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Abstract
Landslide occurrences are common in hilly and mountainous areas, especially in tropical countries with high rainfall and 
intensive weathering. Landslide susceptibility mapping (LSM) is an initial effort to mitigate landslide hazards. This re-
search conducted a comparative study of four LSM maps, namely frequency ratio (FR), information value model (IVM), 
weight of evidence (WoE), and Shannon entropy (SE), for the Cisangkuy Sub-watershed, West Java. Those models deter-
mine the relationship between the landslide density and the causative factors. The model utilized 76 landslide pixels and 
15 causative factors. 70% of the landslides were used as training data, and the remaining was used for validation. The 15 
factors were selected from 27 causative factors. The highly correlated causative factors were removed to address multicol-
linearity. In addition, only causal factors related to landslide data are involved in the modelling. The receiver operating 
characteristics (ROC) curve and the landslide density index (LDI) method were used for model validation. All models 
indicate appropriate prediction rates for FR, IVM, WoE, and SE, which are 0.770, 0.790, 0.793, and 0.788, respectively. 
Based on the LDI analysis, the LDI values did not increase gradually from very low to very high susceptibility classes for 
each LSM map. However, the maps are still favorable because the classes that are most susceptible in all models have the 
highest LDI. The performance of the models may be influenced by the number of classes and classification methods used 
to categorize each continuous parameter, as well as the small quantity of landslide inventory data.
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1. Introduction

Landslides are rock mass, debris, or earth material 
that move down a slope due to gravity. Landslides are 
not only limited to slide types but also falls and flows 
(Sassa, 2007). Landslide susceptibility mapping (LSM) 
can be a first step in disaster mitigation and supporting 
spatial planning. Expert-driven and data-driven models 
can be utilized to accomplish this objective. The expert-
driven model depends on expert judgment, which each 
expert might use to form their own opinion, which is 
somewhat subjective (Barredo et al., 2000).

In contrast, the data-driven models are quantitative 
models based on the spatial relationship between land-
slide occurrences and landslide causative factors (Prad-
han, 2010). A data-driven model is not subjective, but it 
is very responsive to the quality of the data (Lee and 
Talib, 2005), either landslide inventory or causative fac-
tors. Nohani et al. (2019) suggested that the identifica-
tion of landslide locations should rely on high-resolution 
satellite imagery. However, the availability of such im-
ages is still very limited, especially in developing coun-
tries (Batar and Watanabe, 2021). Regarding a number 
of causative factors for LSM, there is currently no con-
sensus about the quantity of the factors (Juliev et al., 
2019; Melati et al., 2024). The primary variables con-
tributing to landslides include geology, topography, hy-
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drology, and anthropogenic factors. Consequently, all 
potential maps that contained these factors were included 
for modelling. Despite their typically lower scale, geo-
logical maps remained to be utilized as a data source. For 
instance, Pourghasemi et al. (2014) employed a geology 
map with a scale of 1:100,000, while other data sources 
had a resolution of 1:25,000. In addition, Juliev et al., 
(2019) used a geological map with a scale of 1:500,000, 
while the digital elevation model (DEM) they used had a 
spatial resolution of 30 m. Fortunately, the small scale of 
their geological maps did not affect the result.

Data-driven models consist of statistical and machine 
learning-based methods (Lee and Talib, 2005; Re-
ichenbach et al., 2018; Yao et al., 2008). This study did 
not employ machine learning; bivariate statistical tech-
niques were used instead. Bivariate statistical methods 
were developed earlier than machine learning. While 
machine learning, especially artificial neural networks 
(ANN), is viewed as a “black box” with a difficult-to-
understand procedure (Umar et al., 2014), bivariate sta-
tistical methods can explicitly explain the relationship 
between landslides and their causative factors. Although 
machine learning models can handle a wide range of 
data sizes, they require two types of data responses: 
landslide and non-landslide. Landslide data shows the 
distribution of locations recorded as experiencing land-
slides, while landslide data requires a method to obtain 
it, and there is no standard procedure. The quality of 
non-landslide data itself is questionable (Zhu et al., 
2018). Regardless of the approach used to acquire non-
landslide data, it is essential to have access to informa-
tion on landslide data. The reason is that non-landslide 
data is not located in the same area as landslide data. As 
the quality of landslide data worsens, the quality of non-
landslide data also gets worse.

This research aims to apply four bivariate statistical 
methods, namely frequency ratio (FR), (2) information 
value model (IVM) or statistical index (SI), (3) weight of 
evidence (WoE), and (4) Shannon entropy (SE) or index 
of entropy (IoE) to study the relationship between land-
slide and causative factors and to produce the landslide 
susceptibility maps (LSM maps) in the Cisangkuy Sub-
watershed. The research area is predominantly character-
ized by hills and mountains composed of tuff, a type of 
rock that is susceptible to landslides. Besides, the study 
area has a critical infrastructure, i.e. a Geothermal Power 
Station and a number of tourist attractions. Therefore, it 
is crucial to conduct LSM in this area. As the initial phase 
of landslide hazard mitigation, LSM should provide cru-
cial information to facilitate decision-making for spatial 
planning, thereby significantly minimizing the potential 
damage caused by landslides. LSM maps are created 
with the purpose of assisting individuals in identifying 
and implementing measures to mitigate the risks associ-
ated with landslides (Rasyid et al., 2016).

