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Abstract
High quality coke is a key raw material for the metallurgical industry. The characteristics of the coal have a significant 
influence on the parameters of the coke produced and, consequently, on the valuation of coal deposits and the econom-
ic assessment of mining projects. Predicting the quality of coking coal allows for the optimisation of production pro-
cesses, including the planning and management of operations and the early detection of quality problems. In this study, 
using the principles of a smart mine, it is proposed to determine the quality of coal based on the combination of mining 
and geological conditions of mineral deposits and its quality indicators. Possible interrelationships between the quality 
of the coal in the deposit and the characteristics of the final product have been identified. A neural network is used to 
determine the priority of individual indicators that have a significant impact on the quality of coking coal. An important 
part of the research is its practical implementation in the conditions of the Jastrzębska Spółka Węglowa SA. Qualitative 
and quantitative parameters of coking coals were obtained for each mine of the region by the method of sampling and 
statistical processing of data such as: degree of metamorphism, thickness, deviation of volatile substances, presence of 
phosphorus, ash content, etc. For their evaluation, the Group Method of Data Handling was used to compare the factors 
of quality indicators depending on the priority of influence on the final characteristics of the coking coal. Based on the 
results obtained, it is shown that not all coal quality indicators have a significant impact on the quality of the final prod-
uct. The study shows that it is possible to predict the main indicators (CRI – Coke Reactivity Index, CSR – Coke Strength 
after Reaction) of coke quality using neural networks based on a larger number of coal quality parameters and to elimi-
nate parameters that have virtually no influence on the value of the final product. This method can also be used to im-
prove the results of economic valuation of a deposit and to better plan exploration and mining operations.
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1. Introduction

Today, information and technology play a key role in 
all sectors of society and the economy in what is known 
as the Information Age or Digital Age. Technology 4.0 
offers significant changes and opportunities across in-
dustries, including manufacturing, transport, energy, and 
others (Fuchs, 2016). The rapid development of com-
puter technologies, the internet, mobile communica-
tions, artificial intelligence, and other digital innovations 
are creating new relationships in society and the indus-
trial sector (Pathak, 2022; Briševac and Kujundžić, 
2016; Madandoust et al., 2012). While they promise to 
increase productivity, efficiency, and innovation, they 
also pose challenges related to data privacy, cybersecu-
rity, and workforce adaptation. Embracing and leverag-
ing these technologies can lead to transformative bene-
fits and competitive advantages in the digital age (Poly-

anska, 2022). However, it also opens many opportunities 
for innovation, development, and improvement, includ-
ing mining, medicine, energy, and others (Smith and 
Quiros, 2012). Unfortunately, despite minor develop-
ments in AI, these processes have not yet significantly 
affected mining (Dyczko, 2023a).

Smart Mining and Grid Mining are two related con-
cepts that focus on improving the efficiency, sustainabil-
ity, and environmental impact of mining operations. 
Smart mining refers to the use of advanced technologies, 
such as artificial intelligence, Internet of Things (IoT) 
and automation, to improve the productivity, safety, and 
sustainability of mining processes. It involves the inte-
gration of various digital systems and data-driven tech-
nologies to optimize operations and decision-making 
(Dychkovskyi et al., 2019). The main aspects of smart 
mining mean the implementation of various automation 
and robotics on the surface and underground, monitoring 
and control, analytics and predictive modelling, correc-
tion of mining processes of big data operating other min-
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ing and near-mining activities (Sharma and Maity, 
2018; Sdvyzhkova et al., 2022). This improves efficien-
cy, reduces labour requirements, and enhances safety, 
proactive maintenance, early detection of problems and 
improves all operational mining issues (Downes 2020). 
The ability to provide real-time monitoring using sen-
sors, cameras, and IoT devices is crucial. Equally impor-
tant are the issues related to the acquisition, processing 
and analysis of large spatial data sets in the mining in-
dustry (Krawczyk, 2023). In addition, global trends to-
wards circular economy concepts require a reassessment 
of traditional mining approaches to ensure long-term 
economic and environmental stability (Markevych et 
al., 2022). The use of advanced geological modelling 
and mine design, together with decision support meth-
ods, can optimise mine planning not only in terms of 
economic performance but also in terms of social and 
environmental impact (Sobczyk et al., 2022).

“Grid mining” is not a well-known concept in the 
context of mining. It may be a term specific to a certain 
domain or not widely recognized (Sánchez et al., 2009). 
However, it’s important to consider that successful im-
plementation of neural networks in mining requires the 
appropriate data collection, preprocessing, model train-
ing, and domain expertise. Mining companies need to 
invest in robust data infrastructure, skilled personnel, 
and integration strategies to fully leverage the benefits of 
neural networks in their operations.

