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Abstract
Fast and relatively accurate determination of the fragment size distribution of a muck-pile is still a challenge in mining 
operations and the existing measurement methods are inefficient. In this research, a new algorithm to determine frag-
ment size distribution due to blasting was presented, using the image processing technique. In the newly proposed ap-
proach, delineating of the fragmented rock particles, as the main core of processing, was carried out, using a convolu-
tional neural network. Two networks were defined and trained by 150 laboratory and 150 field data images. Also, 30 labo-
ratory and 30 field data images were applied to carry out the validation visually, and by using F1-scores. For the two 
laboratory and field networks and results obtained by Split-Desktop software automatic edge detection on the same 
images, the F1-scores are equal to (0.98, 0.74) and (0.99, 0.85) respectively. Also, for determination of fragment size dis-
tribution by laboratory data network and Split-Desktop software automatic edge detection on the same images, the Root 
Mean Square Error (RMSE) for F30 and F80 are equal to (0.36, 1.20) and (0.31, 1.24) respectively. These indicate better 
performance of the proposed approach for both rock edge detection and fragment size distribution over Split-Desktop 
software automatic edge detection.

Keywords:
image processing; rock edge detection; determination of fragments size distribution; machine learning; convolutional neural 
networks

1. Introduction

Due to the important role of rock fragment size on all 
stages of mining operations, including loading, hauling, 
and crushing, it is necessary to provide an accurate, fast 
and low-cost method to determine the fragment size dis-
tribution (Bhattacharya and Chandrakar, 1999; Sid-
diqui et al., 2009; Hudaverdi et al., 2012; Sanchid-
rián et al., 2012; Faramarzi et al., 2013). The existing 
measurement methods to determine the fragment size 
distribution are generally classified into direct and indi-
rect categories. The direct method is sieving and its re-
sults are the most accurate, but it is time-consuming and 
very expensive. Also, it is rarely possible to use it be-
cause of disturbing the mining and production process. 
Indirect methods include the oversize boulder count 
method (manual counting of the oversize boulders in the 
muck-pile, which cannot be loaded by the shovel. In this 
method, an oversize index is defined based on the total 
blasted rock mass), consumption of explosive in the sec-

ondary blasting (an index is introduced based on the 
used explosives in the secondary blasting), shovel load-
ing rate method in which the speed of loading is a sign of 
good fragmentation, delays due to bridging in the crush-
er, which is mainly due to big boulders, visual analysis 
method (assessment of muck-pile immediately after 
blasting), photographic or manual analysis method, which 
is based on the delineation of fragments in muck-pile 
photographs, high speed photography or image analysis 
method in which digital images of the blasted rock were 
used to determine size distribution of muck-piles (Roy, 
2005). Up to now, applying indirect methods, specifi-
cally methods based on image analysis techniques to de-
termine the size distribution of fragments, has become 
an efficient solution with the least disturbing of the pro-
duction cycle. The general procedure of these methods is 
taking photos from the fragmented rocks, and then edge 
detection of each particle (fragments) in the photos is 
done manually or automatically. Finally, the fragment 
size distribution is estimated, using computational tech-
niques. Obviously, in this process, the accurate edge de-
tection of fragments has a main role in obtaining correct 
results (Wu and Kemeny, 1992; Sudhaka et al., 2006; 
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Han and Song, 2014; Sereshki et al., 2016; Yaghoobi 
et al., 2019). The first rock particle size estimation sys-
tem based on image processing technique including 
edge detection and measuring the particle arc chord was 
presented by Gallagher (Gallagher, 1976). Also, an im-
age analyser system was developed by Nyberg et al. to 
scan the particle chord size of edge detected muck-pile 
images (Nyberg et al., 1983). Furthermore, the image 
processing technique was used as an automatic method 
to determine the rock fragmentation by separating 
touched and overlapped particles (Maerz et al., 1987). 
In addition, in 1991, to estimate the sieve size and the 
volume of fragmented rock, a modern method was de-
veloped, using techniques of digital image processing. 
In this research, delineating of the fragmented rock was 
done by using filters that enhance the edges by weight-
ing components with high frequency of the transformed 
image (Farmer et al., 1991). Moreover, in 1992, an au-
tomatic particle segmentation system was presented by 
Wu et al. to estimate the fragment size distribution. In 
the proposed algorithm, the Sobel gradient filter was 
used for shape recognition and to separate rock particles 
from shadow boundary convexity points and finds clus-
ters of rock particles (Wu and Kemeny, 1992). In addi-
tion, in 1993 Lin et al. proposed a segmentation algo-
rithm, using edge detection techniques to identify each 
particle. In this method, sieve size distributions were 
estimated based on the measured chord-length of each 
particle (Lin et al., 1993). Also, Kemeny proposed an 
algorithm in which the Sobel gradient filter was used for 
particles’ edges detection and for size estimation, ellipti-
cal approximation was used (Kemeny, 1994). Moreover, 
in 1996, the Split software based on image analysing 
was presented for calculating the fragment size distribu-
tion. In this study, the Sobel gradient filter was used to 
delineate the rock particles, and the Watershed algorithm 
was applied for separating different objects in an image 
and segmentation the particles. Determination of the 
fragment shape and computation of the size distribution 
was carried out, using empirically derived statistical 
equations (Girdner et al., 1996). Furthermore, Maerz et 
al. developed an automated granulometry tool to esti-
mate size distributions named WipFrag by using a digi-
tal image of rock particles and optimizing Edge Detec-
tion Variables (Maerz et al., 1996). Also, in 1998 Yen et 
al. in used the Watershed algorithm for rock particles 
segmentation (Yen et al., 1998). In addition, in 1998 
Wang presented a heuristic algorithm to split the rock 
particles. In this algorithm, by using a cost function and 
assigning a polygonal approximation for each object, the 
fragment boundaries were detected (Wang, 1998). Also, 
in 2005, a method was presented to measure the rock 
particle size. In the mentioned method, the edge of each 
particle was detected using, a one-pass edge detection 
algorithm and the average size was estimated based on 
the image edge density (Wang and Bergholm, 2005). 
Moreover, in 2007 Al-Thyabat et al. used the Watershed 