Comparative studies can be carried out using these 
four models. Some of those models were used and com-

pared in the previous studies, but based on the literature 
review, no comparative study has been found between 
the four comparable models. The three models within 
the four models were employed by Nohani et al. (2019), 
Liu and Duan (2018), and Razavizadeh et al. (2017). 
Nohani et al. (2019) examined the FR, SE, and WoE 
models, Liu and Duan (2018) conducted a comparison 
study between IV, SE, and WoE, while Razavizadeh et 
al. (2017) compared the FR, IV, and WoE. Meanwhile, 
other similar studies used one of those models (Alfarabi 
et al., 2019; Arifianti et al., 2023; Sadisun et al., 2021).

By conducting this study, it is possible to assess the 
accuracy of LSM maps produced from bivariate statisti-
cal models and ascertain their reliability. Furthermore, in 
order to improve maps that need to be produced, it is 
necessary to collect information on the specific locations 
that require concern for enhancement. It is necessary to 
investigate the effectiveness of bivariate statistical mod-
els for LSM due to their simplicity and ability to explain 
the relationship between causative factors and landslides 
explicitly. This article comprises several sections, in-
cluding an introduction, material and methods, results, 
discussion, and conclusion.

2. Materials and methods

2.1. Study area

The Cisangkuy Sub-watershed is one of the sub-wa-
tersheds in the Bandung basin, located in Bandung Re-
gency, West Java, Indonesia. The study area is 308.14 
km², with an elevation range of 648 m to 2334 m and a 
slope that ranges from 0 to 184.6%. It is located between 
6.976⁰ – 7.232⁰S and 107.482⁰ – 107.656⁰E. The study 
area is surrounded by volcanic mountains (Abidin et al., 
2013) and experiences intensive landslides. Figure 1 
shows the research area.

Two large landslides occurred in this area. The first 
occurred in the complex of a vital object, viz. the Way-
ang-Windu Geothermal Power Station, Pangalengan, on 
May 5, 2015. The affected area was 700 m long and 200 
m wide, hitting geothermal pipelines and buried settle-
ments. This landslide caused seven deaths, two missing 
persons, and ten injuries. The landslide was triggered by 
a long rainfall period with a total of five months of rain-
fall from January 1 to May 5, 2015, of about 1,200 mm 
(Rahardjo et al., 2017). Another big landslide occurred 
on the bank of the Cibintinu River in Arjari on October 
6, 2016. The landslide caused 400 people to be evacuat-
ed due to the landslide material blocking the Cibintinu 
River flow. The Cibintinu landslide also damaged some 
agricultural lands. In the last five years, there have also 
been frequent landslides; for example, the landslide that 
occurred in Sukaluyu village, Pangalengan subdistrict, 
in 2022 caused one house to be damaged and one person 
died, and most recently (January 8, 2024) there was a 
flash flood due to a landslide in Margamulya village, 
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subdistrict Pangalengan which caused 19 residents’ 
houses to be submerged and the 15-meter retaining wall 
around the village office to collapse.

The lithology of the research area is dominated by 
tuff, laharic breccia, and lava. Meanwhile, the geomor-
phology is dominated by young volcano cones. Most of 
the study areas were formed by volcanic activities ex-
cept the plain area, which was formed by fluvial-lacus-
trine deposits. The precipitation ranges from 1868 to 
2558 mm/year. The highest annual rainfall is in the 
southeastern part of the study area, namely the Bedil and 
Wayang Mountains. Generally, rainfall in the eastern 
part is higher than in the western part. Two large land-
slides occurred at the geothermal power plant on Mount 
Bedil and in Arjasari on Mount Pipisan in the east, which 
affected 10.8 ha and 4.53 ha, respectively.

2.2. Data source

2.2.1. Landslide inventory data

Landslide inventory data is mandatory data for LSM 
using bivariate statical methods, which are represented 
in a landslide distribution map (Arifianti et al., 2023). 
The landslide inventory data in this study were created 
using various data sources, including high-spatial-reso-
lution Google Earth images obtained between 2010 and 
2019, official landslide records from 2013 to 2020, and 
several field observation data from 2017 to 2020.

