosing the Ant Colony System (ACS) as the appropri-
ate variant, its special selection rule called “pseudoran-
dom proportional rule” is used by the ant k to choose the 
pit depth as follows:

 , if q ≤ q0 otherwise (14)

Where q is a random variable uniformly distributed in 
[0,1],  is a parameter (0	≤	 q0	 ≤	 1), and J is a random 
variable selected according to Equation 13 (with α = 1).

Since this process is applied only in columns contain-
ing ore blocks, the depth of completely waste columns is 
defined based on the adjacent columns during the nor-
malization process. Experiments show that limiting the 
depth determination process is more effective. In this 
regard, the search process at each stage is limited to the 
biggest possible pit and the depth of the previous push-
back (or topography).

3.2.4. Constraint handling

Like other meta-heuristic algorithms, there is no ex-
plicit mechanism for managing constraints in the ACO 
algorithm. Here, an innovative approach was used to 
handle the slope constraint by changing the pit depth in 
each column and normalizing it. In addition to satisfying 
the slope constraint, the normalized pit also covers the 
previous non-normal pit (Gilani et al., 2015). A penalty 
function is added to the objective function to control the 
rest of constraints as follows:

  maximize  (15)

subject to constraints (2), (3) and (4) and:

 

  (16)
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Where:
• : Unit surplus cost for mining 

more than  in pth pushback (  is the undiscount-
ed unit surplus cost).

• : Unit shortage cost for mining 
less than  in pth pushback (  is the undiscounted 
unit shortage cost).

• : Unit surplus cost for ore extract-
ing more than  in pth pushback.

• : Unit shortage cost for ore ex-
tracting less than  in pth pushback.

• : Unit shortage cost for average 
grade less than  in pth pushback.

•  and , represent the shortage and the surplus 
of rock materials mining during pth pushback in sce-
nario s, respectively.

•  and , denote the shortage and the surplus of 
ore mining during pth pushback in scenario s, re-
spectively.

• , denotes the shortage in average grade of ore 
sent to plant during pth pushback in scenario s.

As seen in the penalty function P(x), the pushback 
design of all realizations is utilized to calculate the in-
curred shortages and surpluses.

3.2.5. Pheromone update

The pheromone values are updated during two stages 
of evaporation and deposition. The first stage decreases 
the amount of pheromone at a uniform rate so that the 
wrong solutions are ignored. In the next stage, some 
pheromone is reaccumulated in the blocks that partici-
pated in pushback construction. There are different strat-
egies to update the pheromone values, such as ant sys-
tem (AS), elitist ant system (EAS), ranked-based ant 
system (ASrank), max-min ant system (MMAS), and ant 
colony system (ACS). The main difference between 
pheromone update systems is in the way blocks are se-
lected for the update process and the amount of phero-
mone accumulation by them. In AS, all generated push-
backs (solutions) are allowed to participate in phero-
mone deposition. However, in EAS, MMAS and ACS, 
only the best-so-far solution allows the accumulation of 
excess pheromones. MMAS uses special constraints on 
pheromone deposition to avoid falling into local optima. 
Unlike the previous ones, the ASrank strategy allows a 
number of reasonable solutions to accumulate phero-
mones.

In this research, the ACS method was used due to its 
running time and required computational resources 
(Soleymani Shishvan et al., 2015) and its more potent 
search process (Dorigo et al., 2004).

The pheromone updation in the ACS is done by two 
rules “local and global pheromone update” (Equations 
17-18). The first is performed immediately after build-
ing each pushback, and the second one is done after each 
iteration only by the best-so-far ant (Dorigo et al., 2004).

local update:  (17)

global update:  (18)

Where ξ	and ρ	are the local and global rates of evapo-
ration, respectively. τ0 is the initial pheromone value, 
and  is the deposited pheromone by the best-so-far 
ant on the nth block.

Another pheromone update rule is performed based 
on the degree of uncertainty of the blocks in order to ap-
ply geological uncertainty in the algorithm (Equation 
19). In this regard, the Risk block model is used and 
blocks with high values of  receive more phero-
mone and have a higher chance of being located in the 
initial pushbacks.