algorithm to split overlapped rock particles and then 
measured two different dimensions of each particle to 
determine the fragment size distribution (Al-Thyabat et 
al., 2007). Also, in 2008 Wang developed three segmen-
tation algorithms based on edge detection, split-and-
merge, and thresholding techniques along with a method 
for splitting overlapping particles (Wang, 2008). In ad-
dition, in 2008 Thurley and Andersson presented a tool 
for measuring the size of iron ore pellets, using the mor-
phological image segmentation technique (Thurley and 
Andersson, 2008). Furthermore, in 2011 Thurley devel-
oped a fully automated online system to measure the 
rock particle size distribution, by using morphological 
edge detection technique in 3D data analysis (Thurley, 
2011). Moreover, mathematical morphology technique 
was applied to segment the existing micro-cracks on 
sandstone microscopic images (Obara et al., 2011). 
Also, in 2011, Ko and Shang improved a prediction 
model to determine the size distribution of ore particles 
based on the obtaining, the uniformity of particles, using 
surface images and a neural network (Ko and Shang, 
2011). Also, in 2012 Zhang et al. described an approach, 
using image segmentation on overlapped coal particle 
images (Zhang et al., 2012). In this research, in order to 
detect the boundaries of particles, the thresholding Otsu 
method (Otsu, 1979) was used and the images were pro-
ceeded, using an exponential high pass filter, Fourier 
transform and a morphological technique was used for 
edge detection. Moreover, neural networks were used to 
determine the crushed material size distribution. In this 
research after imaging and segmenting, the size features 
were extracted and finally by using the integrating Prin-
cipal Component Analysis (PCA) and neural network, 
the size distribution of each image was estimated (Ham-
zeloo et al., 2014). Also, Bull et al. presented a method 
for segmentation of rock fragments, by Haar-like filter-
ing of digital images (Bull et al., 2015). Moreover, 
Sereshki et al. used the Sobel filter and mathematical 
morphology to develop an algorithm to detect the edges 
of fragments (Sereshki et al., 2016). Furthermore, in 
2016, a delineation algorithm was developed in which 
by using stereophotogrammetry, blocks were modelled 
in three dimensions and delineated based on the geo-
metrical features (Han and Song, 2016). Also, Karim-
pouli and Tahmasebi presented a deep convolutional 
autoencoder network (SegNet) to segment the digital 
rock images, which was used in Digital Rock Physics 
(DRP). According to the evaluation of the obtained re-
sults, the proposed algorithm is more efficient than the 
multi-phase thresholding method (Karimpouli and 
Tahmasebi, 2019). In addition, Rahmani et al. presented 
an automatic segmentation system to estimate the vol-
ume, weight and the size distribution of gravel particles. 
The proposed method is based on 3D scanning and a 
surface reconstruction algorithm (Rahmani et al., 
2019). Furthermore, Jang et al. developed a 3D rock 
fragment measurement system based on photogramme-
try (Jang et al., 2020). Also, Yang et al. suggested the 
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image processor toolbar of MATLAB software to calcu-
late the coal particle size. The performed image analys-
ing techniques can be summarized in the stages of bina-
rizations, segmentation, noise elimination, sharpening, 
contrast enhancement, and the use of the edge preserva-
tion filter, scale calibration and fragment size measuring, 
using intermediate axis of fitted ellipse (Yang et al., 
2020). Furthermore, a convolutional neural network 
(Alexnet) was modified in 2021 by Yang et al. for the 
classification of fragments. In this research, the images 
of the rock fragments were captured by the mounted 
camera above the conveyor belt and then classify based 
on the largest fragments. The results showed that the 
modified model has good performance (Yang et al., 
2021). Also, in 2021 Bamford et al. used a deep neural 
network (DNN model) to measure the size of rock frag-
ments. In this work muck- pile images were analysed 
and the results showed that the proposed model is fast 
and has acceptable accuracy in size prediction (Bam-
ford et al., 2021). In addition, four intelligent models 
were proposed to estimate the fragments size distribu-
tion. These models were obtained by combining of fire-
fly algorithm with machine learning algorithm including 
gradient boosting machine, support vector machine, 
Gaussian process and artificial neural network. Each 
model was optimized, using the results of fragment im-
ages analysing by Split-Desktop software. The results 
demonstrated that among the proposed models, the com-
bination of firefly algorithm with gradient boosting ma-
chine is the most accurate and has more reliable results 
(Xie et al., 2021). Also, in 2021 Bai et al. proposed a 
method based on the Watershed algorithm, the K-nearest 
neighbour algorithm, and the Convex shell method to 
segment the coal particle and determine the size distri-
bution of coal particles (Bai et al., 2021). Furthermore, 
a DexiNed convolutional neural network was modified 
by Li et al. in 2021 to determine the size distribution of 
aggregates on the conveyors in a crushing plant, by edge 
detection of rock particles images (Li et al., 2021). 
Moreover, Li et al. developed an approach to estimate 
the size distribution of metallurgical cock. In this algo-
rithm to detect the cock particles an object detection 
deep learning algorithm named Yolov3 was used. Size 
distribution estimating was done by measuring the width 
of bounding box as particle size and size conversion. Er-
ror correction was done by using the results of cock sam-
ple sieving. The results showed that the particle detec-
tion model is accurate and fast (Li et al., 2022).