2.2.2. Landslide causative factors

Landslide causative factors are predisposing elements 
that result from direct and indirect environmental and 

human influences and ultimately define the trigger factor 
for landslides (Arifianti et al., 2023). This study created 
four groups (geological, topographical, hydrological, 
and anthropological consisting) consisting of 27 land-
slide causative factors. The main consideration used to 
determine the causative factors is the availability of a 
data source over the entire study area. There is a lack of 
consensus regarding the factors responsible for land-
slides or the precise number that should be selected to 
create LSM maps (Melati et al., 2024). However, not all 
of the provided variables will be utilized as input in the 
modelling process, but they do need to be selected. It is 
recommended to avoid using variables that have a strong 
correlation (Evans, 1996).

The 27 factors include (1) lithology, (2) distance to 
faults, (3) fault density, (4) distance to lineaments, (5) 
lineament density, (6) peak ground (PGA), (7) elevation, 
(8) slope, (9) topographic position index (TPI), (10) ter-
rain ruggedness index (TRI), (11) hypsometric integral 
(HI), (12) relative relief (RR), (13) geomorphology, (14) 
aspect, (15) slope curvature, (16) plan curvature, (17) 
profile curvature, (18) flow direction, (19) stream power 
index (SPI), (20) topographic wetness index (TWI), (21) 
distance to rivers, (22) river density, (23) rainfall, (24) 
land cover, (25) normalized difference vegetation index 
(NDVI), (26) distance to roads, and (27) road density.

Some of those landslide causative factors are index 
maps, i.e. TPI, TRI, SPI, TWI, and NDVI. TPI has been 
identified as a contributing factor for landslides in earlier 
research conducted by Othman et al. (2018), Pourgha-
semi et al. (2014), and Shahzad et al. (2022). In their 
LSM study, Sadisun et al. (2021) employed the usage of 
three indices: TRI, SPI, and TWI. On the other hand, 

Figure 1: The Cisangkuy Sub-watershed with its landslide locations and inset maps
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Melati et al. (2024) utilized TWI and NDVI in their re-
search. In addition to utilizing TPI, Shahzad et al. 
(2022) utilized TWI and NDVI. NDVI was derived from 
Sentinel 2A satellite imagery, while the four index maps 
were produced using DEM. Each corresponds to topo-
graphical, hydrological, or anthropogenic aspects that 
could potentially impact the occurrence of landslides. 
All parameters were proceeded from the available topo-
graphical and geological maps, DEM, and remote sens-
ing imageries, which have different formats and scales 
(see Table 1).

2.3. Methods

This study has four main steps for LSM, including (1) 
data preparation for obtaining landslide inventory data 
and causative factors, (2) parameter selection, (3) bivari-
ate statistics analysis, and (4) model validation. All those 
steps can be seen in Figure 2.

2.3.1. Data preparation

Landslide objects are interpreted visually using 
Google Earth images (Pham et al., 2018; Wati et al., 
2010). This study involved the source area of landslides 
since the source area is the part that experiences collapse 
(Schlögel et al., 2018). The use of the source area of 
landslides can increase the accuracy of landslide suscep-
tibility modelling (Schlögel et al., 2018).

The polygons representing the source area of major 
landslides (>100 m2) were created through visual inter-
pretation, as described by Sukristiyanti et al. (2021). 
However, small landslides (<100 m2) could not be iden-
tified on Google Earth images. We collected small land-
slides by analyzing the official landslide report and con-
ducting field surveys. Every landslide polygon was con-
verted into raster data with an 8.34 m cell size, enabling 

one polygon to be represented by one or more landslide 
pixels. Meanwhile, each small landslide that was origi-
nally depicted as a point feature is then converted into a 
single landslide pixel. The cell size of 8.34 m refers to 
the spatial resolution of the DEM, and other data also 
resampled to the size. We selectively utilized representa-
tive landslide pixels from big landslide polygons rather 
than including all pixels from landslide polygons as our 
data input. If the polygon’s area is smaller than 50 m x 
50 m, it is denoted by a single pixel. If the polygon is 
more than that size, it is denoted by two or more pixels, 
depending on its area.

All landslide pixels were randomly partitioned into 
two groups: 70% of the pixels were assigned as training 
data, and the remaining pixels were allocated as test data 
(Chen et al., 2017) by utilizing a subset feature tool in 
ArcGIS. It was ensured that the training and test data 
were not sourced from the same landslide polygon to 
prevent biased outcomes and potentially inaccurate 
model validation. The training data is data used to build 
the model, and the test data is data that is not used to 
build a model but instead used to measure the predictive 
rate (Umar et al., 2014).

In addition to compiling landslide inventory data, the 
causative factors of landslides are also prepared. All 
causative factors were prepared in raster maps with a 
pixel size of 8.34 m × 8.34 m, referring to the spatial 
resolution of the DEM. The generated LSM maps are 
considered medium-scale due to the utilization of medi-
um-scale maps, such as geological maps, in the model-
ling process. The geological map provided several land-
slide causative factors.

