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Abstract
Various techniques are used in rock engineering to evaluate tensile fracture toughness, which is a critical parameter in 
assessing and designing stable rock structures. These methods typically involve laboratory investigations and statistical 
analysis. Nevertheless, artificial neural networks can also establish correlations among different data sets. Artificial intel-
ligence approaches are becoming increasingly essential in all engineering fields, including the ones that study rock 
fracture mechanics. In this work, an artificial neural network with a hidden layer and eight neurons as well as a hybrid 
artificial neural network with a whale optimization algorithm were utilized to determine the tensile fracture toughness 
of rocks. In order to develop accurate models, this study has carefully selected four fundamental parameters to serve as 
inputs. These parameters include radius, thickness, crack length, and mean tensile strength of specimens. Also, 113 rock 
datasets were collected for models. The results show that utilization of the optimization algorithm enhances the preci-
sion in estimating the tensile fracture toughness of rocks. The R2 improved to 0.93 when the whale optimization algo-
rithm was used. On the other hand, the correlation factor reached 0.81 when the whale optimization algorithm was not 
implemented.
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1. Introduction

The study of fracture mechanics is a captivating area of 
research that delves into how objects withstand the growth 
of cracks and the numerous factors that impact the propa-
gation of existing or emerging ones. This discipline has 
gained immense recognition in the study of metallic struc-
tures, especially in aerospace, marine, and nuclear engi-
neering, and has even been applied to rocks and concrete 
structures. Despite the development of standard and 
straightforward fracture criteria over time, the field con-
tinues to face new challenges with advancements in sci-
ence and industry. In rock mechanics, for instance, some 
older criteria cannot explain specific issues related to rock 
fractures due to the intrinsic complexity of quasi-brittle 
materials like rocks and concrete. These materials have 
unique characteristics, including various types of cracks 
that vary in size and shape, caused by diverse factors. 
Moreover, excessive loading on structures in real-world 
conditions is essential to their failure before reaching their 
theoretical strength (Whittaker et al., 1992; Saxena, 
1998; Bažant, 2000; Anderson, 2017).

It is obvious that cracks are present in all materials 
and can cause stress concentration and reduce the mate-
rial’s strength under different loading conditions. The 
stress intensity factor was introduced in 1952-54 to 
measure local stress around the crack tip and define frac-
ture toughness (Bažant and Yu, 2009).

A rock or rock-like structure can experience various 
loading conditions. Understanding the structure’s re-
sponse to each loading condition is essential. Types of 
loading conditions based on crack propagation are (Er-
arslan and Williams, 2013; Ebrahimi and Hosseini, 
2022):

• Tensile or opening mode (mode I),
• Shear or sliding mode (mode II),
• Tearing mode (mode III).
The loading type is generally a combination of differ-

ent modes, which can be analyzed by considering loading 
modes from the first to the third mode (see Figure 1).

Based on their loading conditions, stress intensity co-
efficients KI, KII, and KIII can be calculated for brittle 
materials to determine stress intensity in modes I, II, and 
III. The critical value of these coefficients is commonly 
referred to as rock fracture toughness. Understanding 
fracture toughness and crack propagation in rock struc-
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tures is essential in various practical scenarios, including 
oil and gas extraction industries, tunnelling, mining, 
dams, and bridge designs. The investigation of fracture 
toughness in tension loading is an indispensable aspect 
of research, as rocks and rock-like materials tend to ex-
hibit brittle behaviour in tension. Therefore, understand-
ing the fracture toughness of such materials is critical for 
the development of effective engineering designs and 
the optimization of the performance of structural com-
ponents (Ghanbari et al., 2019).

The ISRM (International Society for Rock Mechan-
ics) has presented various experimental techniques to 
measure the tensile fracture toughness of rocks, catego-
rized by three different methods: bending, direct tension, 
and compressive loading. Each approach has its distinct 
specimen preparation requirements for laboratory analy-
sis (Alkılıçgil, 2010; Dolatshahi and Molladavoodi, 
2023).