  (19)

In order to further investigate, two different uncer-
tainty-based strategies named Single risk-based (ACO-
SRB) and Multiple risk-based versions of ACO (ACO-
MRB) were developed for updating the pheromone val-
ues according to the value of . The pheromone 
update in the first strategy is based on a fixed probability 
of Prob, and the nth block of the pth pushback is allowed 
to receive pheromone values if . In this 
case, pushbacks are created by blocks with a risk lower 
than the threshold. While the update process in the sec-
ond strategy is performed on all blocks according to 
their . In this case, blocks with probability values 
of , or in other words, low-risk blocks, will have 
more chances to be mined in the initial pushbacks, and 
vice versa.

3.2.6. Algorithm termination

The algorithm terminates after a certain iteration, or if 
the solution is not improved after several iterations.

4. Numerical results and discussion

The proposed approach was used for pushback de-
signing of Songun mine in the presence of geological 
uncertainty. Songun is a large open-pit copper mine with 
a truck-and-loader mining system with a mining capac-
ity of 46 Mt per year and an average grade of 0.661%. 
Songun deposit is classified into two categories: super-
gene and hypogene. The Supergene region, containing 
182 Mt of ore material with a grade of 0.62%, makes up 
12% of the total ore body and is considered the primary 
feed of concentrators in the early years. The ore tonnage 
of hypogene is 1300 Mt with an average grade of 0.44%. 
The deposit includes 2,515,968 blocks with dimensions 
of 25 × 25 × 12.5 meter. Five areas with different stable 
slope angles according to geotechnical studies have been 
considered, as shown in Table 1.

20 realization of the ore body containing copper 
grades, recovery, tonnage, and type of materials are sim-
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ulated by Sequential Gaussian Simulation (SGSim) ap-
proach. The initial pushback designs that prepared for all 
realizations and the E-Type block model are used to ob-
tain the Risk block model and initial solution. The num-
ber of pushbacks for all ore bodies is considered four, 
based on experience and the total number of blocks. The 
economic parameters used in the model are prepared 
based on actual data, as shown in Table 2.

• Upper and lower bounds are considered as 3 and 0, 
respectively;

• α and β are set to 1 and 0.15, respectively;
•	 Cprob = 5;
• Initial pheromone (τo) = 0.1;
• Minimum pheromone (τmin)= 0.001;
• Pseudorandom factor (q0) = 0.7.
Firstly, the initial sub-optimal pushback designs gen-

erated for 20 realizations and the E-Type block model 
were improved by the deterministic version of ACO 
(ACO-Dtrm) to create the initial solution and Risk block 
model. Then, ACO-SRB and ACO-MRB strategies were 
implemented on the initial solution to improve it. As 
shown in Figures 4, 5, and 6, the improvement in fitness 
values by ACO-SRB and ACO-MRB was 1.48% and 
1.76%, respectively. The time required for this improve-
ment was 60 minutes. It can be seen that ACO-SRB has 
led to better and more effective results in some cases, 
especially in cases with a lower  value. It seems that 
ACO-SRB has more potential to fall into local optima as 
well as incomplete search of the entire domain. Howev-
er, it is a good option for planning with fixed risk. On the 
other hand, ACO-MRB has a higher chance of finding 
better solutions due to searching unexplored or less ex-
plored domains with low values of Prob.

A general comparison is made between the initial 
pushback design and the improved ones by the ACO-
Dtrm, ACO-SRB, and ACO-MRB for the estimated, re-
alizations, and E-Type block models. Figure 7 shows 
that all three versions of ACO can significantly increase 
the fitness value of the original pushback designs. The 
ACO-Dtrm resulted in an increment in the fitness value 
of the initial pushback designs for the estimated, all re-
alizations, and E-Type block models by 37.32%, 31.74%, 
and 30.86%, respectively.