The study utilized 27 landslide causative factors, 
which are categorized into four groups: geological, top-
ographical, hydrological, and anthropological. Five geo-
logical factors were obtained from a geological map, 

Table 1: Sources of data for preparing landslide causative factors

Sources
Landslide causative factors

Maps or imageries Scale or cell size
Topographic map from the Geospatial 
Information Agency (BIG) 1: 25,000 (1) distance to rivers, (2) river density, (3) distance to roads, 

(4) road density
Geological map from the Geological 
Agency 1: 50,000 (5) lithology, (6) distance to faults, (7) fault density

Geomorphological map  
from the Geological Agency - (8) geomorphology

DEMNAS (DEM from BIG) 8.34 m
(9) elevation, (10) slope, (11) TPI, (12) TRI, (13) HI, (14) RR, 
(15) aspect, (16) slope curvature, (17) plan curvature,  
(18) profile curvature, (19) flow direction, (20) SPI, (21) TWI

Pan-sharpened Landsat 8 imagery:  
the RGB 564 bands 15 m (22) distance to lineaments, (23) lineament density

Sentinel 2A: bands 2, 3, 4, and 8 10 m (24) land cover, (25) NDVI 
Tabular rainfall data from 
Meteorological Agency (BMKG) - (26) rainfall

PGA map from the Geological Agency - (27) PGA
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Landsat images, and a PGA map. Those factors are li-
thology, distance to fault, fault density, distance to linea-
ments, lineament density, and PGA. PGA is associated 
with characteristics of earthquakes that are relevant to 
the circumstances where the earthquake takes place, like 

in this study area (Arifianti et al., 2020). Earthquakes 
are frequently a trigger factor for landslides. This study, 
involving a long-period assessment for landslide suscep-
tibility, uses not only PGA but also rainfall as a trigger 
factor for landslides in this study area.

Figure 2: Flowchart to compare four different bivariate statistical-based models
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A different lithological unit can show a different me-
chanical and hydrological characteristic (Juliev et al., 
2019) that can influence material strength and stability 
(Othman et al., 2018). The lithology of the research area 
is dominated by tuff, laharic breccia, and lava. The litho-
logical factor is obtained from the lithological unit layer 
from the geological map by converting it from vector for-
mat to raster, and the PGA factor is obtained from the 
PGA map by converting it from vector format to raster.

Faults are correlated with the extent of fracture and 
weathering. Both faults and lineaments are related to 
tectonic activity and determine weak zones. Therefore, 
they significantly influence the likelihood of landslides 
occurring (Melati et al., 2024). Regarding faults, dis-
tance to fault and fault density factors generated from 
the fault polyline layer in the geological map were uti-
lized. The “Euclidean distance” tool and the “line den-
sity” tool in ArcGIS generate the distance to faults and 
the fault density factors. A vector map of lineaments was 
generated using the automatic extraction method in the 
Catalyst-PCI Geomatics trial version on Landsat 8 im-
ages. The image was acquired on July 17, 2018, with a 
path/raw of 122/065 (URL 1). The images in composite 
564 were created in a pan-sharped version with a spatial 
resolution of 15 m. Lineament vector maps are pro-
cessed to produce distance to lineaments and lineament 
density using the “Euclidean distance” and “line densi-
ty” tools, respectively.

The seven topographic factors are elevation, slope, 
TPI, TRI, HI, RR, and geomorphology. All those factors 
except geomorphology are derivatives from DEM, while 
the geomorphology factor was gained from the geomor-
phology map. Elevation is related to land cover or veg-
etation types, which often correlates with landslides. 
The slope is correlated to shear stress, which increases 
with an increasing slope angle. TPI is the difference in 
elevation between a specific location (cell) and its sur-
roundings. TPI was counted in the present study using a 
moving window consisting of 100 cells, or roughly 834 
m. In the meantime, TRI displays the terrain heterogene-
ity level distribution (Riley, 1999). TRI was calculated 
using neighborhood 3 x 3 data, which is the difference 
between the height at a specific site and the mean height 
of the eight surrounding cells (Rózycka et al., 2017). 
HI, a parameter related to morphometric features, is an 
index for identifying the evolutionary stage of landscape 
development. A high HI value indicates a terrain with 
great relief, whereas a low value indicates a flat land-
scape (Othman et al., 2018). In the current study, HI 
was created using a moving window of 100 cells, or 
about 834 m. The height difference between a unit area’s 
highest and lowest points is known as RR (Mandal and 
Mandal, 2018). In this study, a unit area is 2000 m × 
2000 m. Individual centroids were interpolated from 
each unit area to determine the RR.

Ten hydrological factors are aspect, slope curvature, 
plan curvature, profile curvature, flow direction, SPI, 

TWI, distance to rivers, river density, and rainfall. All 
those factors except rainfall are derivatives maps of 
DEM. Regarding river factors, the river layer was ob-
tained from the topographical map. Subsequently, the 
data is transformed into the distance to the rivers and 
river density by utilizing the “Euclidean distance” and 
“line density” tools within ArcGIS Desktop.