Mining companies are using advanced technologies 
like machine learning and data analytics to enhance and 
streamline multiple facets of their operations. These 
technologies offer valuable tools for optimizing key pro-
cesses such as exploration, mineral extraction, resource 
estimation, and equipment maintenance. By harnessing 
the power of machine learning and data analytics, min-
ing companies can gain insight, improve efficiency, re-
duce costs, and make informed decisions throughout the 
entire mining lifecycle. From identifying potential min-
ing sites to accurately estimating resources and imple-
menting proactive maintenance strategies, these tech-
nologies play a pivotal role in driving productivity and 
sustainability in the mining industry (Jinqiang et al., 
2021; Chimunhu et al., 2022).

Overall, the integration of machine learning and data 
analytics via neural networks in mining processes em-
powers companies to make data-driven decisions, opti-
mize resource utilization, increase productivity, and re-
duce operational costs (Kiani et al., 2021). It enables 
them to navigate complex geological challenges, miti-
gate risks, and operate in a more sustainable and respon-
sible manner (Shavarskyi et al., 2022). As technology 
continues to advance, mining companies are poised to 
further benefit from these transformative technologies, 
unlocking new opportunities and enhancing their com-
petitive edge in the industry (Małkowski and Juszyński, 
2021; Lawal and Kwon, 2020).

The author of this article is trying to change this situ-
ation. In his previous publication, he presented geologi-
cal modelling of deposits, production design and plan-
ning of mining works using AI systems (Dyczko, 
2023b). Another interesting example was the approach 
to the presentation of mining models, which provides for 
the formation of a mine as a whole simulation system, in 
which all processes are output to the control centre. The 
mine was represented as one whole mechanism divided 
into separate elements, respectively, the simulation of 
each production process takes place with a certain mar-
gin of error. Moreover, infrastructure objects were pre-
sented only as a visual reproduction (Dychkovskyi et 
al., 2009). The processes taking place in mining opera-
tions were reproduced with the help of kinematic, statis-
tical, and dynamic similarity (Chen, et al., 1995). Statis-
tical similarity examines the consistency of statistical 
properties, kinematic similarity focuses on comparable 
motion patterns, and dynamic similarity ensures that the 
relevant physical forces and dynamics are preserved. 
Optimizing variable data in artificial neural networks for 
forecasting raw material prices for energy production is 
a critical step in improving the accuracy and reliability 
of the predictions (Matyjaszek et al., 2020). These con-
cepts are crucial for scaling laws, modelling, and under-
standing complex systems across different scales or con-
ditions (Westbrook, 1981; Norouzi-Masir et al., 2021). 
Mining operations involve several economic parameters 
that play a crucial role in determining the profitability 
and viability of a mining project. Profitability measures 
the financial returns and profitability of a mining opera-
tion and is a key indicator of its economic success (Dy-
chkovskyi et al., 2013; Gul, 2022). The formation of 
simulation systems using AI technologies for under-
ground and open pit mining and in various mining coun-
tries shows the correctness of the research direction cho-
sen by the author of the article (Gomilanovic et al., 
2023; Šapina, M 2016; Fiket et al., 2023). The focus of 
this work is to ensure the conformity of all types of sim-
ilarities on which this work is focused when determining 
the quality characteristics of coal in operating mines.

By incorporating multiple perspectives into neural 
networks, mining operations can benefit from a more ho-
listic understanding of their systems, improved decision-
making capabilities, and increased operational efficien-
cy. It allows the neural networks to use a wider range of 
data sources and extract meaningful insight from differ-
ent perspectives, ultimately leading to more accurate 
predictions, better process control, and improved safety 
in mining operations. By taking into account statistical 
aspects, such as geological data, equipment status, and 
operational variables of the Jastrzębska Spółka Węglowa 
SA, I am trying to use neural networks to optimize these 
processes in a more comprehensive manner, leading to 
increased efficiency and productivity.

The analysis carried out shows that there is a neces-
sity to improve the existing methods for determining the 
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parameters of quality coal. It is hypothesized that the 
CRI and CSR coal characteristics are related and can be 
determined by some geological parameters because coal 
itself is a carbon biomass that has undergone geological 
processes along with other mineral and organic carbon 
deposits.

2. Research methodology

The main researches were provided in the “Borynia-
Zofiówka” colliery of the Jastrzębska Spółka Węglowa 
SA (see Figure 1). This company is the largest coking 
coal and coke producer in Poland and the entire Euro-
pean Union. The mining plants are located in southern 
Poland, in the Upper Silesian Coal Basin. The basic 
business of the company consists of the production and 
sales of hard coal (mainly coking coal), coke, and by-
products. Maintaining coal and coke production at the 
quantitative and qualitative level required by customers 
is a crucial issue for the company (Jastrzębska Spółka 
Węglowa SA, 2013).

