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Abstract
Current research investigates multi-criteria decision methods, consisting of AHP TOPSIS, AHP VIKOR and AHP 
MOORA, to model porphyry copper potential in the Mokhtaran area in Eastern Iran. Evidential layers in this study in-
clude intrusive rocks, volcanic rocks, faults, Geochemical mineralization probability index (GMPI), reduction to the 
magnetic pole of the total magnetic intensity map, argillic and phyllic alterations. The importance of these evidential 
layers was calculated using the AHP method. Then, a fuzzy method was applied to the same scale the evidential layers. 
The threshold values of these layers were discretized with the Fractal method. Then, a weight was assigned to each evi-
dential layer. After weighing all of the evidential layers, different MCDM methods, including AHP TOPSIS, AHP VIKOR, 
and AHP MOORA, were implemented to combine these layers and outline the Porphyry Copper Prospectivity Models. 
The predicted models show the same promising areas. The appropriate coincidence can be seen between high potential 
areas and mine indications. Then the success curve rate was implemented to compare the three predicted models. Based 
on this method, the AHP TOPSIS has a better performance. Since the success rate curve belongs to AHP TOPSIS, it is 
placed above the other two methods. Next, AHP VIKOR has a better performance than AHP MOORA. The three MCDM 
methods produced the same Cu porphyry mineralization areasd along fault zones.
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1. Introduction

Identifying high-potential areas is an essential part of 
geoscience research studies and effectively explores and 
introduces occurrences of economic deposits. Different 
methods, including geochemistry, geophysics, remote 
sensing, and geology, are applied to model high poten-
tial areas in wide geological environments (Abedi et al., 
2016). Mineral potential mapping is usually considered 
a multi-criteria decision-making (MCDM) method be-
cause it generates a mineral potential model. These pre-
dictive maps are generated using different evidential lay-
ers (Abedi et al. 2016). The application of MPM can 
decrease risk and uncertainty (Li et al., 2020; Parsa et 
al., 2016). Cargill and Clark (1978) presented mineral 
potential modelling for the first time. After introducing 
the concept of MPM, several studies were conducted to 
integrate geoscience data. Two methods can be men-
tioned to integrate geospatial data: (1) Expert-oriented 
(2) data-oriented. The two methods integrate and assign 
different geospatial data and introduce high-potential ar-
eas for future exploration efforts (Pan and Harris, 

2015). Expert-orented methods use expert experience 
and knowledge to determine the numerical significance 
of different geospatial layers. BWM-MOORA (Riahi et 
al. 2023), FUCOM-MOORA and FUCOM-MOOSRA 
(Feizi et al., 2021) and fuzzy logic (Du et al., 2021) 
methods have been published for mineral prospectivity 
using knowledge-driven methods. Several statistical and 
non-statistical decision-making techniques have been 
applied in MPM. The multi-criteria decision-making 
methods have been popular and widely applied in recent 
geoscience research, especially for mineral potential 
modelling (Feizi et al., 2021).

The Mokhtaran area in Eastern Iran is a good case for 
knowledge driven prospectivity models. Since the ex-
plored mineral occurrences in this area are limited, 
knowledge data driven methods are not appropriate for 
generating prospectivity models. However, there are suf-
ficient geospatial data for knowledge prospectivity mod-
elling. The Mokhtaran area has high potential for Cu-Au 
porphyry mineralization. Therefore, this paper can sup-
ply target areas and facilitate future works. In this study 
knowledge-driven methods including AHP VIKOR, 
AHP TOPSIS and AHP MOORA were applied for Cu-
Au prospectivity modelling in the Mokhtaran study area. 
Then, the application of all of the models were evaluat-
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ed, and the predictive performance of these models was 
compared. Several new target areas were revealed in this 
study, which can facilitate fieldwork for future explora-
tion activities.