Aspect affects soil moisture since it is related to solar 
radiation and evapotranspiration (Samodra et al., 2017). 
Slope curvature, profile curvature, and plane curvature 
are three forms of curvature that can be distinguished 
based on their curvature value. In the plan curvature and 
slope curvatures, a negative value denotes a concave 
surface, and a positive value represents a convex sur-
face. Conversely, a negative value indicates a convex 
surface for profile curvature, and a positive value indi-
cates a concave surface. The zero values indicate a flat 
surface in all three curvature types (ESRI, 2014; Man-
dal and Mandal, 2018). SPI estimates erosion capacity, 
while TWI indicates flow accumulation and water satu-
ration (Moore et al., 1991).

Four anthropogenic factors used in this study are land 
cover, NDVI, distance to roads, and road density. They 
impact soil moisture, erosion and runoff, and slope stabil-
ity. According to Cao et al. (2019), vegetation can im-
prove soil shear strength and slope stability. Road build-
ing, on the other hand, is closely linked to slope-cutting 
and land-filling operations. Sentinel-2A imagery bands 2, 
3, 4, and 8, acquired on November 16, 2019, were used to 
obtain land cover and vegetation indices. The supervised 
classification technique was employed to generate land 
cover, as well as the NDVI formula, which calculates the 
ratio between the difference in reflectance values of the 
near infra-red (NIR) and red bands and the sum of reflec-
tance values from the same band, to construct the vegeta-
tion indices. Road construction diminishes slope stability 
and shear strength. As well as the river layer, the road 
layer was obtained from the topographical map. The dis-
tance to roads and road density factors were processed 
using the “Euclidean distance” tool and the “line density” 
tool in ArcGIS Desktop.

In the bivariate statistical method, each causative fac-
tor must be categorical or nominal data. Lithology, geo-
morphology, aspect, flow direction, land cover, plan cur-
vature, profile curvature, and slope curvature are all 
known to be nominal data types. The 19 remaining pa-
rameters are continuous data and thus need to be classi-
fied into several classes. They are often categorized 
based on the data histogram (Samodra et al., 2017). The 
present study employed various classification tech-
niques, including manual, equal interval, natural break, 
quantile, and geometric interval. There is a lack of agree-
ment over the classification method used to categorize 
each parameter or determine the number of classes. 
Umar et al. (2014) used the quantile classification meth-
od to divide all continuous data into different classes. 
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Samodra et al. (2017) divided the elevation map into 
seven classes based on a 100-m interval. Melati et al. 
(2024) reclassified the map into six classes based on a 
300-m interval. Arifianti et al. (2023) classified the map 
into 12 classes based on a 200-m interval.

Distance to rivers, TWI, TRI, SPI, distance to linea-
ments, and lineament density were some parameters that 
applied the quantile classification method because the 
distribution of the data was highly skewed or not nor-
mally distributed. Slope, elevation, HI, distance to faults, 
distance to roads, and rainfall were classified using the 
manual method. According to Van Zuidam (1985) (Noor, 
2010), the slope in the percentage was divided into sev-
en classes. HI parameter was classified into three classes 
following Othman et al. (2018): HI > 0.35 (a flat land-
scape), 0.35 < HI < 0.6 (a significantly eroded land-
scape), and > 0.6 (a landscape that has an entrenched 
drainage network). River density has a data distribution 
close to a normal curve, so it was classified using equal 
intervals. There are eight classes for river density. NDVI 
was classified into eight classes using the natural break 
method, while TPI was classified into eight classes using 
geometrical intervals based on its data distribution 
curve.

2.3.2. Parameter selection

During the initial phase of this study, 27 landslide caus-
ative factors were identified and prepared. Parameter se-
lection was employed to address multicollinearity, reach 
the model’s effectiveness, and increase the model’s accu-
racy. Spearman’s rank correlation was used to calculate 
the association between each parameter and landslide data 
to choose the parameters. Correlation calculations are car-
ried out by creating a correlation matrix as a heatmap. A 
correlation matrix is a simple table that shows the correla-
tion coefficient between two variables. A strong correla-
tion indicates a significant relationship between two pa-
rameters, which can be either positive or negative. This 
study used threshold correlation values of -0.8 and +0.8 
(Evans, 1996). Heatmap was created using Pandas and 
Seaborn packages in a Python environment.

Later, the selected parameters were filtered using the 
relationship value between each selected parameter and 
landslide data. The relationship value is an area under 
the curve (AUC) between the cumulative percentage of 
an area on the horizontal axis and the cumulative per-
centage of landslides on the vertical axis based on the 
bivariate statistical analysis result. The threshold value 
of AUC is 0.6 (Sumaryono et al., 2015). The causative 
factors included in the correlation calculation in the 
heatmap are a mixture of continuous data and nominal 
data. The nominal data are lithology, geomorphology, 
aspect, flow direction, slope curvature, plan curvature, 
profile curvature, and land cover. Meanwhile, in the 
AUC calculation, all causative factors are categorical 
data, and those continuous data are classified.