The mine field of KWK „Borynia-Zofiówka”, 
“Zofiówka” Mining Plant – “Jastrzębie Górne 1” is situ-
ated in the southern-western part of the Upper-Silesian 
Coal Field. From an administrative point of view, the 
colliery area is situated in the area of the city of Jastrzębie 
Zdrój, the towns of Jastrzębie Bzie and Jastrzębie Szer-
oka, two municipalities: Pawłowice and Mszana as well 
as small parts of Pniówek and Gogołowa villages.

The sampling of geological data under the aforemen-
tioned geological conditions took place during various 
stages of mine operation, including exploration of the 
deposit with surface boreholes, mine development, and 
the mining of coal seams using the longwall system. The 
data analysed specifically originated from surface bore-
holes, underground boreholes drilled from mine work-
ings to upper or lower seams, as well as from headings 
or longwalls. These data were collected in-situ by mine 
personnel, and their absolute values are provided in Ta-
ble 1 below. These data serve as the input for the model-
ling process. The main goal was to discover patterns, 
trends, associations, or insight from vast amounts of 
data. The dataset was computationally time-consuming. 
During the research, the principle of random sampling 
was applied. Each data point in the dataset has an equal 
probability of being included in the sample. Then, ran-
dom sampling is performed within each stratum to en-
sure representation from each group.

2.1.  Indicators for estimation research  
parameters

The scientific base of neural network models is the 
fundamental building block called an artificial neuron or 
a perceptron. Artificial neurons are inspired by the bio-
logical neurons in the human brain and are designed to 
simulate their functionality. An artificial neuron takes 
multiple input signals, applies weights to each input, and 
combines them using a mathematical function. The 
weighted sum is then passed through an activation func-
tion, which determines the output of the neuron. The ac-
tivation function introduces non-linearity into the model 
and allows neural networks to learn complex patterns 
and relationships (Saraswathi and Tamilarasi, 2012; 
Yang, 2022).

Neural networks consist of interconnected layers of 
these artificial neurons, forming a network of nodes. The 
most common type of neural network is the feedforward 
neural network, where the information flows in one di-
rection, from the input layer through one or more hidden 
layers to the output layer. The connections between neu-
rons have associated weights, which are adjusted during 
the training process to optimize the network’s perfor-
mance. This learning process, often referred to as back-
propagation, involves iteratively comparing the net-
work’s predicted output with the desired output and ad-
justing the weights accordingly to minimize the 
prediction errors (Wang et al., 2022). Neural network 
models are based in forming similarity theorems in arti-
ficial neurons and their interconnections, which enable 
the networks to learn and make predictions based on the 
provided input data (Vladyko et al., 2022a).

In our case, widely used CRI (Coke Reactivity Index) 
and CSR (Coke Strength after Reaction) indicators are 
used, as they provide valuable information about the ef-
ficiency and performance of metallurgical coke. The 

Figure 1: Location of “Borynia-Zofiówka” colliery  
– “Zofiówka” Mining Plant
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characteristics of coal, such as its rank, petrographic 
composition, maceral content, and mineral matter, have 
a significant influence on the CSR and CRI values of the 
resulting coke (Dı́ez et al., 2002).

CRI and CSR are used to forecast the price of coking 
coal and, as such, have a significant impact on the valu-
ation of coal deposits and the economic assessment of 
mining projects (Kopacz et al., 2020). These indicators 
are often the main focus in predicting the quality of cok-
ing coal using various analytical methods (North et al., 
2018).

To identify the factors that have the greatest influence 
on the main quality indicators (CRI and CSR) and to 
construct predictive models, we use the Group Method 
of Data Handling (GMDH) (Ebtehaj, et al., 2015).

2.2. Neural networks prediction models

In recent years, neural network models have become 
increasingly popular for their ability to accurately pre-
dict complex systems. However, the design and training 
of neural networks require extensive computational 
 resources and can be time-consuming. To overcome 
these challenges, the Group Method of Data Handling 
(GMDH) has been proposed as a complementary ap-
proach for neural network modelling. GMDH is a data-
driven method that utilizes a self-organizing approach to 
determine the best combination of input variables to pre-
dict a target output variable.

GMDH-based neural network models have been suc-
cessfully applied to various fields, such as process mod-
elling, time series prediction, and fault diagnosis (Ba-
bets, et al., 2017). The GMDH-based neural network 
models have demonstrated superior performance over 
conventional neural network models in terms of predic-
tion accuracy, robustness, and generalization capability. 
One of the advantages of GMDH is its ability to auto-
matically select the best subset of input variables for the 
model, which reduces the complexity of the model and 
improves its interpretability (Abdolrahimi et al., 2014).

In addition to GMDH, meta-heuristic optimization al-
gorithms such as genetic algorithm and particle swarm 
optimization have been used to optimize the hyperpa-
rameters of GMDH-based neural network models. These 
approaches have been shown to further improve the ac-
curacy of the models by optimizing the model architec-
ture and parameter settings (Dodangeh, et al., 2020; 
Nariman-zadeh and Ali, 2009).