2. Geology

Study area is situated in the Lut Block of Eastern Iran 
(Figure 1). The Lut Block is one of several microconti-

Figure 1: a) Location of the Mokhtaran area in the Lut block, b) geologic map of the study area

a)

b)
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nental blocks interpreted to have drifted from the north-
ern margin of Gondwanaland during the Permian open-
ing of the Neo-Tethys, which was subsequently accreted 
to the Eurasian continent in the Late Triassic during the 
closure of the Paleo-Tethys (Shafaroudi et al., 2015). 
This region’s magmatic and tectonic formation occurred 
within an extensional process (Shafaroudi et al., 2015). 
The Lut block zone is surrounded by the Nehbandan 
fault, the Daruneh fault, the Nayband from the east, 
north and west respectively, and the Urmia-Dokhtar 
magmatic arc from the south (Berberian and King, 
1981). There is high potential for different kinds of min-
eralization in East of Iran; e.g., porphyry, epithermal, 
and skarn deposits, which is due to the Afghan Cenozoic 
subduction beneath of the Lut Block. This subduction 
caused a wide range of magmatic activities during the 
Eocene and Oligocene and produced different types of 
igneous rocks with different compositions (Karimpour 
et al., 2014). The Mokhtaran study area is a part of the 
flysch zone and coloured mélange Belt of East Iran 
(Berberian and King, 1981), exposing varieties of 
rocks of known or inferred Late Cretaceous age and their 
tertiary cover. The magmatic intrusions in the area con-
sist of granite, microgranite, microdiorite and felsic 
dikes. These units belong to the Tertiary period and are 
intruded in the flysch units. The Paleogene volcanic 
rocks cover the western part of the area and consist of 
andesite, dacite, diabase, spilite lavas and tuffs. In the 
west of this area, the volcanic rocks, especially andesite, 
are intensively altered. Nortwest-Southeast trending 
faults have provided appropriate conditions for miner-
alization in the Mokhtaran area.

3.  Conceptual model for Porphyry Cu-Au 
Deposits

For mineral prospectivity modelling, a dataset should 
be created that identifies the type of mineralization in 
any area. To achieve this aim, a conceptual model should 
be defined based on which the evidential layers are pro-
duced. Constructing this model for mineral prospectivity 
modelling is essential in forecasting mineral resources in 
regional prospecting. This model is a textual depiction 
for mineral prospectivity modelling based on various 
geological exploration theories and data integration to 
create a model in deposit and regional scales (Li et al., 
2022). These deposits often occur in magmatic arc set-
tings with calc-alkaline magma series. These magmatic 
activities belong to the subduction of oceanic crust be-
neath a continental crust (Hou et al., 2011). The metals 
in porphyry deposits originate from the lower crust and 
are transferred to shallow surfaces by magmatic stocks 
and fluids (Richards, 2011). These fluids alter the sur-
rounding rocks. Therefore, mineralizing, controlling in-
trusive bodies, the volcanic rocks that host the minerali-
zation, and producing alterations are key features in por-
phyry prospectivity modelling. Cu-Au porphyry deposits 

originate from hypabyssal diorite to quartz diorite and 
are related to volcanic and subvolcanic rocks such as 
dacite and andesite (Sillitoe, 2010). Some known por-
phyry mines in the Mokhtaran area, e.g., Maherabad and 
Khupic, are controlled by granite, microgranite, and 
monzodiorite (Almasi et al., 2023). In the recent study, 
the proximity maps of intrusive suites and dikes were 
generated as one of the main factors for Cu-Au porphyry 
prospectivity modelling.

Volcanic rocks that host porphyry systems were taken 
from the geology map.to create the proximity map that is 
used in the modelling process. Porphyry deposits usual-
ly are located underneath comagmatic volcanic rocks 
that are altered by hydrothermal fluids originating from 
porphyry systems (Sillitoe, 1973). Phyllic, argillic, and 
propylitic alteration assemblages are related to porphyry 
systems and can be extracted from ASTER data. The 
most of the reserve is located in the phyllic alteration 
zone. The mineralization in this zone contains hypogene 
sulphides, especially bornite and chalcopyrite. Phyllic 
and potassic zones are the core of a porphyry mineraliza-
tion, and the argillic zone is formed in the upper central 
part of the system. Therefore, locating these zones is an 
essential key in porphyry prospectivity modelling.