The most general experimental methods based on the 
type of loading for Mode I are as follows (Franklin et 
al., 1988; Alkılıçgil, 2010; Kataoka et al., 2015):

• Experimental methods such as short rod test (SR) as 
a method based on direct tensile loading conditions.

• Experimental methods such as the cracked straight-
through Brazilian disc test (CSTBD), cracked chev-
ron notched Brazilian disc test (CCNBD), and flat-
tened Brazilian disc test (FBD) are methods based 
on compressive loading conditions.

• Experimental methods such as semi-circular bend-
ing test (SCB), straight edge cracked round bar 
bending test (SECRBB), and chevron bending test 
(CB) are based on bending loading conditions.

Various parameters affect the fracture toughness of 
rocks. These parameters include temperature, confining 
pressure, loading velocity, microscopic features, and the 
specimen’s size and geometry. In addition, specimen 
preparation to determine this critical engineering param-
eter requires accuracy in the whole procedure with dif-
ficulty (Miao et al., 2022). Therefore, various experi-
mental studies have been carried out by different re-
searchers to provide a suitable approximation and 
estimate of tensile fracture toughness. For example, in 
an experimental study on eight sedimentary rocks, Gun-
sallus et al. (1984) proposed an experimental equation 
between compressive strength, Brazilian tensile strength, 
and point load index with rock fracture toughness Mode-

I. Whittaker et al. (1992) presented that rock’s tensile 
strength and fracture toughness have a direct relation-
ship. In a laboratory study, Zhang (2002) proposed that 
the tensile fracture toughness of rock is related to the 
Brazilian tensile strength, and the result of his study was 
to provide an equation to estimate the tensile fracture 
toughness. Hosseini and Abdolghanizadeh presented an 
experimental relationship between rock tensile strength 
and fracture toughness Mode-I through the SCB method 
(Hosseini and Abdolghanizadeh, 2017; Abdolghani-
zadeh et al., 2020). In a similar study, Hu et al. (2022) 
investigated the effect of various temperatures on gran-
ite. They presented an experimental equation for esti-
mating the tensile fracture toughness of granite by using 
longitudinal wave velocity, tensile strength, and the 
amount of heat applied to granite. Shi et al. (2022) drew 
out an empirical equation to predict fracture toughness 
Mode-I with the tensile strength of various rocks.

In addition to the experimental methods, different re-
searchers have conducted many studies in which newer 
methods have been implemented. Researchers based 
their findings on datasets and the aid of techniques such 
as artificial neural network and deep machine learning 
(DML), fuzzy logic, or the use of statistical methods 
such as linear regression (LR) and non-linear regression 
(NLR) and the use of various metaheuristic algorithms 
to provide an accurate relationship for estimating the 
fracture toughness of rocks by including multiple factors 
(Albaijan et al., 2023; Fakhri et al., 2023; Wiang-
kham et al., 2023). For example, Hamdia et al. (2015) 
employed an artificial neural network (ANN) and adap-
tive neuro-fuzzy inference system (ANFIS) to predict 
the fracture energy of polymer nanocomposite. Their 
ANN and ANFIS models based on 115 experimental 
datasets and five input parameters were considered: the 
volume fraction of the nanofiller, the fracture energy of 
the matrix, the diameter of the nanoparticle, the elastic 
modulus of the nanocomposite’s matrix and its yield 
strength. The results showed that the ANN and ANFIS 
models produced considerably superior outputs with 
higher coefficients of determination. The values of R2 for 
the ANN and the ANFIS models were 0.925 and 0.937.

Wang et al. (2021) employed an artificial neural net-
work (ANN) to predict the fracture toughness Mode-I of 
rocks based on crack properties, rock tensile strength, 
and radius of CCNBD specimens of 88 datasets. The re-
sults of this study showed that the capacity of ANN is 
more satisfactory than experimental relationships and 
more comprehensive to generalize other rocks.