2.3.  Group Method of Data Handling brief 
description

Group Method of Data Handling is based on the algo-
rithm, which is a data-driven modeling technique devel-
oped by the Ukrainian scientist, A. Ivakhnenko (Ivakh-
nenko, 1968). In this article, the problem of structural-
parametric identification, or the construction of models 
based on experimental data, can be reduced to finding 

the extremum of a certain criterion CR among a set of 
different models .

  (1)

In addition, the following details are required: speci-
fying the type and extent of the initial information; indi-
cating the class of reference functions (operators) that 
form the set ; defining the approach for generating 
models f and the corresponding parameter estimation 
method; selecting a criterion for comparing models; 
specifying the optimization method for minimizing the 
criterion function (CR). To provide further clarity, let’s 
assume that a dataset W=[XY] is given, comprising N 
observation points, forming a matrix X = {xij, i=1,...,N; 
j=1,...,m}, and a vector Y = (y1,..., ym)T, where N ≥ m.

The method is founded on a thorough search ap-
proach, involving sequential experimentation of models 
selected from a pool of potential models based on a pre-
determined criterion. The majority of Model Selection 
algorithms utilize polynomial reference functions. The 
overall connection between input and output variables is 
represented in the form of a Volterra functional series, 
with its discrete counterpart known as the Kolmogorov-
Gabor polynomial (Madala et al., 1994).

 

  (2)

here X (x1, x2,… xm) – input variables; A (a1, a2,… am) – 
coefficients of terms.

In general, the solution process of the structural-para-
metric identification problem (1) involves the following 
key stages:

1.  Defining the dataset acquired from passive or ac-
tive experiments, along with any available prior 
information.

2.  Selecting or specifying the class of reference func-
tions and performing data transformation.

3.  Generating diverse model structures within the 
chosen class .

4.  Estimating the parameters of the generated struc-
tures and constructing the set F.

5.  Minimizing the given criterion CR(f) and deter-
mining the optimal model f.

6.  Assessing the adequacy of the obtained optimal 
model.

7.  Making a decision to terminate the process.
In general, the task of identification involves con-

structing a set of models with varying structures based 
on the data sample:

  (3)

and finding the optimal model based on a certain crite-
rion:
  (4)

where  represents the parameter estimates.
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The complexity of the model structure is evaluated by 
considering the number of polynomial terms employed. 
The exhaustive procedure entails calculating the criteri-
on while systematically altering the model’s structure.

The distinguishing features of GMDH algorithms 
compared to other algorithms for structural identifica-
tion and best regression selection are as follows (Müller 
J.A., 2000):

Utilization of an external criterion based on data sam-
ple division, which is relevant to the task of constructing 
predictive models while reducing the requirements for 
the initial information volume.

Significantly greater diversity of structure generators: 
employing full or reduced enumeration of structure vari-
ations in regression algorithms and employing original 
multi-order iterative procedures.

Higher degree of automation - it is sufficient to input 
the initial data and specify the external criterion.

External and internal criteria are employed in GMDH 
algorithms. An internal criterion is computed using the 
entire dataset, while an external criterion is calculated 
using new information that was not used for estimating 
the model coefficients. Typically, the dataset is divided 
into a training set and a checking set, with common ra-
tios being 50:50, 70:30, or 80:20. The training set is uti-
lized for estimating model coefficients, while the check-
ing set is used to assess the model structure and its abil-
ity to handle new data. The external criterion aims to 
identify a model structure that remains optimal when 
additional observations from the object are acquired.

This paper employs two modifications of the GMDH 
algorithm: GMDH-based neural network and GMDH-
based stepwise forward selection. We will examine the 
structure of the input and output data, as well as the al-
gorithms for both modifications.

Input:
• Training dataset with N samples and m input varia-

bles, X.
• Corresponding target output variables, Y.
• Maximum number of input variables, M.
• Maximum number of layers, L.
Output:
• Trained GMDH-based model.
Special software GMDH Shell was used to process 

the data and obtain relevant results. This software, also 
known as Group Method of Data Handling Shell, is used 
for data analysis, modeling, and forecasting. It starts 
with generating a pool of potential models using a com-
bination of input variables. It then evaluates the perfor-
mance of each model and selects the best-performing 
ones. The selected models are further refined by adding 
or removing input variables, and the process continues 
until an optimal model is achieved.

Software GMDH Shell utilizes a self-organizing ap-
proach to model building, meaning it automatically se-
lects the most relevant input variables and constructs a 

model based on the available data. The algorithm aims 
to minimize the error between the predicted output and 
the actual output values by iteratively adjusting the mod-
el structure. It is a powerful tool for data analysis and 
modeling, particularly useful in situations where the un-
derlying relationships in the data are complex or not 
well-defined. It automates the model-building process 
and can handle large datasets efficiently.