Porphyry deposits can be identified through stream 
sediment geochemical explorations. In several instanc-
es, stream sediment geochemistry in areas with known 
deposits has identified a wide range of deposits (Coope, 
1973). Therefore, stream sediment geochemistry is an 
effective tool in regional-scale explorations. Stream sed-
iment samples are analyzed for several elements, which 
are correlated in mineral systems and can be used as a 
tool to determine the type of a mineralization. For in-
stance, the appropriate geochemical assemblage of ele-
ments related to porphyry deposits is Cu–Au–Mo–Zn–
Pb–As–Sb–Ag–Fe–S (Du et al., 2021). Yousefi et al., 
(2012) introduced the geochemical mineralization prob-
ability index (GMPI) method to discriminate the deposit 
type. A stepwise factor analysis is implemented to calcu-
late the GMPI. In the first step, the geochemical data is 
transformed into a normal dataset. Then, the principal 
component analysis is performed on the normalized data 
to extract the geochemical factors which contain small 
areas as high favourability target areas that may overlap 
with the multi-variate geochemical map. Afterwards, the 
second factor analysis is carried out to obtain multi-var-
iate geochemical parameters of the porphyry deposits. In 
each factor resulted from the second factor analysis step, 
positive element correlation are determined. Therefore, 
in the third step, a third factor analysis is implemented 
on the geochemical dataset. So, three sets of factor anal-
yses are calculated. After performing the factor analysis, 
the weights should be affected on the geochemistry sam-
ple to discriminate the type of the deposit. The calculat-
ed weight is GMPI.

Besides hydrothermal alterations and magmatic ac-
tivities, regional tectonic is another effective factor in 
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MPM. The tectonic setting and structures influence the 
size and location of the PCDs (Mirzaie et al., 2015).

Investigating porphyry copper mineralization from a 
tectonic point of view indicates that PCDs have occurred 
within brittle structures. Of course, no unique environ-
ment exists to form this kind of mineralization (Sillitoe, 
1997).

Thus, zones of high lineament density are considered 
favourable targets for porphyry copper exploration. On 
the other hand, fault zones are suitable conduits to create 
of alteration zones and stockwork veinlets. Therefore, 
faults play an essential role in creating porphyry depos-
its and hydrothermal alterations. So, the fault density 
map is considered as an essential key in copper- gold 
porphyry modelling.

Aeromagnetic surveys can be implemented to outline 
the location of porphyry Cu–Au porphyry deposits are 
rich in magnetic minerals, such as magnetite and pyr-
rhotite (Sinclair, 2007). The highly magnetic areas are 
located in the potassic zone in porphyry deposits. So, 
this zone produces a high magnetic anomaly in aero-
magnetic datasets. These anomalies were included as 
favourable targets for porphyry copper modelling in this 
area.

Based on the constructed model, the evidential layer 
consists of intrusive rocks (granite, microgranite and mi-
crodiorite), volcanic rocks, faults, argillic and phyllic 
alteration zones, multivariate geochemical signatures, 
and the RTP magnetic map.

4. Methods

4.1. Methods for evidential layer weighting

4.1.1. Fractal

Cheng et al. (1994) presented the fractal method for 
the first time. Furthermore, this method was widely used 
in geoscience studies after that; for example, Cheng et 
al. (1994); Afzal et al. (2013); Saljoughi et al. (2018); 
Riahi et al. (2023). In a recent study, the fractal method 
was implemented to calculate the threshold values of 
evidential layers.

The fractal analysis is written as follows (Heidari et 
al., 2013):

 S(a≤ϑ) ∞ ρ^(-b1); S(a≥v)∞ρ^(-b2) (1)

S(ρ) refers to the region where the concentration val-
ues exceed the specified value, denoted as a. In this 
equation, the threshold is denoted as ϑ, and the charac-
teristic exponents are denoted as b1 and b2.

4.1.2. Analytic Hierarchy Process (AHP)

Saaty (1977) first introduced the analytical hierarchy 
process (AHP), widely recognized as one of the most 
popular MCDM techniques. Rosaria and Camanho 

(2015) believe that the AHP is a tool to “measurement 
through pairwise comparisons and relies on the judg-
ments of experts to derive priority scales. The hierarchi-
cal decision tree of Mokhtaran is shown in Figure 2 
where tree main creations are considered, including of 
Geochemistry signature, airborne magnetic anomaly, 
Geology and remote sensing and eight sub-criteria are 
considered. These sub-criteria consist of GMPI, RTP, in-
trusive rocks, volcanic rocks, faults, argillic alteration, 
phyllic alteration and iron oxide alteration. These crite-
ria and subcriterias were used to make ready evidential 
layers related to Cu- Au porphyry mineralization.