Mahmoodzadeh et al. (2022) combined the support 
vector regression (SVR) method with six different me-
taheuristic optimization algorithms, including particle 
swarm optimization (PSO), grey wolf optimization 
(GWO), multiverse optimization (MO), moth flame op-
timization (MFO), sine cosine algorithm (SCA), and so-
cial spider optimization (SSO) to predict Mode-I rock 
fracture toughness. They used 250 datasets of rock frac-

Figure 1: Schematic representation of various fracture 
modes (Erarslan and Williams, 2013)
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ture toughness with the CCNBD method. The results 
showed that the hybrid model of SVR-PSO produced the 
most accurate results, and it was recommended to pre-
dict the Mode-I rock fracture toughness.

Fakhri et al. (2022) employed various machine 
learning methods to predict the fracture toughness of 
mixed modes of several types of concrete. Their models 
included the extreme standard gradient boosting process 
(XGboost), hybrid models of XGboost-PSO, XGboost-
GWO, XGboost-imperialist competitive algorithm 
(ICA), XGboost-shuffled frog leaping algorithm (SFLA), 
and XGboost-genetic algorithm (GA) with utilizing 560 
datasets obtained from the CSTBD test. Inputs of their 
models included concrete type, specimen diameter, 
thickness, crack length, failure loading, and crack angle. 
The results showed that the hybrid model of XGboost-
PSO predicted the mixed-mode fracture toughness of 
concrete specimens best.

Afrasiabian and Eftekhari (2022) employed machine 
learning methods such as gene expression programming 
(GEP) to predict the fracture toughness Mode-I of rocks 
based on the mechanical properties of rocks, including 
Young’s modulus, tensile strength, and uniaxial compres-
sive strength. Their results, compared with multiple linear 
regression (MLR), showed that the GEP model produced 
exceptionally illustrative outputs with higher coefficients 
of determination. The values of R2 for the GEP and the 
MLR models were 0.87 and 0.74, respectively.

Emami Meybodi et al. (2022) employed MLR, n-
MLR, and SVR methods to predict the fracture tough-
ness Mode-I and Mode-II of rocks based on the mechan-
ical properties of rocks, including Young’ modulus, ten-
sile strength, and uniaxial compressive strength. Their 
results showed that the SVR method predicted fracture 
toughness better than the other methods.

The fracture toughness is dependent on the specimen 
size. Different researchers have conducted multiple 
studies that indicate the specimen size effect on the 
Mode-I toughness of a rock in the mostly experimental 
methods, some of which are reviewed in Table 1.

Based on the above literature, this study aims to eval-
uate the fracture toughness of Mode-I rocks based on 
their geometrical and the mean tensile strength with the 
ISRM suggestion size as a mechanical parameter to em-
phasize the potential of models considering the phenom-
enon of size effect on tensile fracture toughness. To 
achieve this, an artificial neural network and the WOA 
(Whale Optimization Algorithm) were utilized. The 
WOA has not been previously applied in the tensile frac-
ture toughness prediction as a hybrid model approach. 
This research seeks to determine the effectiveness and 
accuracy of the WOA in estimating fracture toughness.

The general framework of this article is to collect ¸the 
geometrical and tensile strength data of different rocks 
to achieve the performance of both the artificial neural 
network model and the hybrid artificial neural network 
model with a whale optimization algorithm for weight-
ing of the neurons in the hidden layer of the model con-
sidering the specimens’ size effect on the tensile fracture 
toughness of rocks.

2. Methodology

Computational models known as Artificial Neural 
Networks (ANNs) function similarly to the human brain. 
ANNs consist of numerous processors connected by 
weighted connections, much like neurons. The output of 
each processor relies on the information at the node, 
which may be stored internally or received through 
links. Every processor receives input from various nodes 
and transmits its output to other nodes. Although a single 
processor is not particularly potent, they create a robust 
system when combined. The output of a single processor 
is a scalar output with a numerical value, which results 
from a simple nonlinear function of its inputs. The artifi-
cial neural network (ANN) is not a solution that relies 
solely on mathematical equations. Instead, it showcases 
information processing characteristics that enable it to 
approximate a given problem. ANNs have been widely 
used in complex nonlinear function mapping, image 

Table 1: Some reviewed articles about the size effect on fracture toughness Mode-I