2.4.  The algorithm for a GMDH-based 
implementation

The GMDH-based implementation is divided into 
two separate segments. The algorithm for a GMDH-
based neural network:

• Initialize the network with a single-layer model us-
ing all input variables.

• For each layer, generate all possible combinations 
of input variables up to M.

• Evaluate the performance of all candidate models 
using a validation set.

• Select the best model with the lowest validation er-
ror.

• If the maximum number of layers has not been 
reached, repeat steps 2-4 for the next layer.

• Output the final trained model.
Algorithm for a GMDH-based stepwise forward se-

lection:
• Initialize the model with a single-layer model using 

the input variable with the highest correlation coef-
ficient with the target output variable.

• For each layer, add the input variable with the high-
est correlation coefficient with the target output 
variable among the remaining input variables.

• Generate all possible interactions between the se-
lected input variables and evaluate their perfor-
mance using a validation set.

• Select the best combination of input variables and 
interactions with the lowest validation error.

• If the maximum number of layers has not been 
reached, repeat steps 2-4 for the next layer.

• Output the final trained model.
The GMDH-based neural network is a self-organiz-

ing approach, which means that it automatically selects 
the optimal combination of input variables and their in-
teractions to construct a model with high accuracy and 
low complexity. The validation set is used to evaluate 
the performance of candidate models during the training 
process and prevent overfitting.

3. Results and discussion

While working in a managerial position at Jastrzębska 
Spółka Węglowa SA, the author of this article noticed 
that the projected performance indicators of the compa-
ny deviated significantly from the final economic results 
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of the mine’s operation. This was caused, among other 
things, by the uncertainty in the determination of pro-
duction capacity, the size of resources and the quality of 
the final products. Therefore, it was hypothesised that 
there are priority factors that are key to the economic 
performance of the mine. In order to improve the operat-
ing cycle of the process chain, it is worth identifying and 
first exploring the possibility of improving the compa-
ny’s performance in these key areas. Therefore, it is nec-
essary to find appropriate mathematical mechanisms to 
rank the mentioned.

The use of new methods for predicting indicators, 
particularly those relevant to product quality, should al-
low a better assessment of the value of a deposit and, as 
a result, a more accurate determination of the economi-
cally recoverable reserves. This approach could also be 
used as an effective mechanism for determining eco-
nomic efficiency indicators for mining companies.

Statistical processing of functioning data of the 
Jastrzębska Spółka Węglowa SA was performed in order 
to carry out the necessary research. The data were pro-
cessed and summarised into 435 observations. The influ-
ence of 18 input variables on 2 resultant indicators (CRI 
and CSR) was examined. The structure of the data is 
shown in Table 1. These data were accepted for further 

formation of neural networks for simulation of produc-
tion processes and determination of mining priorities in 
Jastrzębska Spółka Węglowa SA.

A total of three models were calculated for each CRI 
and CSR indicator:

GMDH-based neural network model.
GMDH-based stepwise forward selection Linear 

model.
GMDH-based stepwise forward selection Nonlinear 

model.
The values of the validation criterion are shown in 

Table 2. The top-ranked model has the smallest criterion 
value (the lower the value, the higher the adequacy of 
the model).

As a validation criterion the Root-Mean-Square Error 
(RMSE) was used (5). This criterion is frequently used 
to measure the differences between values predicted by 
a model and the values observed.

  (5)

Where:
N – number of observations;

 – predicted values;
yi – observed values.
GMDH-based neural network model for CRI indi-

cator:

CRI = –2.29954 + N370*0.475375 – 
– N370*N11*0.0403961 + N370^2*0.0143235 + 

+ N11*0.629673 + N11^2*0.0245661

Table 1: Data structure
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27.1 65.8 1.33 1.21 64 3 28 5 6.94 84 8.5 160 0.128 1.02 24.48 27 32506 0.53 0.12 6.98

28.5 65.2 1.36 1.29 51 5 39 5 9.93 78 8 34 0.042 0.52 21.8 30 31168 0.64 0.07 9.99

82.1 12.1 1.28 1.36 66 4 28 2 3.24 79 8 44 0.011 0.32 21 30 34081 0.66 0.08 3.26

22.2 69.6 1.33 1.21 66 9 23 2 6.72 84 8.5 137 0.179 0.83 24.37 26 32659 0.6 0.1 6.76

52.6 41.6 1.31 1.37 61 4 33 2 3.92 72 6.5 10 0.006 0.34 19.73 26 33544 0.62 0.09 3.94

Table 2: Validation criterion for top-ranked models

Model type RMSE for CRI RMSE for CSR
Neural network 7.9 8.5
Linear model 10.5 10.9
Nonlinear model 8.1 8.9
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The definition of the input parameters used in the for-
mula for calculating the CRI is given in Appendix A.