2.3.3. Bivariate statistical-based analysis

The bivariate statistical-based methods assess the in-
fluence of each class of landslide causative parameters 
on landslide occurrence (Umar et al., 2014). In the bi-
variate statistical method, each causative factor is cate-
gorical data. This study used four bivariate statistical 
methods: FR, IV, WoE, and SE. These four methods are 
the most widely used and produce balanced accuracy 
(Hadmoko et al., 2017b; Razavizadeh et al., 2017; 
Liu and Duan, 2018; Othman et al., 2018; Riaz et al., 
2018; Juliev et al., 2019; Nohani et al., 2019).

The FR method is a ratio between a landslide density 
in a class and a landslide density in the whole study area. 
The formula is as follows:

	 � (1)

where a is the number of landslide pixels in a class, b is 
the total of landslide pixels in the whole study area, c is 
the number of pixels in a class, and d is the total pixels 
in the entire study area.

Another straightforward approach is IVM, which is 
simply the natural log product of FR (Hadmoko et al., 
2017). On the other hand, the assessment of landslide 
susceptibility by using WoE requires specific values, 
namely W+ (true-positive), W- (true-negative), and Wc 
(weight contrast). The weight contrast, which is the dif-
ference in value between W+ and W-, shows the measure 
of the correlation strength between the analyzed varia-
bles and landslides (Sumaryono et al., 2015). The for-
mulas to determine W+ and W- are given below:

	 � (2)

where W+ is the true-positive (a location is predicted as 
a prone area, and in reality, it is true), a is the number of 
landslide pixels in a class, b is the total of landslide pix-
els in the whole study area, e is the number of non-land-
slide pixels in a class, f is the total of non-landslide pix-
els in the entire study area.

	 � (3)

where W- is the true-negative (a location is predicted as 
a non-landslide area, and in reality, it is true), g is the 
number of landslide pixels outside class, b is the total of 
landslide pixels in the whole study area, h is the number 
of non-landslide pixels outside class, and f is the total of 
non-landslide pixels in the entire study area.

The SE is the most complex of the four methods, with 
a coefficient for each parameter. The coefficient is repre-
sented by an entropy index (Nohani et al., 2019) and 
represents how much each parameter contributes to de-
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termining the landslide occurrence. The total of twenty-
three parameter coefficients is 1.0. The SE model was 
calculated using the following formulas:

	 � (4)

where Eij is the true-negative (a location is predicted as a 
non-landslide area, and in reality, it is true), FR is the 
frequency ratio, and j is the parameter 1, ...

	

	

	

	 � (5)

where Eij is the true-negative, Hj and Hjmax are the entro-
py values, Ij is the coefficient of each parameter, Mj is 
the number of classes in each parameter, and SE is the 
weight of a class (i) of a parameter (j). The weight of SE 
is the result of the parameter coefficient of SE multiplied 
by FR weight.

The landslide probability (the weight) of all factors 
was summed up to obtain the landslide susceptibility in-
dex (LSI) (Mandal and Mandal, 2018; Pradhan, 
2013). Later, the LSI is classified into five classes to 
show the zonation of landslide susceptibility, namely 
very low, low, moderate, high, and very high.

2.3.4. Model validation

Model validation is essential for the appropriate inter-
pretation of LSM maps. Consequently, the validation of 
the model is a crucial stage in the process of LSM (Mer-
sha and Meten, 2020). Model validation is the final step 
in modelling. It assesses the performance of a model and 
the quality of the result. Model validation was performed 
using two methods, namely: (1) the ROC curve analysis 
to obtain the AUC values and (2) the landslide density 
index (LDI). ROC analysis validates the LSI, and the LDI 
validates LSM maps. LSM is a categorical map of LSI.

AUC values can be classified into five classes, i.e. 0.5 
– 0.6 (bad), 0.6 – 0.7 (moderate), 0.7 – 0.8 (good), 0.8 
– 0.9 (very good), and 0.9 – 1.0 (excellent) (Pourgha-
semi et al., 2013). Two AUC values were produced for 
model validation, namely success and predictive rates. A 
validation using the training data produces the success 
rate, and a validation using the test produces the predic-
tive rates. If the training dataset was utilized to evaluate 
the model, it cannot accurately reflect the real power of 
the generated model. The predictive rate measures the 
accuracy of the model in predicting the occurrence of 
landslides in a given area (Umar et al., 2014).

The LDI is calculated as the proportion of landslide 
pixels to the total number of pixels in each class on a 

landslide susceptibility map. The landslide susceptibility 
map is divided into five classes in this study. The land-
slide susceptibility map was valid if the LDI increased 
from very low to very high susceptibility classes for 
each of the maps (Mersha and Meten, 2020).