[Rf.] Method Material Fracture toughness with an 
increase in in the dimensions

(Khoramishad et al., 2014) CB Limestone

Increase

(Ayatollahi et al., 2014) CSTBD Nayriz Marble
(Aliha et al., 2015) SCB Asphalt concrete
(Akbardoost, 2016) MR Marble
(Jeong et al., 2017) SCB Granite
(Zhang et al., 2021) CSTBD Sandstone
(Muñoz-Ibáñez et al., 2021) SCB Sandstone, and granite
(Davis et al., 2022) CB Quasi-brittle sandstone
(Li et al., 2023) CB Anisotropic Shale
(Pirmohammad et al., 2024) SCB Asphalt concrete
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processing, pattern recognition classification, etc. Feed-
forward networks are a common type of neural network 
(Hopfield, 1988; Dongare et al., 2012; Pradeep and 
Samui, 2022).

In this article, an artificial neural network consisting 
of four inputs and a hidden layer with eight neurons and 
one output is modelled. A whale optimization as a meta-
heuristic algorithm has been implemented to determine 
the weight of each neuron and the impact of each param-
eter. The layer transfer function was employed with both 
hidden and output layers, and the number of neurons 
was determined through a rigorous trial and error pro-
cess. To prevent the issue of overfitting, the early learn-
ing strategy was implemented. The combined model of 
the artificial neural network with the whale optimization 
algorithm has been coded in MATLAB software, and 
three critical points are necessary when checking to find 
a relationship to estimate the tensile fracture toughness 
with the ANN- metaheuristic algorithm, which are:

a)  Data collection: As mentioned earlier, the determi-
nation of tensile fracture toughness can be deter-
mined by various tests, so while collecting speci-
mens, the data should be based on the same labora-
tory method. In this study, the data are collected 
based on the SCB laboratory method.

b)  It is required to be most accurate in determining 
the inputs of an artificial neural network so that the 
relationship defined to estimate the output param-
eter is the most consistent with reality.

c)  It is necessary to be knowledgeable about the gen-
eral process of the optimization algorithm and in-
spect the results with the standard and default state 
of the artificial neural network without using the 
optimization algorithm. Optimization algorithms 
should always be used to improve the accuracy of 
a relationship (Abdel-Basset et al., 2018).

2.1 The SCB Method and Inputs of Models

One of the newest experimental methods to determine 
the fracture toughness of rocks was suggested by Ku-
ruppu et al. in 2014 with the approval of ISRM. In  
this test, the studied rock specimen has a semi-circu- 
lar geometry with a straight edge or chevron crack. The 
semi-circular model is subjected to three-point bending 
(see Figure 2). In addition to the tensile mode, the  
rock’s combined modes of shear and tensile and pure 
shear mode fracture toughness can also be determined 
with this method (Dolatshahi and Molladavoodi, 
2023).

For the ANN-WOA model, the inputs are based on the 
geometric characteristics of the specimen, including the 
thickness (t) and radius (R) of the sample, the length of 
the crack (a), and the mechanical properties of the rock 
is the mean tensile strength (σt) of the rock based on the 
Brazilian test according to the ISRM standard.

Figure 2: The semi-circular specimen  
under three-point bending (SCB)

Table 2: Details of datasets of ANN and ANN-WOA models

Ref. Sample N  (MPa) R (mm) a/R t/2R KIc (MPa.m0.5)
(Alkılıçgil, 2010) Andesite 10 7 49.52-51.03 0.10-0.22 0.49-0.51 0.83-1.10

Marble 7 5.13 36.63-51.50 0.15-0.27 0.49-0.51 0.47-0.64
(Kataoka et al., 2015; 
Jeong et al., 2017)

Granite (I) 15 10.30 35.70-36.80 0.48-0.50 0.25-0.28 1.97-2.48
Granite (II) 17 11.40 35.20-37.10 0.49-0.50 0.25-0.28 1.62-2.03

(Xiao et al., 2021) Granite 3 12.50 23.37-23.64 0.25 0.33-0.54 1.58-1.62
(Zhang et al., 2020) Limestone 36 9.65 24.01-74.89 0.30-0.50 0.29-0.31 0.76-1.24
(Ghouli et al., 2021) Limestone 6 5.42 25-300 0.50 0.05-0.40 0.67-1.02