In GMDH-based neural network models, the param-
eters N represent submodels (best candidate models) 
from previous layers. Some of them depend solely on 
the input data (e.g. N812, N707, etc.), while other mod-
els in higher layers include the generated models from 
the preceding layers (e.g. N11, N25, etc.). The final pre-
dictive model can be formulated as a dependency solely 
on the input data by sequentially substituting the sub-
models from previous levels into the models of subse-
quent levels. The plot of actual data and model fit for 
CRI indicator is represented in Figure 2.

Accuracy of the model: coefficient of determination 
R2=0.81 for training data set and R2=0.73 for validation 
data. Correlation R=0.9 and R=0.86 for training and 
validation data respectively. Mean absolute error (6) 
MAE=5.9 for training data set and MAE=7.1 for valida-
tion data

  (6)

where:
N – number of observations;

 – predicted values;
yi – observed values.
The GMDH algorithm divides the input data into two 

sets: the training set and the validation set. The model is 
trained on the training data, which involves determining 
the model structure and estimating the regression coef-
ficients. The validation set is used to test the model’s 
stability with respect to new data. In essence, predictions 
for the training set are based on the data used to train the 
model, while predictions for the validation set are made 
using a model trained on a different data subset. There-
fore, it is advisable to consider two correlation coeffi-
cients: one for the training subset (shown in blue in the 
figure) and another for the validation subset (represented 
by the red dashed line).

To assess the significance of different factors, a meth-
odology is employed wherein each variable in the model 

is individually substituted with its mean value. The re-
sulting Root Mean Square Error (RMSE) of this “new” 
model is then computed. The original model’s error is 
regarded as having a zero percent impact on the RMSE, 
while a scenario where all variables are replaced with 
their means represents a 100% impact. It is worth noting 
that the impact can exceed 100% when variables in the 
model interact with each other through multiplication or 
squaring. Additionally, a small negative percentage may 
arise if a variable proves to be essentially irrelevant for 
the model’s predictions.

Impact on RMSE (7) is a percentage value it is calcu-
lated as

  (7)

where:
Ri – RMSE of the variable we consider;
R0 – zero-impact RMSE;
R – RMSE of a model where all variables are replaced 

with mean.
The importance of factors in GMDH-based neural 

network model for CRI are shown in Figure 3.

Figure 2: Actual data and model fit for CRI indicator

Figure 3: Importance of variables in neural  
network model for CRI
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Analysis of the influence of the factors on the result-
ing variable shows that B (Dilatation), VF (Volatile con-
tent, %) and PA (Phosphorus content, %) have the great-
est influence.

Below is the mathematical description of the linear 
and nonlinear models for the CRI indicator, as well as 
the neural network, linear and nonlinear models for the 
CSR indicator.

GMDH-based stepwise forward selection Linear 
model for CRI:

CRI = –114.323 + B*(-0.17206) + AA*(–3.01198) + 
+ VF*6.56411 + SI*(-2.35426) + RO*58.8028 + 

+ CL*79.8182 + PA*(–42.0338) + S*(–13.7553) + 
+ A*(–0.544035) + RI*(–0.0547029).

The plot of actual data and model fit for CRI Linear 
model is represented in Figure 4.

GMDH-based stepwise forward selection Nonlinear 
model for CRI:

CRI = 215.31 + DA^(–1)*SI^(–1)*S^(–1)* 
*(–118.485) + AA*A*CL^(–1)*(–0.00328318) + 

+ PA*VF^(–1)*AD^(–1)*(–15331.9) +  
+ B*VF^(–1)*QIA*0.000832805 + 

+ SI^(–1)*S^(–1)*VF^(–1)*(–3594.5) + 
+ DA*RO^(–1)*VF^(–1)*(–3138.08) + 

+ L^(–1)*I*S*1.12353 + B*PA*VF^(–1)*11.8143 + 
+ RO*B*PA*(–0.352688) + 

+ AA*S^(–1)*A^(–1)*(–25.6526) + 
+ B*CL^(–1)*AD*0.000771639 + 
+ RO*B*QIA*(–3.31181e–05) + 

+ SI^(–1)*S^(–1)*QIA*0.00925999 + 
+ B^3*1.89042e–06 + 

+ SI^(–1)*A*CL^(–1)*(–0.160241) + 
+ I^(–1)*CL*AD^(–1)*(–9528.81) + 

+ RI*S*VF^(–1)*(–7.35664) + 
+ L^(–1)*I*B*(–0.00606229) + 

+ I^(–1)*PA*S*1314.01 + RI*A^(–1)*CL*25.3936

Figure 4: Actual data and model fit for CRI Linear model

Figure 5: Actual data and model fit for CRI Nonlinear model
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Figure 6: Actual data and model fit for CRI indicator

Figure 7: Actual data and model fit for CRI Linear model

Figure 8: Actual data and model fit for CSR Nonlinear model

The plot of actual data and model fit for CRI Nonlin-
ear model is represented in Figure 5.