A more detailed comparison between ACO-SRB and 
ACO-MRB is presented in Table 4 to indicate their ef-
ficiency in providing the final solution in two different 
modes. In the first one, the initial solutions are created 
by a conventional approach for estimated and E-Type 
block models. Nevertheless, the improved solution by 
ACO-Dtrm for E-Type block model is considered as the 
initial solution in the second mode. The apparent result 
is that ACO-MRB is slightly better than ACO-SRB (in 
90% of the cases), especially when the value of is high. 
Considering s from 0 to 100%, using ACO-SRB, an av-

Table 1: Different geotechnical regions

Region Azimuth (degree) Slope angle
a 0 38°
b 90 38°
c 130 30°
d 235 30°
f 275 36°

Table 2: Economic parameters used to pushback generation

Parameter Value Unit
Price 5,500 $/ton (metal)
Cost of sale 20 $/ton (metal)
Mining cost of waste materials 1.56 $/ton
Mining cost of ore materials 1.75 $/ton
Processing cost 11.85 $/ton
Expenses cost 2.57 $/ton
Dilution 8 %
Mining recovery 95 %
Discount rate 10 %

As mentioned before, some penalty functions, as 
summarized in Table 3 are considered to handle the con-
straints.

A series of primary tests were conducted in order to 
determine the appropriate parameters of ACO as fol-
lows:

• Maximum number of iterations = 1000;
• Maximum number of consecutive iterations with-

out improvement = 250;
• Number of artificial ants = 10;
• Global evaporation rate (ρ) = 0.1;
• Local evaporation rate (ξ) = 0.15;

Table 3: Penalty functions considered to handle the constraints

Constraint Condition of violation the constraints Penalty value
Mining capacity less than 37 Mt ( ) 10% increasing the overhead and mining costs 

more than 46 Mt ( ) 20% increasing in mining cost
Milling capacity less than 12 Mt ( ) 10% increasing the overhead and mining costs

more than 14 Mt ( ) Waste of extracted ore
Average grade

less than the 0.55% ( ) Change the plant recovery as: 
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Figure 4: The performance of ACO-SRB in pushback design with different probabilities

Figure 5: The performance of ACO-SRB in pushback design with Prob=100%

erage improvement of 1.48% was achieved in the fitness 
value (ACO-MRB resulted in a 1.76% improvement). 
Table 5 shows the material distribution, average grade, 
and lifetime of each pushback provided by ACO-MRB 
approach. A more detailed comparison is performed in 

terms of material quantity, average grade, and obtained 
fitness value for each pushback. Figures 8, 9, 10 and 11 
show a clear view of changes in the final solution created 
by the ACO-MRB strategy compared to the convention-
al and the ACO-Dtrm methods.
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Figure 6: The performance of ACO-MRB in pushback design

Figure 7: Comparison between conventional and proposed approaches

As can be seen in Tables 6 and 7, although the NPV 
is increased in all pushbacks, this increase is relatively 
higher in the first and last pushbacks. The approach led 
to a reduction in the stripping ratio for all pushbacks and 
an increment in the ore amount for the first pushback. 

The average grade of ore material has increased in all 
pushbacks, and this increase is relatively higher in the 
last pushbacks in order to overcome the risk associated 
with the grade uncertainty. From a physical size point of 
view, the created pushbacks have almost equal size.
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Figure 8: Comparison between 
the ACO-MRB, conventional, 
and ACO-Dtrm methods  
in terms of ore production

Figure 11: Comparison 
between the ACO-MRB, 
conventional, and the  
ACO-Dtrm approaches  
in term of NPV

Figure 10: Comparison 
between the ACO-MRB, 
conventional, and the  
ACO-Dtrm methods in term  
of metal content

Figure 9: Comparison between 
the ACO-MRB, conventional, 
and the ACO-Dtrm methods  
in the aspect of striping
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Table 7: The efficiency of ACO-MRB strategy related to ACO-Dtrm

Pushback number
Efficiency (%)

Total rock Ore Average grade NPV Lifetime
1 -17.63% -23.22% 1.49% 0.53% -17.6%
2 -12.04% -4.54% 0.00% 9.86% -12.0%
3 -1.00% -1.11% -1.75% -6.37% -1.0%
4 4.54% 13.23% 0.00% 18.91% 4.5%
total -9.06% -9.41% 0.00% 1.76% -9.1%

Table 4: Comparison between the ACO-MRB, and ACO-SRB methods

Improvement (%) ACO-
MRB

ACO-SRB (%)
100 90 80 70 60 50 40 30 20 10 1

related to Estimated 37.64 37.07 37.10 37.21 37.28 36.88 37.35 37.47 36.36 37.94 37.10 37.10
related to E-Type 33.16 32.61 32.64 32.75 32.81 32.43 32.88 33.00 32.89 33.45 32.64 32.63
related to Improved E-Type 1.76 1.34 1.36 1.45 1.49 1.20 1.55 1.64 1.56 1.98 1.36 1.35
Time (Hour) 0.83 0.73 0.71 0.63 0.71 1.21 1.01 1.03 1.21 1.21 0.90 1.13