Figure 2: Hierarchy used for prospectivity modeling

4.2.  MCDM method for mineral potential 
modelling

4.2.1. TOPSIS

TOPSIS method was introduced with Hwang and 
Yoon (1981) for the first time. The TOPSIS method is an 
multi criteria desicin method. The objective of this ap-
proach is to select the optimal option with the least prox-
imity to its positive ideal outcome. To determine the 
TOPSIS value, it is necessary to carry out the subsequent 
procedures (Robbi et al., 2018):
STEP 1: Create decision matrix based on input dataset.
STEP 2: Calculate the normalized decision matrix.
STEP 3:  Calculate the weighted normalized decision 

matrix with AHP method.
STEP 4: Determine the ideal and negative-ideal solution.
STEP 5:  Calculate the separation measures, using the n 

dimensional Euclidean distance.
STEP 6:  Calculate the relative closeness to the ideal so-

lution.
STEP 7:  Rank the preference order.
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4.2.2. VIKOR

VIKOR is an approach to decision-making that is 
used for addressing problems in discrete spaces (Sia-
haan et al., 2018). The VIKOR method includes of sev-
en steps:
STEP 1: Create a decision matrix based on the input 
dataset.
STEP 2:  Determination of the vector of weights for cri-

teria with AHP method.
STEP 3:  Develop a decision matrix that is normalized.
STEP 4:  Calculate the best and worst value of each cri-

teria.
STEP 5:  Regret and utility values calculation.
STEP 6:  VIKOR index (Q) calculation.

The Q value is determined based on the following re-
lation

S* = Max(Si)
R* = Max(Ri)

  (2)

In this equation, (si-s-)/(s*-s-) indicate the distance rate 
from the ideal solution, (Ri-R-)/(R*-R-) indicate the dis-
tance rate from the anti-ideal solution, and the parameter 
v is selected according to the agreement ratio of the deci-
sion maker group. The value of Q is a function of Si and 
Ri, which are the distance values from the ideal solution 
for P = 1 and P = ∞.
STEP 7: Alternatives sorting due to R, S, Q values

At this point, Q, S, and R are organized into groups of 
options, beginning with the smallest and progressing to 
the largest. Ultimately, the choice is made for the supe-
rior option, which will be acknowledged as superior in 
all three groups.

4.2.3. MOORA

The MOORA method is widely regarded as valuable 
for improving the best alternatives and determining the 
most viable substitute among a set of options in multi-
criteria decision making. To achieve this objective, the 
subsequent measures need to be implemented:
STEP 1:  The process includes developing and produc-

ing a decision matrix.
STEP 2:  The process includes normalizing the decision 

matrix.
STEP 3:  Determination of the vector of weights for cri-

teria with AHP method.
STEP 4:  The process involves enhancing various quali-

ties by incorporating standardized achievement 
when maximizing (positive qualities) and sub-
tracting when minimizing (negative qualities).

STEP 5:  In order to predict a specific event accurately, it 
is important to consider that certain attributes 
hold more significance.

5. Dataset

In this study, the spatial dataset consists of
ü Intrusive rocks
ü Volcanic rocks
ü Faults density
ü Stream sediment samples
ü Phyllic alteration
ü Argillic alteration
ü Reduction to pole of aeromagnetic data.
These data were gathered based on the conceptual 

model. Table 1 summarizes the spatial dataset used in 
this paper.

The geological dataset was selected based on intru-
sive (Figure 3a) and volcanic rocks (Figure 3b). The 
intrusive rocks include granite, microgranitic dikes, and 
microdiorite stocks. These intrusive units have a high 
potential for Cu-Au porphyry mineralization, as these 
rocks units have been formed in western parts of the 
Mokhtaran area. In the east of of the Mokhtaran area, 
granitic and microdioritic units have intruded into the 
sedimentary rocks. These intrusive and volcanic units 
were obtained from the 1:100K geology map of Mokhta-
ran published by the Geological Survey of Iran (GSI).

Faults and fault zones play a very effective role in 
porphyry copper mineralization and their hydrothermal 
alterations. Mineralized indications are located on mod-
erate - to high-density fault zones. The existing faults 
were also extracted from the Mokhtaran geology map to 
map their density (Figure 3).