Marble 6 11.41 25-300 0.50 0.05-0.40 1.01-1.35
Granite 6 9.50 25-300 0.50 0.05-0.40 0.88-1.18

(Aliha et al., 2012; 
Nejati et al., 2019) Concrete 7 2.10-12.50 65 0.30 0.30 0.44-2.10

Where:
N is a number of data,  is the average of tensile strength, R is the radius of specimens, a/R is the ratio of length to the radius 
of the specimens, t/2R is the ratio of thickness to diameters of SCB specimens, and KIc is tensile fracture toughness. All 
geometrical parameters are shown in Figure 2. 
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2.2. Data set

In this work, 113 datasets have been collected from 
various articles (see Table 2). 80% of all data is utilized 
for training the ANN-WOA, and the leftovers are used to 
test the model. The data selection has been made in such 
a way as to show the effect of altering the inherent ten-
sile strength of the rock, as well as the specimen size and 
crack length effects.

According to the correlation coefficient method be-
tween the inputs and outputs of the collected data, it has 
been determined that the highest correlation is between 
the radius of the samples with the fracture toughness and 
the tensile strength with the fracture toughness for the 
above data.

2.3. Whale Optimization Algorithm (WOA)

The whale optimization algorithm is a meta-heuristic 
algorithm encouraged by the unique method of hump-
back whales’ hunting called bubble network, presented 
by Mirjalili et al. (2016). Humpback whales hunt at the 
water’s surface, initiating the bubble-net feeding behav-
iour of humpback whales so the prey is close to the wa-
ter’s surface (see Figure 3). This metaheuristic algo-
rithm is a nature-inspired, and population-based algo-
rithm that has been utilized in various case studies. It 
consists of three phases: Siege prey, Operation, and Ex-
ploration phases.

• Siege prey: Whales can detect the location of the 
prey and know how to surround it. Since the site of 
the best prey in the target space of the whale has yet 
to be discovered, the whale optimization algorithm 
first selects the first prey for the whale as the most 
suitable target. Then other factors update their posi-
tion targets (Mafarja et al., 2017; Mirjalili et al., 
2016). The behaviour of whales can be modelled by 
Equation 1.

  (1)

where:
t: number of iterations,

, and : vector of coefficients,
: vector of position,

: a vector whose value is between 0 to 2,
: a random pick between [0,1].

• Operation phase as bubble net attacking: the whale 
hunting operation is highly dependent on vector A, 
which is also dependent on the value of a. If the 
value of vector A is less than 1, based on what was 
explained in the previous step, the position of the 
whales is updated, and hunting takes place. If the 

value of vector A is one or greater than one, the 
method of updating the position of whales is 
changed according to Equations 4 and 5, and the 
hunting process takes place in the form of a spiral 
rotation (Mirjalili et al., 2016; Mafarja et al., 
2017; Mehranfar et al., 2019).

  (2)

  (3)
where:

I: a random number between [-1,1],
b: a constant value to determine the shape of the helix.
• Random exploration phase: In this method, the dis-

tance between the prey and the whale is first ob-
tained from Equations 4 and 5, and then with the 
aid of Equation 3, the spiral movement of the 
whales towards the prey begins (Mirjalili et al., 
2016; Mafarja et al., 2017).

  (4)

  (5)

To better understand how the whale optimization al-
gorithm works, the flowchart of the whale algorithm is 
shown in Figure 4.

The Whale Optimization Algorithm (WOA) offers a 
set of simple yet powerful search mechanisms that ena-
ble the efficient identification of optimal solutions. De-
spite these benefits, however, the WOA, similar to other 
swarm intelligence algorithms, is susceptible to several 
challenges. These include the risk of falling into local 
optima, premature convergence, and low population di-
versity, all of which may hinder the algorithm’s perfor-
mance and limit its effectiveness. As such, it is important 
to be aware of these potential challenges and to take 
steps to address them as necessary to maximize the ben-
efits of the WOA (Nadimi-Shahraki et al., 2023).