GMDH-based neural network model for CSR indi-
cator:

CSR = 9.94029 – N5*117.315 – N5*N6*3.69415 + 
+ N5^2*3.70083 + N6*117.743

The definition of the input parameters used in the for-
mula for calculating the CSR is given in Appendix B.

The plot of actual data and model fit for CSR indica-
tor is represented in Figure 6.

GMDH-based stepwise forward selection Linear 
model for CSR:
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CSR = 196.517 + B*0.131879 + S*15.8306 + 
+ VF*(-6.03398) + AA*2.23735 + A*0.692161 + 
+ PA*46.056 + CL*(-78.1928) + +RI*0.027657 + 
+ RO*(-51.8935) + SI*1.71879 + M*(-0.270236)

The plot of actual data and model fit for CSR Linear 
model is represented in Figure 7.

GMDH-based stepwise forward selection Nonlinear 
model for CSR:

CSR = –1070.89 + DA^(–1)*S^(–1)*QIA* 
*(–0.001415) + SI*A*CL^(–1)*0.00375944 + 

+ PA*S^(–1)*AD^(–1)*297.396 + 
+ DA*S^(–1)*VF^(–1)*253.065 + 

+ B*VF^(–1)*CL*28.5744 + RO^(–1)* 
*VF^(–1)*QIA^(–1)*5.71811e+08 + 

+ PA*S^(–1)*CL*(–52.1607) + 
+ RO*VF*QIA*0.000579237 + 
+ PA^(–1)*S^2*(–0.0845576) + 

+ PA^(–1)*CL*AD^(–1)*0.460491 + 
+ L^(–1)*PA*S*(–66.9696) + 
+ VT^(–1)*SI*A*2.06247 + 

+ M^(–1)*CL*AD^(–1)*364.371 + 
+ I*SI*CL*(–0.470658) + 

+ M^(–1)*AA^(–1)*WA*(–41.9513) + 
+ VT^(–1)*B*PA^(–1)*0.00764403 + 

+ S^(–1)*A^(–1)*CL*2517.41 + 
+ VF*A^(–1)*CL*(–281.548) + 
+ SI^(–1)*B*A*(–0.0398572) + 

+ RI^(–1)*SI*B*0.976122

The plot of actual data and model fit for CSR Nonlin-
ear model is represented in Figure 8.

Information about the accuracy (adequacy) of all the 
created models is summarized in Table 3.

Information about the influence of input factors on  
the resulting indicators CRI and CSR is summarized in 
Table 4.

Examining the input factors (see Table 4), in a broad-
er context, it can be concluded that the B indicator (dila-
tation) has been included in all the models constructed, 
indicating a significant correlation between both indica-
tors and this parameter. It is also noteworthy that most of 
the models with a significant influence on the output 
variable have included the VF (volatile matter content) 
and AA (ash content, %) parameters.

4. Conclusion

Based on the research provided, it can be concluded 
that Artificial Intelligence (AI) is a powerful tool for the 
mining industry, offering significant benefits and ad-
vancements. Mining technologies, such as machine 
learning and data analytics, enable mining companies to 
optimize various processes, such as exploration, mineral 
extraction, resource estimation, and equipment mainte-
nance. By using AI algorithms, mining operations can 
improve efficiency and increase overall productivity. It 
can also help mining companies address environmental 
challenges by optimizing resource usage. It is important 
to note that the algorithms can assist in the efficient 
monitoring of operations. While AI offers immense po-
tential in mining, challenges remain, including data 
quality and availability, the need for skilled personnel, 
and ethical considerations. Addressing these challenges 
will be critical to maximizing the potential of AI in min-
ing and ensuring its responsible and sustainable imple-
mentation. Overall, the integration of AI in mining has 

Table 3: Accuracy of the created models

Accuracy parameter
Neural 
network 
for CRI

Linear model 
for CRI

Nonlinear 
model for 
CRI

Neural 
network 
for CSR

Linear model 
for CSR

Nonlinear 
model for 
CSR

coefficient of determination R2  
for training data 0.81 0.66 0.80 0.73 0.55 0.70

coefficient of determination R2  
for validation data 0.73 0.57 0.68 0.55 0.50 0.50

Correlation for training data 0.9 0.81 0.89 0.85 0.74 0.84
Correlation for validation data 0.86 0.77 0.84 0.76 0.72 0.75
Mean absolute error for training data 5.9 8.2 6.13 6.23 8.60 6.84
Mean absolute error for validation data 7.1 9.8 8.28 8.18 8.81 9.20

Table 4: Influence of input factors on the resulting indicators

Impact 
Rank

Neural network 
for CRI

Linear model 
for CRI

Nonlinear model 
for CRI

Neural network 
for CSR

Linear model 
for CSR

Nonlinear model 
for CSR

1 B VF VF AA VF VF
2 VF B B AD B PA
3 PA AA AA B AA B
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the potential to revolutionize the industry, unlocking 
new opportunities for efficiency, safety, sustainability, 
and productivity. By leveraging AI technologies, it is 
possible to optimize operations, and navigate the com-
plexities of the industry in a rapidly changing global 
world.