In this paper, the data from 44 elements in a stream 
sediment data set surveyed by the GSI were utilized. The 
SFA method was then applied three times to enhance the 
intensity of geochemical signatures in and around min-

Table 1: Overview of spatial data sets utilized in the analysis 
of mineral predictions

Original 
information Source Process Evidential 

layers

Aster Data USGS Band ratio 5/7 Argillic 
alteration

Aster Data USGS Band ratio 
(5+7)/6

Phyllic 
alteration

Mokhtaran 
Geology map GSI

Euclidean 
distance to 
intrusive rocks

Proximity to 
Host rocks

Mokhtaran 
Geology map GSI

Euclidean 
distance to 
volcanic rocks

Proximity to 
Host rocks

Mokhtaran 
Geology map GSI Fault Density High fault 

density

Geochemistry 
data GSI GMPI

High 
Geochemistry 
anomalies

Total magnetic 
intensity AEOI Reduction to 

pole
High magnetic 
anomalies
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Figure 3: Fuzzified evidential layers were used  
in prospectivity modeling: a) intrusive rocks,  
b) volcanic rocks, c) fault density, d) GMPI,  
e) phyllic alteration, f) argillic alteration,  
g) magnetic anomaly
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eralized zones. It is important to note that this method 
effectively eliminates the signatures of elements that are 
not related to porphyry systems. Subsequently, the pre-
dicted porphyry-related areas were further intensified. 
To achieve this objective, a logistic transformation was 
performed on the resulting SFA map. This involved sub-
tracting the minimum value of the data from the SFA 
data and dividing the resulting integer by the difference 
between the maximum and minimum values of the data. 
Following this, the GMPI method was employed on the 
transformed data to generate the GMPI map. Figure 3 
displays the GMPI map of the Mokhtaran region, where 
all mineralized indices are situated in areas with high 
geochemical signatures.

The alteration zones of the Mokhtaran area were 
mapped by processing ASTER images. The radiometric 
and geometric preprocessing corrections were carried 
out on the data. The argillic and phyllic alteration zones 
were obtained from Aster data using the band ratio meth-
od. The argillic and phyllic alterations were obtained us-
ing the ratios of 5/7 and (5+7)/6. The highly altered 
zones coincide with lineaments and structures and en-
compass all mineral indications. The proximity maps of 
argillic and phyllic alterations were drawn based on 
these results.

The aeromagnetic datasets used in this study have 
been taken from the Atomic Energy Organization. The 
line spacing of aeromagnetic data is 500 m, and The 
height of the harvest was 120 meters. The reduction to 
pole transformation of total magnetic intensity was used 
as an evidential layer (Figure 3). The reduction to pole 
map was used to dicrete high magnetic anomalies. Seven 
high magnetic zones were extracted from aeromagnetic 
maps, of which five zones coincide with copper miner-
alization occurrences.

6.  Continuous Evidential layer  
and fuzzification

To create continuous geospatial data, the fuzzified 
map was produced using the available spatial dataset 
consisting of (1) multi- variate geochemistry analysis 

(GMPI), (2) aeromagnetic anomalies, (3) argillic altera-
tion zones, (4) phyllic alteration zones, (5) volcanic 
rocks, and (6) intrusive rocks. The evidential layers have 
different scales and should be transformed into the same 
scale. The linear fuzzified function is used for this pur-
pose. The potential form of the linear membership func-
tion is shown in Figure 4.

7.  Discrimination of spatial evidential 
layers through fractal analysis

Cheng et al. (1994) introduced the fractal method. In 
this paper, the threshold values of fuzzified evidential 
layers were discrete with the concentration-area fractal 
method. The concnentration-area log-log of fuzzified 
evidential layers of argillic alteration, phyllic alteration, 
subvolcanic rocks, volcanic rocks, RTP magnetic anom-
alies and fault density were presented in Figure 5a-d. 
Also, C-A log- log of logistic transformed of GMPI was 
presented in Figure 4e. Discriminated maps of eviden-
tial layers were produced using the C-A fractal those are 
shown in Figure 6. All evidential layers were discretized 
in six classes with the fractal method and the log-log 
curve of every evidential layer.

8. Mineral prospectivity modelling

To combine the eight geospatial datasets originate 
from airborne geophysics, geology, satellite images and 
stream sediment datasets, a 105829×7 decision matrix 
was made from the spatial evidential layers. Every mem-
ber of this decision matrix belongs to a pixel of the raster 
file constructed from evidential layers. The csv file of 
the matrix can be imported to MATLAB software 
(Ghezelbash and Maghsoudi, 2018).