The critical point is checking the effectiveness and 
improvement of an ANN by using the WOA. Numerous 

Figure 3: Bubble-net feeding behaviour of humpback whales 
(Mirjalili et al., 2016)
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optimization algorithms can cause more suitable im-
provement in the ANN. Furthermore, one of the debata-
ble issues is that the features of the ANN can also affect 
the results. For instance, it can be used by increasing the 
number of hidden layers, and the change in the number 
of neurons in each hidden layer is even practical (Gos-
wami et al., 2020).

As mentioned earlier, both models in this study have an 
identical configuration with one hidden layer of eight neu-
rons This ensures that the models can be compared on the 
same physics. Various studies suggest that the number of 
neurons and hidden layers in the ANN may vary, affecting 
the model›s accuracy. In this study, the different neuron 
numbers were used for the hidden layer and the R2 of the 
training data for each model of investigation and the opti-
mal value of the number of neurons for the ANN and hy-
brid models have been selected to increase the speed and 
accuracy of the models (see Figure 5).

Several factors can impact the model’s accuracy in 
some cases of using a meta-heuristic algorithm, like the 
WOA. These factors include the iteration rate, the number 
of whale populations, and their search range (Mirjalili et 
al., 2016; Moayedi et al., 2019; Vaheddoost et al., 
2020). The study found that the number of whales and it-
eration values were optimal based on R2 of training data. 

Higher values of whale population and iteration rate did 
not improve model accuracy (see Figure 6 and Figure 7).

In this study, a hybrid ANN-WOA model consists of 
four inputs, one output, and one hidden layer with eight 
neurons. Also, 113 datasets, including tensile strength 
and geometrical parameters of the SCB specimens, were 
used in this study. In addition to the hybrid model with 
the same conditions, an ANN was also modelled using 
the whale optimization algorithm to clarify the differ-
ence. 80% of the data were used for training and 20% for 
testing of the model. The number of iterations of the 
whale algorithm is 500. Also, comparing two models in 
less than 100 iterations was checked to illustrate which 
models have been fitted well. A maximum number of 
300 is set as a searcher factor in the hybrid model. The 
upper and lower limits of the algorithm are equal to 1 
and zero, respectively. To evaluate and compare the per-
formance and fitness of two of the ANN models and the 
hybrid ANN-WOA model, the main criterion employed 
in this study is to check the R2 value of the relation be-
tween the actual tensile fracture toughness and the pre-
dicted values from each model. R2 is obtained from 
Equation 6. For this purpose, the models were run in 
MATLAB software, and each run’s results are given in 
Table 3. The coefficient of determination (R2) for ANN 

Figure 4:  Flowchart  
of the WOA
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Figure 7: Effect of iteration on the 
R2 of training data

Figure 5: Effect of neuron number 
on the R2 of training data

Figure 6: Effect of whale population 
on the R2 of training data

and ANN-WOA models is calculated based on Equa-
tion 6 as follows:

  (6)

where:
ypr: predicted values of models,
yac: actual values.
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Table 3: Results for the ANN and ANN-WOA models

Model Train (R2) Test (R2)
ANN 0.81 0.77
ANN-WOA 0.93 0.86
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Figure 8: a) Regression of the ANN train, b) ANN test, c) the ANN-WOA train, and d) the ANN-WOA test

3. Results and discussion

The accurate determination of rock fracture tough-
ness parameters under varying loading conditions is cru-
cial for understanding the behaviour of rock structures 
during crack propagation. Given the poor performance 
of rocks and concrete under tensile loading conditions, it 
is imperative to pay close attention to the fracture tough-
ness of these materials. However, the preparation of 

samples and the conduction of time-consuming tests 
present significant challenges, necessitating the use of 
estimation methods to determine this parameter.

This study utilized two factors specific to the geome-
try of the samples, as well as a parameter specific to the 
length of the crack and the average tensile stress as the 
rock strength parameter. The models presented are based 
on 113 datasets, and although the limited amount of data 
represents a constraint, the accuracy of the models in es-
timating fracture toughness was evaluated under low 
data conditions.