Table 5: the summary of created pushback considering geological uncertainty by ACO-MRB

Pushback number Total rock (ton) Ore (ton) Stripping ratio Average grade (%) Lifetime (Year)
1 511,739,482 170,537,080 2.00 0.68 11
2 410,794,199 136,520,625 2.01 0.61 9
3 486,654,189 146,789,961 2.32 0.56 10
4 211,368,008 56,941,230 2.71 0.58 4
total 1,620,555,879 510,788,896 2.26 0.61 34

Table 6: The efficiency of ACO-MRB strategy related to the conventional approach

Pushback number
Efficiency (%)

Total rock Ore Average grade NPV Lifetime
1 21.07% 28.89% 1.49% 30.78% 22.22%
2 -54.00% -51.74% 1.67% 21.80% -52.63%
3 33.69% 17.84% 5.66% 253.70% 25.00%
4 -33.22% -28.89% 5.45% 122.53% -28.57%
total -18.82% -17.59% 3.40% 33.16% -18.60%

5. Conclusions

In the current study, a meta-heuristic approach based 
on Ant Colony Optimization (ACO) is proposed to inte-
grate geological uncertainty in the pushback designing 
process using some realizations of the deposit. In the 
first step, the design process was done by conventional 
methods using the created realizations, which was par-
tially improved using the ACO-Dtrm approach in the 
next stage. To improve the fitness value of the initial 
 solutions created by the ACO-Dtrm procedure, two dif-
ferent strategies were considered based on a single 
 predefined probability value (Prob) and multiple proba-
bility values , respectively. The procedure was tested in 

a case study of a large copper mine. The results indicate 
that the proposed approach leads to a single pushback 
design with improved NPV while incorporating grade 
uncertainty. The results revealed that the multiple prob-
ability strategy appears to produce better results. How-
ever, in situations with a high degree of flexibility, the 
single probability strategy is more practical. The pro-
vided pushback design by the second strategy has an 
 improvement of 37.64% and 33.16 compared to the 
pushback design created by the conventional approach 
for the estimated and the E-Type block models, respec-
tively. In addition, the improvement compared to the 
ACO-Dtrm approach for the E-Type block model was 
also 1.76%.
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SAŽETAK

Nova metoda za projektiranje faznoga razvoja kopa pri geološkim  
nesigurnostima bazirana na algoritmu optimizacije kolonijom mrava

Uzimajući u obzir neka operativna i ekonomska ograničenja, u procesu optimizacije površinskoga kopa bitan je zadatak 
određivanje vremena eksploatacije materijala koji se nalazi na najdubljoj etaži. Pravilan dizajn veličine zahvata etaže ima 
znatan utjecaj na optimalno planiranje proizvodnje. S druge strane, neki izvori nesigurnosti, kao što su terenske nepo-
znanice, uzrokuju odstupanja od proizvodnih i financijskih ciljeva. Ovaj članak predstavlja proširenje višesegmentnoga 
modeliranja za projektiranje faznoga razvoja kopa temeljenoga na riziku koji se za rješavanje koristi algoritmom optimi-
zacije kolonijom mrava (eng. ant colony optimization, ACO). Za detaljnije proučavanje razvijene su dvije različite strate-
gije prema statističkim i probabilističkim načelima. Za procjenu sposobnosti predloženoga pristupa u kontroli rizika 
odstupanja od proizvodnih ciljeva i povećanja troškova projekta korišteni su podatci iz rudnika bakra Songun koji se 
nalazi u sjeverozapadnome Iranu. Rezultati su pokazali učinkovitost predloženoga pristupa u projektiranju faznoga 
 razvoja kopa kod geološke nesigurnosti. Ispitivanje različitih strategija pokazalo je kako metoda višestruke vjerojatnosti 
daje bolje rezultate.

Ključne riječi: 
površinski kop, fazni razvoj kopa, stohastička optimizacija, geološka nesigurnost, algoritam optimizacije kolonijom 
mrava
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