Weighting geospatial data in mineral prospectivity 
modelling is a matter to consider (Najafi et al., 2014). 
The process of assessing the significance of different 
evidential layers is called map layer weighting. The AHP 
method was used to weigh the evidential layer maps. 
This method is based on the experience and judgment of 
experts. Achieving proper weights is done by the trial-
and-error process. For calculating the weight of eviden-
tial layers, first, a decision problem was depicted using 
intricate hierarchical arrangement (in this study, explo-
ration of porphyry copper deposits) (Figure 7). A hierar-
chy comprises of at least three levels: the initial level 
represents the objective, the intermediate level encom-
passes various criteria that determine other options, and 
the ultimate level contains the decision alternatives (Al-
bayrak and Erensal, 2004). Geospatial dataset, along 
with their discretized values and the values associated 
with each pixel, were utilized as the criteria, sub-criteria, 
and alternatives (Ghezelbash and Maghsoudi, 2018).

The weights resulting from the AHP method are pre-
sented in Table 2. All weights are lower than 0.27. The 
largest weights are proximity to the argillic alteration 

Figure 4: The graph of the linear fuzzy  
membership function
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Figure 5: Threshold values of every  
evidential layer were generated  
using the concentration- area log log plot  
of the fuzzified transformed value  
of a) intrusive rocks, b) volcanic rocks,  
c) fault density, d) GMPI, e) phyllic alteration  
of argillic alteration, g) magnetic anomaly



139 Knowledge Driven methods for Cu-Au Porphyry Potential Modelling; a case study of the Mokhtaran area…

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 131-144, DOI: 10.17794/rgn.2024.3.10

Figure 6: C-A fractal-based discretized classes:  
a) intrusive rocks, b) volcanic rocks, c) fault density,  

d) GMPI, e) phyllic alteration, f) argillic alteration,  
g) magnetic anomaly
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Table 2: Pairwise comparison between seven main criteria of spatial databases and the weights produced  
using the AHP method

Criteria GMPI Argillic Phylic Geophysics Intrusive Volcanic Fault Weights
GMPI 1 1 2 3 3 4 5 0.264
Argillic 1 1 2 3 3 4 5 0.264
Phylic 0.5 0.5 1 2 2 3 4 0.162
Geophysics 0.33 0.33 0.5 1 2 3 4 0.124
Intrusive 0.33 0.33 0.5 0.5 1 2 3 0.09
Volcanic 0.25 0.25 0.33 0.33 0.5 1 2 0.066
Fault 0.2 0.2 0.25 0.25 0.33 0.5 1 0.03

Table 3: Pairwise comparison between sub-criteria  
(C-A fractal classes) of seven spatial databases and the 

weights resulted from the AHP method

Criteria Classes Weights Criteria Classes Weights

GMPI

1 0.11

Geophysics

1 0.047

2 0.07 2 0.031

3 0.042 3 0.02

4 0.026 4 0.013

5 0.016 5 0.008

Argillic

1 0.1 6 0.005

2 0.066

Intrusive

1 0.034

3 0.042 2 0.022

4 0.027 3 0.014

5 0.017 4 0.009

6 0.011 5 0.006

Phyllic

1 0.062 6 0.004

2 0.04

Volcanic

1 0.022

3 0.026 2 0.014

4 0.017 3 0.009

5 0.011 4 0.006

6 0.007 5 0.004

Faults

1 0.015 6 0.002

2 0.01

3 0.006

4 0.004

5 0.003

6 0.002

and multivariate geochemical anomalies (Warg=0.264 
and WGMPI=0.264). Proximity to the phyllic alteration 
was the next effective factor (Wp=0.162). The weight of 
proximity to geophysical anomalies was equal to 0.124 
(Wgph=0.124). The weight of proximity to intrusive 
body was the next effective factor (Wint=0.09). The 
weight of proximity to volcanic rocks and faults density 

were the least important factors (Wvlc=0.066 and 
Wflt=0.03, respectively). All evidential layers were di-
vided by the subcriteria using the fractal method and 
were weighted through the AHP method (Table 3). 
Then, the weights of criteria and subcriteria were used to 
distinguish favourable targets to porphyry copper mod-
elling in the Mokhtaran area. Afterwards, the MATLAB 
package was used for weighting the decision matrix, 
coding AHP TOPSIS, AHP VIKOR and AHP MOORA. 
Then, the output matrix and codes were implemented to 
rank multi-dimensional alternatives. In the final stage, 
porphyry copper prospectivity models were generated. 
The three resulted models from AHP TOPSIS, AHP 
VIKOR and AHP MOORA are visualized.The threshold 
method was applied to draw high-potential areas. In or-
der to obtain high potential areas, their threshold must 
first be obtained, in which the background and standard 
deviation value should be specified with the X+S equa-
tion (Figure 8).