It is noteworthy that the estimation of fracture tough-
ness parameters is critical in the design of rock structures 
and the determination of their safety margins. As such, the 
models presented herein represent a significant contribu-
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Figure 9: Comparing the results of the hybrid ANN-WOA and the ANN models with the experimental data

Figure 10: The R2 of ANN, and hybrid ANN-WOA models  
in iteration less than 100

tion to the field, particularly in situations where the avail-
ability of data is limited. It is crucial to emphasize that 
ANNs require significant data for accurate training and 
testing results. With the scope of enhancement in certain 
subjects, some categories may have limited data availabil-
ity. Notably, the data paucity may pose a challenge to the 
analysis and interpretation of results. However, carefully 
considering the available data and suitable statistical 
methods can assist in mitigating the impact of limited 
data. One of the most adequate manners to enhance the 

accuracy of the ANN is to utilize meta-heuristic algo-
rithms. The hybrid model of the ANN combined with op-
timization algorithms adjusts the weighting of neurons of 
hidden layers to improve the model accuracy. The whale 
optimization algorithm stands out for its ability to evalu-
ate search factors beyond just itself as the only perfect 
factor. This algorithm also uses a randomized approach to 
select data for model testing and training, resulting in a 
more comprehensive evaluation of the model’s reliability 
and accuracy. Table 3 presents the coefficient of determi-
nation (R2) for the ANN and hybrid model of the ANN-
WOA models for training and testing data.

Table 3 illustrates the findings of this study, which 
highlight that using the WOA to estimate the weight of 
neurons in the ANN has led to a significant improvement 
of 14.07% for the train and 10.71% for the test data’s R2 
value. For a better understanding of the advancement in 
rock tensile fracture toughness estimation with helping of 
specimens’ geometric parameters, crack length, and mean 
tensile strength of rocks in two models of the ANN and a 
hybrid model of the ANN-WOA, estimation of regression 
diagram and curve fitting of the ANN and ANN-WOA in 
train and test is obtained in Figure 6 and Figure 7 com-
paring the results of both models and the actual data.

It is evident in Figure 7 that both models provide an 
acceptable estimate of the tensile fracture toughness of 
rocks in comparison to their experimental values. Howev-
er, the hybrid model is more accurate than the ANN model.

Both models underwent 500 iterations. In addition, 
their respective fitness R2 scores were evaluated for less 



Dolatshahi, A.; Molladavoodi, H. 10

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 1-12, DOI: 10.17794/rgn.2024.3.1

Cloud with Engineering Applications (pp. 185–231). Else-
vier. https://doi.org/10.1016/B978-0-12-813314-9.00010-4

Abdolghanizadeh, K., Hosseini, M., and Saghafiyazdi, M. 
(2020): Effect of freezing temperature and number of 
freeze–thaw cycles on mode I and mode II fracture tough-
ness of sandstone. Theoretical and Applied Fracture Me-
chanics, 105, 102428. https://doi.org/10.1016/j.tafmec. 
2019.102428

Afrasiabian, B., and Eftekhari, M. (2022): Prediction of mode 
I fracture toughness of rock using linear multiple regres-
sion and gene expression programming. Journal of Rock 
Mechanics and Geotechnical Engineering, 14(5), 1421–
1432. https://doi.org/10.1016/j.jrmge.2022.03.008

Akbardoost, J. (2016): Investigating the effect of specimen 
size on the dynamic fracture of cracked rocks. Journal of 
Mining Engineering, 11(31), 91–101.

Albaijan, I., Fakhri, D., Mohammed, A. H., Mahmoodzadeh, 
A., Ibrahim, H. H., Elhag, A. B., and Rashidi, S. (2023): 
Several machine learning models to estimate the effect of 
an acid environment on the effective fracture toughness of 
normal and reinforced concrete. Theoretical and Applied 
Fracture Mechanics, 126, 103999.