The examination of the developed models shows a fa-
vourable correlation for both CRI and CSR indicators 
concerning the training data set. However, it should be 
noted, that the models constructed for the CRI indicator 
have better predictive properties. Furthermore, among 
the three types of models developed, the models built 
using the neural network algorithm have demonstrated 
the most favourable predictive properties.

The created neural networks for the conditions of the 
mines of Jastrzębska Spółka Węglowa SA made it pos-
sible to process the statistical data of the company and to 
identify the priority factors determining the quality indi-
cators of the final products. Of the 18 parameters ana-
lysed, three factors have a significant influence on the 
formation of coking coal indicators: dilatation, volatile 
matter content and ash content.

Such an approach makes it possible to predict the 
most important indicators of coke quality on the basis of 
a larger number of coal quality parameters and to elimi-
nate parameters that have practically no influence on the 
value of the final product. The results of the study can 
also be used to assess the value of the deposit and to bet-
ter plan its exploration by identifying which coal quality 
parameters are particularly relevant to the value of the 
future mining project.

In further research, the author will try to highlight the 
results of the implementation of AI systems in Jastrzębska 
Spółka Węglowa SA and other mining companies. It’s 
important to emphasize that research in this area in-
volves collaboration between data scientists, mining en-
gineers, and domain experts to ensure that neural net-
works are tailored to the specific needs and challenges of 
the mining industry. Moreover, given the critical nature 
of mining operations, the implementation of neural net-
works must undergo rigorous testing and validation to 
ensure safety and reliability.
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SAŽETAK

Predviđanje ključnih parametara kvalitete koksnoga ugljena u stvarnome  
vremenu pomoću neuronskih mreža i umjetne inteligencije

Koks visoke kvalitete ključna je sirovina u metalurškoj industriji. Svojstva ugljena imaju velik utjecaj na kvalitetu proiz-
vedenoga koksa, a time i na vrednovanje ležišta ugljena i ekonomsku ocjenu rudarskih projekata. Predviđanje kvalitete 
ugljena za koksiranje omogućuje optimizaciju proizvodnih procesa uključujući planiranje i upravljanje procesima te rano 
otkrivanje problematične kvalitete. U ovoj studiji korištenjem načela pametnoga rudnika predlaže se određivanje kvali-
tete ugljena na temelju kombinacije rudarsko-geoloških uvjeta ležišta mineralnih sirovina i njegovih pokazatelja kakvo-
će. Utvrđeni su mogući međuodnosi između kvalitete ugljena u ležištu i svojstava konačnoga proizvoda. Neuronskom 
mrežom utvrđuje se prioritet pojedinih pokazatelja koji imaju znatan utjecaj na kvalitetu koksnoga ugljena. Važan je dio 
istraživanja njegova praktična provedba u kompaniji Jastrzębska Spółka Węglowa SA. Metodom uzorkovanja i statistič-
kom obradom podataka dobiveni su kvalitativni i kvantitativni parametri koksnoga ugljena za svaki rudnik kao što su: 
stupanj metamorfizma, debljina, odstupanje hlapljivih tvari, prisutnost fosfora, sadržaj pepela itd. Pomoću grupne 
 metode obrade podataka uspoređeni su pokazatelji kvalitete ovisno o prioritetu utjecaja na konačna svojstva ugljena za 
koksiranje. Na temelju dobivenih rezultata pokazalo se da svi pokazatelji kakvoće ugljena nemaju znatan utjecaj na 
kvalitetu konačnoga proizvoda. Studija pokazuje da je moguće predvidjeti glavne pokazatelje (CRI – indeks reaktivnosti 
koksa, CSR – čvrstoću koksa poslije reakcije s CO2) kvalitete koksa korištenjem neuronskih mreža na temelju većega 
broja parametara kvalitete ugljena i eliminirati parametre koji nemaju praktički nikakav utjecaj. na vrijednost konačnoga 
proizvoda. Ova se metoda također može koristiti za poboljšanje rezultata ekonomskoga vrednovanja ležišta i za bolje 
planiranje istražnih i rudarskih radova.

Ključne riječi: 
koksni ugljen, kvaliteta ugljena, neuronska mreža, umjetna inteligencija, grupna metoda obrade podataka (GMDH)
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