9. Success rate curve

The performance of resulting favourability maps can 
be verified using the improved success rate curve. In a 
success rate curve, axis that is positioned horizontally 
shows the correctly categorized (PA) part of the study 
area and the axis that is positioned vertically describes 
the section of events related to the formation of minerals 
occurrences (PO) (Ghezelbash and Maghsoudi, 2018).

The current study applied the success rate curve for 
surveying and evaluating three prospectivity models, in-
cluding AHP TOPSIS, AHP VIKOR, and AHP MOORA. 
The thresholds resulting from the fractal method were 
used to draw the success rate curve. All success rate 
curves were the upper gauge line (Figure 9). So, these 
prospectivity models are suitable to delineate favourable 
areas for Cu porphyry mineralization. The success rate 
curve showed that AHP TOPSIS has better applied in Cu 
porphyry modelling in the Mokhtaran area. This is be-
cause its success rate curve is above the other two meth-
ods. The AHP VIKOR method has had a better perfor-
mance compared to the AHP MOORA method due to the 
fact that the success rate graph of the first mentioned is 
positioned higher than that of the second mentioned.
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Figure 8: Background and favorability areas  
of the Mokhtaran area a application of  

a) AHP TOPSIS method, b) application of AHP VIKOR 
method, c) application of AHP MOORA method

Figure 7: Porphyry copper predictive models  
for the Mokhtaran area: a) AHP TOPSIS, b) AHP VIKOR,  

c) AHP MOORA
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Figure 9: The success rate curve of three models

10. Discussion

The Mokhtaran region is in the Lut block in Eastern 
Iran. The Lut block is situated above the Afghan crust, 
and this region is associated with subduction. This zone 
has high potential for Cu-Au porphyry mineralization 
(Karimpour et al., 2014). This paper considers the min-
eral prospectivity modelling process an MCDM prob-
lem for porphyry copper modelling in the Mokhtaran 
area. To accomplish this objective, evidential geosptial 
datasets that encompass multiple disciplines of various 
sources consisting of geochemistry, geophysics, geolo-
gy, and satellite images were used (Table 1). Then, we 
used three knowledge driven methods namely AHP 
TOPSIS, AHP VIKOR and AHP MOORA.

The geological data, including intrusive and volcanic 
rocks and faults, were digitized from the Mokhtaran 
1:100K geology map and were converted into shape-
files. The alteration zones, consisting of argillic and 
phyllic alterations (Figure 10), were processed from sat-
ellite imagery. The geochemical mineralization proba-
bility index (GMPI) was created from stream sediment 
geochemical data points in a raster format. Magnetic 
anomalies were extracted from the RTP magnetic map in 
shapefile formats. Secondly, the proximity map of every 
evidential layer was generated. The density map was 
generated only for lineaments, and the geochemical sig-

Figure 10: a) Argillic alteration, b) Porphyry mineralization

(a) (b)

nature map was generated for the GMPI evidential layer. 
The evidential layers were transformed into the same 
scale using a fuzzy membership function, and continu-
ous values of evidential layers were generated by equal-
izing minimum and maximum values (Figure 3). So, 
every evidential layer has the same value between zero 
and one. So, every evidential layer was transformed into 
a continuous geospatial dataset. Thirdly, the fractal 
method was implemented for separating the threshold 
values of fuzzified transformed evidential layers (Figure 
5). All evidential layers were discretized to six subclass-
es. Fourthly, the calculated weights were assigned in the 
related evidential layers, and the weighted matrix was 
prepared to be imported to the MATLAB software. Dur-
ing this process, it was confirmed that the evidential lay-
ers could be integrated for mineral prospectivity model-
ling. In the next step, Cu porphyry prospectivity models 
were generated using the AHP TOPSIS, AHP VIKOR, 
and AHP MOORA MCDM methods. All MCDM pro-
spectivity models produced similar prospectivity targets 
with high favourability. The high favourability areas in 
these three models coincide with fault zones, especially 
in fault intersection zones. These zones create fracture 
zones that are useful for the transportation of magmatic 
fluids to top levels that host the mineralized zones. This 
affirms the critical significance of faults in porphyry 
mineralization. However, the lowest weight was attrib-
uted to the fault density map. Then, the success rate 
curve was applied to evaluate the outcome of the three 
MCDM techniques. Based on the outcomes of the suc-
cess rate curve, the AHP TOSIS performed better in Cu 
porphyry modelling in the Mokhtaran area.