Aliha, M. R. M., Bahmani, A., and Akhondi, Sh. (2015): De-
termination of mode III fracture toughness for different 
materials using a new designed test configuration. Materi-
als and Design, 86, 863–871. https://doi.org/10.1016/j.
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stone Rocks. Society for Experimental Mechanics Annual 
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than 100 iterations to assess their performance. This 
comparison can be used as a criterion to determine which 
model is more suitable for the given dataset with low it-
erations (see Figure 10).

Based on Figure 10, it is clear that the hybrid ANN-
WOA model has a maximum accuracy of 18.9% higher 
than the ANN model in the number of iterations less  
than 100.

4. Conclusion

Tensile fracture toughness is one of the essential pa-
rameters in the design of a rock structure. This parameter 
can be determined through various laboratory methods. 
One of the concerns in determining this parameter is that 
it takes time and effort to prepare specimens. Therefore, 
researchers always try to provide suitable relations to es-
timate this parameter. One of these methods is establish-
ing a relationship between the fracture toughness and 
other parameters of the rocks. In this study, 113 SCB 
specimens’ geometrical parameters, crack length, and 
tensile strength data from various articles are collected 
and employed by the ANN and the hybrid model of the 
ANN-WOA. The results of this study show that the frac-
ture toughness of rocks is dependent on the size of the 
specimen. Many studies by different researchers show 
that with an increase in the size of the SCB specimen, 
the fracture toughness of the rock increases, and there is 
also a relationship between the two parameters of tensile 
strength and the tensile fracture toughness of the rock. 
This study tries to estimate the fracture toughness Mode-
I based on having the geometrical parameters of the 
specimen, crack length, and tensile strength of rocks 
with R2 close to 1. The use of meta-heuristic algorithms 
in determining the weight of each neuron in the ANN 
permits to increase in the accuracy of the ANN models. 
The WOA has two essential features: the use of this al-
gorithm for less data and the ability to search for factors 
randomly instead of only one factor. Employing the 
WOA in an ANN with one hidden layer and eight neu-
rons increases the R2-value of all data by 11.9%.

The present study demonstrated the practical imple-
mentation of two models to estimate the tensile fracture 
toughness of rock. In light of future research, it is recom-
mended that these models can be further evaluated for 
their applicability in estimating the fracture toughness of 
modes II, III, and mixed modes, or through comparison 
with other hybrid models and diverse inputs. Such inves-
tigations would provide valuable insight to improve our 
understanding of the fracture mechanics of rock and en-
hance our capability to predict its strength and durability.
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SAŽETAK

Procjena lomne žilavosti stijene hibridnim ANN-WOA modelom

U inženjerstvu koje je vezano uz stijene koriste se različite tehnike za procjenu lomne žilavosti, koja je kritični parametar 
u ocjeni i projektiranju stabilnosti stijenske mase. Te metode obično uključuju laboratorijska ispitivanja i statističku 
analizu. Umjetne neuronske mreže također mogu uspostaviti korelacije između različitih skupova podataka. Primjena 
umjetne inteligencije postaje sve bitnija u svim područjima inženjerstva, uključujući i ona koja proučavaju mehaniku 
loma stijena. U ovome radu korištena je umjetna neuronska mreža sa skrivenim slojem i osam neurona te hibridna 
umjetna neuronska mreža s whale optimizacijskim algoritmom za određivanje lomne žilavosti stijena. Kako bi se razvili 
točni modeli, ova studija pažljivo je odabrala četiri temeljna parametra koji će poslužiti kao ulazni podatci. Ovi parame-
tri uključuju polumjer, debljinu, duljinu pukotine i srednju vlačnu čvrstoću uzoraka. Također, za modele je prikupljeno 
113 podataka o stijenama. Rezultati pokazuju da primjena optimizacijskoga algoritma povećava preciznost u procjeni 
lomne žilavosti stijena. Faktor međuovisnosti prije korištenja algoritma optimizacije iznosio je 0,81, a kada je primijenjen 
algoritam optimizacije, poboljšao se i iznosio je 0,93.

Ključne riječi: 
lomna žilavost, umjetne neuronske mreže, whale optimizacijski algoritam, učinak veličine, vlačna čvrstoća
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