By now, the Split system (Split-Desktop) is the most 
common software used to estimate the fragment size dis-
tribution. Using this software, rock particle delineating 
can be done in manual and automatic modes. Manual 
delineating is very time-consuming and its automatic 
mode, which is based on classical image processing al-
gorithms such as Sobel and Watershed, does not have 
good performance in correctly detecting rock particle 
edges. The main objectives and contributions of this re-
search is to determine fragment size distribution more 

accurately and fast by enhancing the edge detection of 
rock particles, by using one of the most advanced deep 
learning techniques called Convolutional Neural Net-
works (CNN). However, the errors due to 2D analysis 
and overlapping still exist.

Deep learning algorithm, as a type of machine learn-
ing algorithm, is an artificial neural network with hierar-
chical architecture, including multiple processing layers 
to extract conceptual and high level features progres-
sively (Guo et al., 2016). Different architectures of deep 
learning algorithm have been used in different fields of 
researches such as speech recognition (Abdel-Hamid et 
al., 2013), medical image analysis (Li et al., 2014), 
computer vision (Luo et al., 2018), natural language 
processing (Li et al., 2019), machine translation (Meng 
et al., 2015), bioinformatics (Zeng et al., 2016), mate-
rial inspection (Weimer et al., 2016), and drug design 
(Francoeur et al., 2020). Convolutional neural network 
is a special architecture of deep learning algorithm. In 
this research, in order to design rock edge detection net-
work, Convolutional Neural Network (CNN) is used be-
cause of its popularity and excellent performance in im-
age pattern recognition (Gu et al., 2018).