11. Conclusions
Spatial data combination methods are essential ways 

in mineral deposit modelling. In this paper, seven evi-
dential layers including geological units and structures, 
geochemistry, geophysics, and remote sensing, as well 
as the MCDM methods consisting of AHP TOPSIS, 
AHP VIKOR, and AHP MOORA were applied for Cu 
porphyry modelling in the Mokhtaran area, east of Iran. 
The success rate curve method was used to assess Cu 
porphyry models. The three Cu porphyry models result-
ed from the MCDM methods are similar to each other. 
The study area contains promising locations in both its 
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eastern and western regions. The promising areas are lo-
cated along the fault zones, confirming the role of faults 
and fractured zones in Cu porphyry systems. Several Cu 
indications were properly identified using the three 
MCDM methods, but AHP TOPSIS showed better re-
sults. According to the success rate curve, the positions 
of the three models’ curves are higher than the gauge 
line. Therefore, all of the models are appropriate. How-
ever, the AHP TOPSIS method exhibits a success rate 
curve that surpasses the curves of the other two methods. 
Therefore, it can be concluded that AHP TOPSIS outper-
formed the other methods in Cu porphyry modelling in 
the Mokhtaran area. Also, the following results were ob-
tained in this study :

All three methods, AHP TOPSIS, AHP VIKOR, and 
AHP MOORA, have the ability to distinguish areas with 
high porphyry copper mineralization potential. These 
three methods are able to convert the qualitative values 
of experts› knowledge into quantitative values for por-
phyry copper potential. Also, the models produced by 
these three methods confirm the existence of areas with 
high mineralization potential, which can be effective for 
more surface exploration in the future.
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SAŽETAK

Metode vođene znanjem za modeliranje potencijala Cu-Au porfira;  
studija slučaja područja Mokhtaran, istočni Iran

Trenutačna istraživanja za modeliranje potencijala porfirskoga bakra u području Mokhtaran u istočnome Iranu istražuju 
metode odlučivanja po više kriterija, a one uključuju AHP TOPSIS, AHP VIKOR i AHP MOORA. Dokazni slojevi u ovoj 
studiji uključuju intruzivne stijene, vulkanske stijene, rasjede, indeks vjerojatnosti geokemijske mineralizacije (GMPI), 
redukciju na magnetski pol karte ukupnoga magnetskog intenziteta, argilne i filne alteracije. Važnost tih dokaznih slo-
jeva izračunana je AHP metodom. Zatim je fuzzy metoda primijenjena na istu ljestvicu dokaznih slojeva. Granične vri-
jednosti tih slojeva diskretizirane su fraktalnom metodom. Zatim je svakom sloju dokaza dodijeljena težina. Nakon va-
ganja svih slojeva dokaza implementirane su različite metode MCDM, uključujući AHP TOPSIS, AHP VIKOR i AHP 
MOORA, kako bi se kombinirali ti slojevi i ocrtali modeli perspektivnosti porfirskoga bakra. Predviđeni modeli pokazu-
ju ista područja koja obećavaju. Odgovarajuća podudarnost može se vidjeti između područja visokoga potencijala i indi-
kacija rudnika. Zatim je implementirana stopa krivulje uspješnosti za usporedbu triju predviđenih modela. Na temelju 
ove metode AHP TOPSIS ima bolje performanse. Budući da krivulja uspješnosti pripada AHP TOPSIS-u, postavljena je 
iznad drugih dviju metoda. Dalje, AHP VIKOR ima bolje performanse od AHP MOORA. Tri metode MCDM proizvele su 
istu Cu porfirsku mineralizaciju koja se nalazi duž rasjednih zona.
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AHP, MOORA, VIKOR, Mokhtaran, porfir
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