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Abstract
Laminar flow of fluids is one of the most common forms of motion in oilfield practice. In such a flow regime of fluid, the 
determination of velocity-flow rate performance which takes into account the rheological properties of the fluid is of 
great importance for the development of hydraulic criteria. On the other hand, from the moment of the beginning of 
fluid motion in the pipe, a certain time is required to ensure the steady flow of fluid, i.e. independence of its parameters 
on time. The issues of diagnosing steady-state characteristics in laminar flow of both Newtonian and non-Newtonian 
fluids are of particular relevance. In this paper, the velocity distribution along the cross-section of a pipe in laminar flow 
of Newtonian and non-Newtonian fluids is studied while taking into consideration rheological factors, and the change 
of flow rate is investigated. Determination of the time of transition to the steady-state flow regime and parameters affect-
ing the variation of this time are shown.
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1. Introduction

Several issues of managing and improving the effi-
ciency of technological processes in oil and gas produc-
tion are closely related to the fact that homogeneous and 
heterogeneous fluids with different rheological and 
physico-chemical properties have different forms of 
movement in pipes and hydraulic properties during pro-
duction, storage and transportation. Pipe calculation in 
terms of the correct prediction of flow parameters, in 
turn, requires diagnostics of their steady-state character-
istics depending on the rheological properties of fluids 
(Landau and Lifshits, 1986; Loytsinsky, 1987; Vasiliev 
et al., 2002; Basniev et al., 2005; Saheed et al., 2012).

Considering the fact that transported hydrocarbon flu-
ids are multicomponent and multiphase, their hydraulic 
properties are much more complex compared to homo-
geneous systems (Vasques and Beggs, 1980; Bayron et 
al., 2002; Robert et al., 2003; Ismayilov et al., 2019; Is-
mayilova et al., 2023). Energy costs increase during the 
transportation of such systems, and the presence of vari-
ous structural forms of motion significantly complicates 
their hydrodynamic calculations (Sitenkov, 2004). In 
many cases, it is impossible to diagnose the steady-state 
modes of motion of these systems. Inevitably, it becomes 

possible to solve problems based on the establishment of 
relatively simple mathematical models of these systems 
and the determination of quasi-steady modes of opera-
tion. For the rheological description of these systems, a 
large number of different rheological models in oil and 
gas production practice exist and are used (Shuichiro et 
al. 2015; Tarek and Meftah, 2018; Housiadas, 2020; Wu 
and Li, 2023).

This paper focuses on the issues of diagnosis of 
steady-state characteristics for horizontal flow of New-
tonian and non-Newtonian (viscoplastic) fluids.

2.  Statement and solution of the problem 
for Newtonian fluids

Suppose that a viscous fluid moves under the action 
of pressure difference ΔP in a pipe of length l and radius 
R. It is known that the fluid will initially move unstead-
ily, and after some time, a steady-state flow will have 
occurred. Taking into account that the flow is horizontal 
and the pressure loss is spent on friction and inertia forc-
es in the pipe, we can write following equation (Olie-
mans and Ooms, 1986; Lurie, 2002; Zehra et al, 2019; 
Vig and Manikantan, 2023):

  (1)
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Where:
ΔP  – pressure loss (Pa),
l  – length of the pipe (m),
R  – radius of the pipe (m),
Q  –  flow rate of crude oil flowing through the pipe 

(m3/s),
μ  – dynamic viscosity of crude oil (Pa s),
m  – mass of oil (kg), (m = ρ πR2 l),
υ  – flow velocity of oil (m/s).
As Equation 1 shows, the first summand in the right-

hand side of the equation is the pressure loss determined 
by Poiseuille’s formula (pressure loss due to friction), 
and the second summand is the pressure loss to over-
come the forces of inertia.

Given that dυ/dt = (dQ/dt)/(πR2), then Equation 2 
can be written as follows:

  (2)

If some substitutions are made, then Equation 3 can 
be written as follows:

  (3)

Here, A = 8μ/ρR2, B = ∆P∙πR2/ρl.
If the differential Equation 3 is separated into its var-

iables, then Equation 4 is obtained:

  (4)

If we integrate Equation 4, we obtain the following 
solution (Equation 5):

  (5)

Here, C - is an integer constant. If t = 0, then Q = 0, 
C = 0.

Then we can write the following expression to deter-
mine the flow rate in the pipeline (Equation 6):

  (6)

If we consider the expressions A and B in Equation 6, 
we obtain Equation 7:

  (7)

As Equation 7 shows, (ΔP πR4)/(8μl) = Qst is an ex-
pression of steady flow rate established by Poiseuille’s 
formula. Then for the ratio of flow rates we obtain Equa-
tion 8:

  (8)

According to Equation 8 which expresses the change 
of flow rates, it is possible to diagnose the mode flow 
and determine the time of transition of a viscous fluid to 
the steady flow, as in Figure 1.