CNN architecture is a combination of deep neural net-
works with convolutional filters, which are organized in 
different layers and connected, using weights and biases. 
This network has different architectures depending on 
various objectives. Typically, it consists of a convolu-
tional layer, a pooling layer, and a fully connected layer 
or a 1 × 1 convolution layer in the last layer to achieve 
high-level reasoning or classifying (Wang, 1998; Lin et 
al., 2013; Petersen et al., 2014; Gu et al., 2018; Kat-
tenborn et al., 2021). The convolutional layer as the 
main core of the CNN, consists of multi optimizable fil-
ters, which convolve the input by 2D or 3D moving 
along it to extract features. Then, to generate 2D or 3D 
feature maps, activation function is used. Relu, Sigmoid, 
and Tanh are the most common activation functions 
used. The depth of each convolutional layer output is 
equal to the number of generated feature maps. Pooling 
as a reduction operator has no trainable parameters and 
its main purpose is effective sampling to reduce the di-
mensions of the obtained feature map, while preserving 
important data. It is usually placed between two convo-
lutional layers. The most common pooling are max pool-
ing and average pooling. A fully connected layer in-
volves weights, biases, and neurons. These neurons are 
fully connected to all activation functions of previous 
layers. It is used for image classification.

In this research, CNN is used to predict the label of 
each pixel (edge or non-edge). To train the network, 
datasets consist of input and target data are required.

2. Materials and Methods

In this research, two laboratory (lab) and field data-
sets were prepared to train and test CNN networks. 
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Then, based on the purpose of the research, the net-
work’s architectures were designed.

2.1. Data collection

In order to prepare lab datasets, 8 ASTM E11 stand-
ard sieves (see Figure 1a) with aperture size 4, 3.5, 3, 
2.5, 2, 1.5, 1, 0.5 inch were used to classify the various 
sizes rock particles (sands and gravels) into seven size 
categories A to G (see Table 1).

in image processing laboratory of Mining Engineering 
Department of Shahid Bahonar University of Kerman, 
Iran. Each image belongs to a unique weight pattern, 
which is a mixture of different size categories. To have 
the same dimension for all images, a scaled square frame 
(see Figure 1b) with dimensions of 60×60×5 cm was 
used, and rock particles placed inside it. Also, a frame 
with a height of one m (see Figure 1c) was used to keep 
the distance between the camera and the centre of imag-
ing surface constant, in which the camera was installed 
on top centre. In order to provide a constant brightness 
of at least 700 lux, the laboratory was light isolated, and 
two LED bulbs were used as the source of light (see Fig-
ure 1c). Totally 180 mixtures of sands and gravels were 
designed and the corresponding images were taken. One 
of the pre-designed mixture weight patterns is given in 
Table 2.

The field datasets were collected by 2D imaging from 
the muck-piles of fragmented rocks by blasting (180 im-
ages were taken) at the Sarcheshmeh copper mine. The 
Sarcheshmeh copper mine with a daily production of 
100,000 tones is a porphyry deposit, with a reservoir of 
about 1.2 billion tones, located 160  km southwest of 
Kerman, Iran.

For both lab and field images, to prepare training and 
testing dataset (input and target data) the original cap-
tured images were pre-processed by cropping and con-
verting to grayscale to use as input data. To prepare the 
target data (label), edge detection was done manually 

Table 1: The specifications of size categories

Size Category
The Sieve Aperture Size (inch)

Passed through Retained on
A 4 3.5
B 3.5 3
C 3 2.5
D 2.5 2
E 2 1.5
F 1.5 1
G 1 0.5

Table 2: One of the pre-designed weight patterns

Size Categories Weight
(%)

Weight
(kg)