3. Results

3.1. Landslide training data and test data

A total of 25 landslide polygons were obtained from 
the interpretation of Google Earth data. In contrast, 33 
additional landslide points were identified by analyzing 
the official landslide records and carrying out field sur-
veys. All landslide objects were converted into raster 
data with an 8.34 m cell size, enabling each polygon to 
be represented into one or more landslide pixels, and 
each landslide point was converted into a single land-
slide pixel. We selectively utilized representative land-
slide pixels from big landslide polygons rather than in-
cluding all pixels from landslide polygons as our data 
input. If the polygon’s area is smaller than 50 m x 50 m, 
it is denoted by a single pixel. If the polygon is more 
than that size, it is denoted by two or more pixels, de-
pending on its area. As a result, 76 landslide pixels were 
utilized for modelling.

The research area is highly susceptible to sliding. 
However, the shortage of a landslide inventory can be 
attributed to the lack of landslide reports in this country. 
The majority of landslide incidents in the study area lack 

Figure 3: Training and test data of landslides for bivariate 
statistical-based modelling
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correlation heatmap and computing AUC for their re-
maining parameters. Based on the heatmap, seven pa-
rameters that have a strong correlation were eliminated, 
namely road density, TWI, fault density, RR, PGA, TRI, 
and slope curvature. They have correlation values of 
more than 0.8 or less than -0.8. After being eliminated, 
there is no strong correlation among the 20 factors in the 
heatmap (see Figure 4).

The remaining 20 parameters are evaluated to estab-
lish the correlation between variables (factors) and land-
slide training data using AUC values derived from bi-
variate analysis. Those factors are (1) lithology, (2) dis-
tance to faults, (3) distance to lineaments, (4) lineament 
density, (5) elevation, (6) slope, (7) TPI, (8) HI, (9) geo-
morphology, (10) aspect, (11) plan curvature, (12) pro-
file curvature, (13) flow direction, (14) SPI, (15) distance 
to rivers, (16) river density, (17) rainfall, (18) land cover, 
(19) NDVI, and (20) distance to roads. For bivariate 
analysis, all continuous data were classified.

The result shows that five parameters have an AUC of 
less than 0.6, namely HI, land cover, plan curvature, pro-
file curvature, and TPI, with AUC values of 0.568, 0.587, 
0.509, 0.540, and 0.583, respectively. Therefore, a total 
of 15 factors were employed for LSM, namely, (1) li-
thology, (2) geomorphology, (3) aspect, (4) flow direc-

latitude and longitude coordinates, and the names of lo-
cal areas are used instead (Cepeda et al., 2010). The 
utilization of all landslide reports does not yield repre-
sentative data due to the fact that the mapping of these 
landslide locations relies only on administrative regions 
rather than precise geographical coordinates. Thus, only 
landslides with geographical coordinates from the offi-
cial landslide report were employed. In addition, there is 
limited availability of high-resolution time-series im-
agery, and obtaining complete landslide inventory data 
is becoming more challenging in tropical regions like 
Indonesia, where rapid vegetation growth often obscures 
previous landslide features (Samodra et al., 2018).

Landslide types in this study were debris/earth slide, de-
bris/earth fall, and creep. The landslide pixels were divided 
randomly into two groups: 70% as training data (53 pixels) 
and 30% as test data (23 pixels). As a note, the training data 
and test data do not come from the same landslide polygon 
to avoid biased results and potentially non-representative 
model validation. The distribution of landslides used for 
training and test data can be seen in Figure 3.

3.2. Selected parameters

There were 27 landslide causative factors, and param-
eter selection was performed on them by constructing a 

Figure 4: Correlation heatmap of the 20 selected landslide causative factors using Spearman’s method
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Figure 5: The 15 selected landslide causative factors superimposed with landslide distribution

tion, (5) elevation, (6) slope, (7) distance to faults, (8) 
distance to lineaments, (9) lineament density, (10) dis-
tance to rivers, (11) river density, (12) SPI, (13) distance 
to roads, (14) NDVI, and (15) rainfall. All those selected 
factors can be observed in Figure 5.

Four of those 15 selected factors are nominal data, 
and the other 11 factors are categorical data derived 
from continuous data. The nominal data are lithology, 

geomorphology, aspect, and flow direction. The litholo-
gy of the Cisangkuy Sub-watershed consists of (1) tiff, 
laharic breccia, and lava, (2) crystal tuff, tuff breccia, 
and old laharic deposit, (3) intercalated lava, lahar, and 
breccia, (4) intercalated lava, breccia, and tuff, (5) clay 
and silt, as well as (5) tuffaceous breccia and lava. Based 
on the lithology map, there is no landslide in the clay and 
silt. The study area has six geomorphology units, i.e. a 


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Figure 5: Continued

young volcanic cone, parasitic young volcanic cone, 
young volcanic foot slope, ancient volcanic cone, an-
cient volcanic lava fan, and fluvio lacustrine plain. There 
is no landslide in the fluvio lacustrine plain. Aspect con-
sists of nine directions of the slope, namely flat, north, 
northeast, east, southeast, east, southwest, west, and 
northwest. The land unit of the slope is similar to the 
land unit of the flow direction, but in the flow direction, 
there is no flat. Landslides were found in all land units 
with aspects and flow directions.