Figure 1: Determination the time of transition  
to the steady flow for Newtonian fluid  

(1÷3 – respectively, (8ν)/R2 = 0.1; 0.16; 3 1/s)

3.  Statement and solution of the problem 
for non-Newtonian (viscoplastic) fluids

Now let us consider the laminar flow of a non-New-
tonian, for example, viscoplastic fluid. The variation  
of velocity in the considered section (1-2) is shown in 
Figure 2.

Figure 2: Velocity distribution in viscoplastic fluid flow

As Figure 2 shows, the velocity is υ = 0 at the inner 
wall of the pipe, where r = R.

Since the gravity force is not taken into account, the 
tangential stress arising in the pipe cross-section can be 
determined from the equality of friction and pressure 
forces acting on the fluid due to the equilibrium condi-
tion (Equation 9):

  (9)

Consequently, the distribution of tangential stresses 
across the section will follow the following law (Equa-
tion 10):
  (10)
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As Equation 10 shows, when r = 0, tangential stress 
gets the value of τ = 0, and when r = R it gets the value 
of τ = τmax = (ΔPr)/2l.

In the section of 0 ˂ r ˂ r0 the flow rate remains con-
stant, and since τ ≤ τ0, the cylindrical part of the fluid 
moves as a solid and is considered to be the core of the 
flow. Considering the abovementioned expression for 
the tangential stress and assuming τ = τ0, the radius of 
the core (r0) can be found as following (Equation 11):

  (11)

Taking into account the last statement when r = R 
then τ = τ0, i.e. the value of pressure drop ΔP0 (initial 
pressure drop) corresponding to the steady state of 
 viscoplastic fluid, is found from the following (Equa-
tion 12):
  (12)

Thus, for fluid motion in a horizontal cylindrical pipe, 
it is important to fulfil the condition of ΔP > ΔP0.

It is known that the rheological model of a viscoplas-
tic fluid is written as follows according to the Shvedov-
Bingham equation expressing the state of motion τ ˃ τ0 
(Equation 13):

  (13)

For the case under consideration, the equilibrium con-
dition of tangential stresses and pressure forces can be 
written as follows (Equation 14):

  (14)

If we consider the value of τ0 according to Equation 
11 in Equation 14, we obtain:

  (15)

Thus, as can be seen, the law of distribution of tan-
gential stresses does not depend on the rheological prop-
erties of the fluid and is expressed by the same equation. 
If we consider Equation 11 in Equation 15 and divide 
it by variables, we obtain the following (Equation 16):

  (16)

By integrating Equation 16, we obtain Equation 17 
for the velocity distribution:

  (17)

The integer constant (C) can be found from the fol-
lowing boundary condition – r = R,  = 0, then C = 
(ΔPR2)/(4μl)- (τ0R)/μ

If we take into account the value of C in Equation 17, 
we obtain the last expression characterising the velocity 
distribution over the cross-section (Equation 18):

  (18)

The velocity distribution in the cross-section is shown 
in Figure 2. Equation 18 is valid in the interval r0 ˂ r 
˂R of the current radius.

For the laminar flow of fluid, the indicated velocity dis-
tribution can also be obtained by describing its variation 
in the form of the following trinomial (Equation 19):

  (19)

Lets use the following conditions to find the coeffi-
cients A, B, C included in Equation 19: when r = R, that 
is, on the pipe wall υ = 0, if r = r0, then dυ/dr = 0, which 
gives us Equation 20.

 ; ;

  (20)

Then we obtain the following expressions (the system 
of equations) for finding the coefficients A, B, C (Equa-
tion 21):

  (21)

Solving the system of Equation 15, we obtain the fol-
lowing expressions for the coefficients A, B, C (Equa-
tion 22):

  (22)

If we consider Equation 22 in Equation 19, we get 
the following Equation 23, which shows the velocity 
distribution along the pipe cross-section and corresponds 
to Equation 18:

  (23)

In laminar flows, the flow characteristics can also be 
determined from the velocity distribution. It is clear that 
the fluid flow rate in such flows should be defined as the 
total flow rate of fluids – Q=Q0 + Q1. Here, Q0 -flow rate 
of fluid flowing in the core of the pipe and, Q1 -flow rate 
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of fluid flowing in the cross-section of r0 ≤ r ≤R. Then 
the following expressions can be written for the flow 
rates Q0 and Q1, respectively (Equation 24):

 

  (24)

If we consider the values of υ0 and υ, integrate them in 
the last expressions and consider expressions r0 = (2lτ0)/
ΔP; τ0 = (ΔPR)/2l, we obtain the following Equation 25 
for the steady-state flow rate of a non-Newtonian fluid in 
a pipe:

  (25)

if we take into account ΔP0 /ΔP= r0 /R in Equation 25, 
we get Equation 26:

  (26)

Considering that r0
4/(3R4) is ~ 0, we obtain Equation 

27 for determining the flow rate of laminar flow of vis-
coplastic fluid.