A 26 7.2
B 14 3.8
C 34 9.3
D 9 2.5
E 8 2.2
F 6 1.7
G 3 0.9

Rock samples were prepared by the mixing of rock 
particles belonging to each size category according to 
pre-designed weight patterns and the lab datasets were 
collected by 2D imaging from mixed samples. All im-
ages were captured under standard laboratory conditions 

a b c
Figure 1: The tools used for lab imaging: (a) ASTM E11 standard sieves, (b) square frame, (c) frame with height of one m

and a band of edge detected image was extracted and 
used as target data. Figure 2 and Figure 3 show an ex-
ample of the original captured images (a), pre-processed 
image (b), manually edge detected (c), and target data 
(d) belongs to the lab and filed datasets respectively.

2.2 Rock edge detection network architecture

In this paper, to detect the rock particles edges, the 
convolutional neural network with U-shape architecture 
(U-net) proposed by Ronneberger et al. (2015) applied 
for biomedical image segmentation, was used. Accurate 
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Figure 2: Preparation of input and target data of the laboratory dataset: (a) Original captured image, (b) Image  
after pre-processing (input data), (c) Manually edge detected image, (d) Target data (a band extracted from image c).

a b c d

Figure 3: Preparation of input and target data of the field dataset: (a) Original image, (b) Image after pre-processing  
(input data), (c) Manually edge detected image, (d) Target data (a band extracted from image c).

a b c d

Figure 4: The U-net architecture for the lab dataset (after Ronneberger et al., 2015)

Table 3: The details of U-nets used for lab and field datasets

Dataset The network architecture The total number  
of convolution layers

The number of trainable 
parameters (in millions)

Lab 64(2)→128(2)→256(2)→512(2)→256(2)→128(2)→64(2)
→ 2(1)→1(1) 18 7.69

Filed 64(2)→128(2)→256(2)→512(2)→1024(2)→512(2)→256(2)
→128(2)→64(2)→2(1)→1(1) 23 31.03



Sharifi, E.; Ebrahimi Farsangi, M.A.; Mansouri H.; Rashedi E.� 6

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 1-14, DOI: 10.17794/rgn.2024.2.1

Figure 7: The modified U-net architecture for the field dataset.

Figure 6: The modified U-net architecture for the lab dataset

Figure 5: The U-net architecture for the field dataset (after Ronneberger et al., 2015)
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and efficient results in the image pixel-wise classifica-
tion were obtained by using this network. Also, U-net 
has good performance with training data (Ronneberger 
et al., 2015; Shamsolmoali et al., 2019; Sivagami et 
al., 2020; Gore et al., 2022). The U-net architecture 
consists of two contraction and expansion paths, includ-
ing convolutional layers. The main difference between 
these two paths is the use of pooling operators in the 
contraction and up-sampling operators in the expansion 
path. In this network, in the last layer, a 1×1 convolu-
tional layer is used, followed by a Sigmoid function as 
an activation function. Also, in the U-net, in each convo-
lutional layer, the same padded 3×3 convolution filters 
with Rectified linear unit (Relu: max (0, X)) as an acti-
vation function, applied twice repeatedly and then trans-
ferred to the pooling layers. The same padding technique 
by adding the zero value layers around the input image 
prevents the size reduction due to convolution. In the 
contraction part of this network, 2×2 max pooling with 
stride 2 is used to down sample after convolutional lay-
ers. In the expansion path, the up-sampling operator is 
used. It multiplies the dimensions of input and followed 
by convolutional layer. There are various up-sampling 
techniques, among them the nearest neighbour is the 
most common. In the expansion part of the proposed 
network, to increase the output spatial resolution and lo-
calize it, 2×2 up-sampling (nearest neighbour) is used 
followed by a 2×2 convolutional layer. Then, the high-
resolution feature maps obtained from the contracting 
part are merged with up-sampled outputs correspond-
ingly. The U-net was used for both lab and field datasets 
(see Figure 4 and Figure 5). The details of U-nets, in-

cluding the number of convolutional filters (generated 
feature maps) in each layer with their repetitions, the 
total number of convolution layers, and the number of 
trainable parameters is given in Table 3.

Also, in this research a modified U-net architecture in-
spired by the convolutional deep residual network (He et 
al., 2016; Targ et al., 2016; Mousavi et al., 2019) is pro-
posed. In this network the U-net is modified by replacing 
the two successive convolutional layers with a 2D residu-
al convolutional unit. The U-net architecture was modi-
fied for lab dataset (see Figure 6) and field dataset (see 
Figure 7). In the convolutional residual unit, a same pad-
ded 3×3 convolution filter followed by Relu is applied 
and normalized, using batch norm. Then, it is convolved 
again with another same padded 3×3 convolution filter 
followed by Relu. In this network, to achieve more con-
ceptual features, the outputs of two successive convolu-
tional layers are added and then transferred to the pooling 
and up-sampling layers. The details of modified U-nets, 
including the number of convolutional filters (generated 
feature maps) in each layer with their repetitions, the total 
number of convolution layers, and the number of trainable 
parameters is the same as in Table 3.

3. Results

The edge detection networks were trained, using lab 
and field datasets and then evaluated. After image edge 
detection and identification of rock particles, the size 
distribution of rock particles for each image was deter-
mined and the obtained results were compared with the 
sieve analysis results for the lab datasets.

Table 4: The details of networks trained

Network

Dataset
Lab Filed

Accuracy Training time 
(s/epoch)

Testing time
(s/sample) Accuracy Training time 

(s/epoch)
Testing time
(s/sample)

U-net 0.9730
640 0.8

0.9928
890 1

Modified U-net 0.9845 0.9856

Figure 8: The training accuracy: (a) Lab dataset (b) Field dataset

a b
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3.1. Networks training

The U-net and modified U-net were trained by both 
lab and field datasets. For each network, 180 images 
(256×256) were used of which 150 images were used for 
training and 30 images for testing. He-Normal method 
was used for initializing weights and biases. Also, binary 
cross-entropy as loss function and Adaptive Moment Es-
timation (ADAM) with a learning rate of 10–4 as an opti-
mizer were used. For both datasets, the networks were 
trained by 200 epochs with batch size of 100. The train-
ing accuracy was calculated by Equation 1 (Csurka et 
al., 2013; Luo et al., 2019; Romanuke, 2019):

	 � (1)

Where:
TP	 – True Positive,
TN	– True Negative,
FP	 – False Positive,
FN	–False Negative.
The final training accuracy and training and testing 

times for lab and field datasets for both networks are 
given in Table 4. Also, increasing in the accuracy of 
training process is visible for lab and field data datasets 
(see Figure 8). According to the achieved results, the 
training process of the networks was carried out with 
acceptable final accuracy. However, the modified net-
works were trained with greater accuracy. The training 
accuracy, the training time of each epoch, and the test 
time of each sample are shown in Table 4. As it can be 
observed from this table, by using the proposed models, 
the edge detection was carried out with high accuracy 

and the edge detecting time of each image is significant-
ly reduced compared to the manual edge detecting.

3.2. Networks performance evaluation

The performance of trained networks was evaluated, 
using 30 lab and 30 field test images (not used for train-
ing). The approximate time to delineate fragments in 
each image was estimated at about 0.8 and one second 
for lab and field images respectively. The performance 
of U-net and modified U-net were compared with the 
results of Split-Desktop automatic edge detection and 
the manually edge detected images (ground truth) on the 
same lab and field test images.

As an example, the performance of U-net, modified U-
net, Split-Desktop automatic edge detection, and the man-
ually edge detected images were compared on the same 
lab test images (see Figure 9) and field test images (see 
Figure 10). As it can be observed from these figures and 
in fact for all test images, the results achieved through U-
net and specially modified U-net for both lab and field test 
images are significantly more accurate than the results ob-
tained by automatic edge detection of Split-Desktop soft-
ware and visually close to the manual edge detecting.

Furthermore, to quantify the evaluation, the F1-score 
was used to measure the matching between the predicted 
boundary and the real boundary (Csurka et al., 2013; 
Luo et al., 2019; Mousavi et al., 2019; Romanuke, 
2019). It is ranging between 0 and 1. If the F1-score is 
one, it means that there is a full match between the 
boundary contours of an object in the prediction and 
ground truth. It can be calculated by Equation 2.