  (27)

As can be seen from Equation 27, the difference be-
tween the flow rate of viscoplastic laminar flows and 
flow rate of Newtonian fluids determined by the Poi-
seuille formula can be characterised by the following 
flow relation (Equation 28):

  (28)

The dependence of the Q /Q0 on the r0/R, is described 
in Figure 3.

rate. Taking into account the abovementioned and pres-
sure losses due to inertia forces, the following Equation 
29 can be obtained in order to determine the flow rate for 
laminar flow of viscoplastic fluids:

  (29)

Where:

 ; ;

  (30)

Taking into account the coefficients A1, B, B/A1 in 
Equation 29, the following mathematical expression for 
determining the flow rate in laminar- viscoplastic flows 
is obtained (Equation 31):

  (31)

Considering that the steady flow rate for viscoplastic 
fluid is:

  (32)

Then, for the flow rate ratio we can write:

  (33)

At (8ν)/R2 = 0.16 1/s and different values of the ratio 
(r0/R), dependences reflecting the change in the flow  
rate ratio coefficient as a function of time are shown in 
Figure 4.

Figure 3: The dependency of Q/Q0 = f (r0/R)

According to Figure 3, as the ratio (r0/R) increases, 
the flow rate ratio Q/Q0 decreases significantly. In other 
words, when the flow core is reduced and the pipe diam-
eter is large, the flow rate of the fluid determined by 
Equation 27 will be less different from Q0. This means 
that the accuracy will be high in determining the flow 

Figure 4: Determination of the time of transition  
to a steady flow for viscoplastic fluid  

(1÷3 – respectively, if (r0/R) = 0; 0,2; 0,4)
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As can be seen from Figure 4, in laminar flow of visco-
plastic fluids the time of transition to a steady mode of 
motion increases exponentially depending on the parame-
ter (r0/R). It was studied and the variation of the time of 
transition to a steady flow was achieved with (8ν)/R2. Ac-
cording to Figure 5, the time of transition to a steady mode 
of motion for Newtonian and viscoplastic fluids, decreases 
with an increase in parameter (8ν)/R2 (see  Figure 5).

Figure 5: The dependence of the time of transition  
to a steady flow on (8ν)/R2  

(1 – Newtonian fluid; 2-Pseudoplastic fluid (r0/R = 0,2);  
3 - Pseudoplastic fluid (r0/R = 0,4))

4. Conclusions

1.  Based on the flow characteristics of Newtonian 
and viscoplastic fluids and taking into account the 
forces of inertia in laminar flow, a methodology 
for determining the time of transition to a steady 
flow has been developed.

2.  It is found that the time of transition to a steady flow 
for viscous fluids mainly depends on the parameter 
(8ν)/R2, and for viscoplastic flows it also varies de-
pending on how the flow core is formed, which is 
determined by the initial pushing stress (r0/R).

3.  In order to eliminate the difference and improve 
accuracy when determining the flow rate using the 
Poiseuille formula for viscoplastic laminar flows, 
the necessity of reducing the (r0/R) (or ΔP0/P) ratio 
is shown.
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SAŽETAK

Utvrđivanje karakteristika stacionarnoga stanja u laminarnome protjecanju fluida

Laminarni protok fluida najčešći je oblik protjecanja fluida na naftnim poljima. Kod takva režima protoka fluida od izni-
mne je važnosti određivanje odnosa brzine i protoka fluida uzimajući u obzir reološka svojstva fluida. S druge strane, od 
trenutka početka gibanja fluida u cijevi potrebno je određeno vrijeme da se postigne stacionarni protok fluida, odnosno 
neovisnost njegovih parametara o vremenu. I za njutnovske i za nenjutnovske fluide od posebne je važnosti odrediti 
karakteristike stacionarnoga stanja u laminarnome protoku. U ovome su radu istraživane raspodjela brzine njutnovskih 
i nenjutnovskih fluida u poprečnome presjeku cijevi tijekom laminarnoga protjecanja te promjena protoka uzimajući u 
obzir reološke čimbenike. U radu je prikazano utvrđivanje vremena prijelaza u stacionarni režim protjecanja te čimbeni-
ci koji utječu na promjene toga vremena.

Ključne riječi: 
viskoplastični fluid, raspodjela brzine, protok, stacionarni protok
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