	 � (2)

Figure 9: Performance evaluation of the networks: (a) The original lab image, (b) The result of manual edge detection 
(ground truth), (c) The result of U-net, (d) The result of modified U-net, (e) The result of Split-Desktop.

a b c d e

Figure 10: Performance evaluation of the networks: (a) The original field image, (b) The result of manual edge detection 
(ground truth), (c) The result of U-net, (d) The result of modified U-net, (e) The result of Split-Desktop.

a b c d e
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Figure 11: Boundary matching evaluation of the lab test images

Figure 12: Boundary matching evaluation of the field test images

Table 5: The results of quantitative boundary matching 
evaluation

Item
Mean F1-score

Lab dataset Filed dataset
U-net 0.9842 0.9853
Modified U-net 0.9898 0.9936
Split-Desktop automatic 
edge detection 0.7446 0.8515

In this equation, precision is a positive predictive val-
ue and is defined as the ratio of the number of points on 
the prediction boundary, which are very close to the 
boundary of ground truth to the length of the boundary 
predicted. It means that the precision is the relation be-
tween all elements categorised as positives and true pos-
itives (Equation 3) (Csurka et al., 2013; Luo et al., 
2019; Mousavi et al., 2019; Romanuke, 2019).

	 � (3)

In Equation 2, recall is the ratio of the number of 
points on the boundary of the ground truth that are very 
close to the prediction boundary to the length of the 
ground truth boundary. It means that recall is the relation 
between all positive elements and true positives, as 
shown in Equation 4 (Csurka et al., 2013; Luo et al., 
2019; Mousavi et al., 2019; Romanuke, 2019).

	 � (4)

In this research, the F1-score was computed for both 30 
lab and 30 field test images, between the results of the 
manually edge detected (as ground truth) and the results of 
U-net, modified U-net, and Split-Desktop automatic edge 
detection (as prediction) (see Figure 11 and Figure 12). 
Also, the mean F1-scores of 30 test images for both data-
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Figure 14: The rock particle size distribution for four lab test images

Figure 13: The process of rock particle extracting and Min FD measuring

sets are given (see Table 5). As it can be seen from these 
figures and the table, there is a very good match between 
the results of 30 manually edge detected lab and field test 
images and the results of U-net and modified U-net com-

pare to the results of Split-Desktop, which once again con-
firm the ability of the U-net and modified U-net for rock 
fragments edge detection. Also, the obtained results dem-
onstrate that the modified U-net with the same number of 
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trainable parameters has even better performance (higher 
accuracy and F1-score) compared to the U-net.

3.3. �Determining the rock particles size 
distribution

By using the modified U-net for particles edge detec-
tion, the rock particle size distribution for 30 lab test im-
ages was determined and the results compared with the 
ones obtained by sieving and Split-Desktop (manual and 
automatic edge detection) for the same test images. To 
determine the size distribution of particles in each sam-
ple (image), it is needed to estimate the sieve size of 
each detected rock particle in the sample. Therefore, the 
goal is to measure the maximum diameter of the mini-
mum dimension of the rock particles. For this purpose, 
the Minimum Ferret Diameter (Min FD), which is the 
minimum distance between two parallel tangents of an 
object, is measured as sieve size after extracting the de-
tected rock particles, using the scaled frame. In the Split-
Desktop software, particle size is determined, using 
measurement of the minor and major axis of the best 
fitted ellipse. However, in the proposed algorithm, using 
the Ferret diameter is preferred because it is directly 
measured from the fragment and it is more accurate.

The process of particle extracting and Min FD measur-
ing for one of the lab samples is shown in Figure 13. After 
sieve size classifying of the rock particles, A to G, the vol-
ume of each particle is calculated by measuring the area of 
it and the third dimension is considered equal to the Min 
FD. In the Split-Desktop software, the third dimension is 
considered equal to the average of minor and major axes.

The performance of modified U-net in particle size 
estimation for 30 images (rock particle size distribution) 
was compared with the results of sieve analysis, auto-
matic and manual modes of Split-Desktop. The results 
for four images are shown in Figure 14.

Also, a quantitative evaluation for 30 test images was 
carried out, using Root Mean Square Error (RMSE) 
(Equation 5). For this purpose, F30 and F80 were consid-
ered. The results achieved are shown in Table 6.

	 � (5)

Where:
Xi 	– �The real (sieve size) cumulative percentage pass-

ing (F30 or F80),
Yi 	– �The predicted cumulative percentage passing 

(F30 or F80), using U-net or Split-Desktop,
N 	– �The number of samples (test images).

Table 6: A quantitative evaluation for 30 test images,  
using RMSE

Cumulative 
passing

Modified 
U-net

Manual  
Spilt-Desktop

Automatic 
Split-Desktop

F80 0.31 0.43 1.24
F30 0.36 0.74 1.20

Based on the size distribution analysis and the RMSE 
of F30 and F80 obtained for 30 images ((F30: 0.36, 1.20), 
(F80: 0.31, 1.24)) (see Table 6), the proposed algorithm 
based on modified U-net gives closer results to the sieve 
size compared to manual and automatic Split-Desktop. 
The existing errors most probably are related to the vol-
ume estimation based on 2D analysis, overlapping, and 
recognizing the floor as a particle in small sizes.

4. Discussion and Conclusions

In this research, an approach based on convolutional 
neural network (U-net was used and then modified)  
was used for rock particles edge detection and deter
mination of fragment size distribution, using the measure-
ment of Ferret diameter. 150 lab and field images were 
used for network training and 30 lab and field test images 
were used for network validation. The results for 30 test 
images were compared with the manually edge detected 
and the results obtained by the Split-Desktop automatic 
edge detection software on the same images. Based on the 
obtained results, there is a very good visual matching be-
tween the results achieved through the defined networks 
and the laboratory and field images. Also, F1-score was 
used to quantify the process of validation. The results 
show a better matching between the manually edge de-
tected images and the outputs of networks for both labora-
tory and field datasets compared to the results of Split-
Desktop automatic edge detection.

Also, by using RMSE, the performance of the pro-
posed approach for fragments size distribution for labo-
ratory images was evaluated. The obtained results 
showed that the RMSE for F30 and F80 are less than the 
RMSE for Split-Desktop manually edge detected soft-
ware ((F30: 0.36, 1.20), (F80: 0.31, 1.24)), which once 
again show the better performance of the new approach 
over Split-Desktop software. In addition to these, it is 
possible to analyse a large number of images in a short 
time without disturbing mining operation. These advan-
tages make this approach an efficient tool to evaluate the 
fragmentation caused by blasting in mines.
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SAŽETAK

Određivanje raspodjele veličine stijenskih fragmenata pomoću konvolucijske 
neuronske mreže

Brzo i relativno točno određivanje raspodjele veličine fragmenata usitnjenoga materijala još je uvijek izazov u rudarstvu, a 
postojeće metode za mjerenja raspodjele nisu učinkovite. U ovome istraživanju prikazan je novi algoritam za određivanje 
veličine fragmenata uslijed miniranja koji se koristi tehnikom obrade slike. U novopredloženome pristupu ocrtavanje usit-
njenih stijenskih fragmenata provedeno je korištenjem konvolucijske neuronske mreže. Dvije mreže načinjene su i trenira-
ne pomoću 150 laboratorijskih i 150 terenskih slika. Također, primijenjeno je 30 laboratorijskih i 30 terenskih slika kako bi 
se provela validacija vizualnim putem i F1-mjerom (engl. F1-Score). Na istim slikama dvije laboratorijske i terenske mreže 
imale su F1-mjeru od 0,98 i 0,99 nasuprot 0,74 i 0,85 za dobivene rezultate pomoću automatskoga otkrivanja rubova pro-
gramom Split-Desktop. Također, za određivanje raspodjele veličine fragmenata pomoću mreže na bazi laboratorijskih po-
dataka srednja kvadratna pogreška (RMSE) za F30 i F80 iznosila je 0,31 i 0,36 odnosno 1,20 i 1,24 kod automatskoga otkrivanja 
rubova softverom Split-Desktop na istim slikama. To upućuje na bolja svojstva predloženoga pristupa za otkrivanje rubova 
stijene i raspodjelu veličine fragmenata u odnosu na automatsko otkrivanje rubova programom Split-Desktop.

Ključne riječi: 
obrada slike, otkrivanje rubova stijenskih fragmenata, određivanje raspodjele veličine fragmenata, strojno učenje, kon-
volucijske neuronske mreže
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