3.3. Landslide susceptibility analysis

This landslide susceptibility analysis was performed 
using four bivariate statistical methods: FR, IVM, WoE, 
and SE. Every class of landslide causative factor was 
linked to landslides. By knowing the number of land-
slides in every class and the area of each class, the prob-
ability of landslides can be obtained using each method, 
either FR, IVM, WoE, or SE. The results of the bivariate 
statistical modelling for each class from each parameter 
can be seen in Table 2. The probability of a landslide 

increases with increasing weight (Lee and Talib, 2005), 
either the weight of FR, IVM, WoE, or SE.

In the aspect factor, the highest landslide probability 
is in the West class for all models. Regarding the eleva-
tion factor, class 1600 – 1800 has the highest probability 
of landslides. The elevation class is not the highest in the 
study area; the highest class is 2200 – 2334. Based on 
the flow direction factor, the most significant possibility 
of landslides is in the Southwest class. An ancient vol-
canic cone is a geomorphology unit with the highest 
landslide probability. The rainfall class of 2400 – 2450 
mm/year, which represents high rainfall in the study 
area, has the highest probability of landslide, with a 
weight that really stands out compared to other classes.

Regarding the distance to roads, the 1600 – 2400 class 
has the highest weight; this indicates that the construc-
tion of roads in the study area does not significantly im-
pact the stability of the slope. The road construction 
shows some resemblance to the presence of lineaments, 
as well as the presence of rivers. The class with the high-
est lineament density has weights of 0.0012 – 0.00161, 


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Table 2: The weights for classes of 15 landslides causative factors based on FR, IVM, WoE, and SE

Data layers Number 
of pixels

Number of training 
landslide pixels FR IVM WoE SE

Aspect
Flat (-1) 513492 2 0.338 -1.085 -1.195 0.006
North (0°to 22.5°) 277158 1 0.315 -1.157 -1.229 0.006
Northeast (22.5° to 67.5°) 573009 5 0.734 -0.309 -0.375 0.014
East (67.5° to 112.5°) 356541 1 0.249 -1.392 -1.483 0.005
Southeast (112.5° to 157.5°) 340361 3 0.742 -0.299 -0.348 0.014
South (157.5° to 202.5°) 366423 5 1.138 0.129 0.114 0.021
Southwest (202.5° to 247.5°) 501097 7 1.165 0.152 0.146 0.022
West (247.5° to 292.5°) 547356 12 1.817 0.597 0.692 0.034
Northwest (292.5° to 337.5°) 667948 12 1.492 0.400 0.464 0.028
North (337.5° to 360°) 286630 5 1.450 0.371 0.375 0.027
Elevation (m)
648 – 800 1075656 9 0.705 -0.350 -0.469 0.040
800 – 1000 669502 4 0.509 -0.676 -0.760 0.029
1000 – 1200 478770 2 0.361 -1.018 -1.093 0.021
1200 – 1400 448213 3 0.568 -0.566 -0.614 0.033
1400 – 1600 968519 7 0.611 -0.492 -0.595 0.035
1600 – 1800 341338 19 4.585 1.523 1.878 0.263
1800 – 2000 263724 5 1.574 0.454 0.491 0.090
2000 – 2200 137478 4 2.405 0.878 0.924 0.138
2200 – 2334 46815 0 0.019 -3.989 -3.999 0.001
Flow direction
East 459761 1 0.197 -1.625 -1.727 0.003
South East 290732 3 0.865 -0.145 -0.168 0.012
South 420543 7 1.384 0.325 0.353 0.020
South West 446817 8 1.487 0.397 0.440 0.021
West 787743 13 1.372 0.317 0.387 0.020
North West 595630 10 1.396 0.333 0.383 0.020
North 909058 6 0.560 -0.580 -0.701 0.008
North East 519731 5 0.808 -0.214 -0.252 0.012
Geomorphology
Young volcano cone 2445504 26 0.891 -0.116 -0.279 0.070
Parasitic young volcanic cone 90534 1 0.925 -0.078 -0.117 0.073
Young volcano foot slope 506798 2 0.342 -1.072 -1.191 0.027
Ancient volcanic cone 703271 23 2.701 0.994 1.344 0.212
Ancient volcanic lava fan 186876 1 0.458 -0.782 -0.843 0.036
Fluvio lacustrine plain 497032 0 0.019 -3.989 -4.143 0.001
Rainfall (mm/year)
1868 – 1900 185976 3 1.342 0.294 0.537 0.256
1900 – 1950 393370 4 0.853 -0.159 0.054 0.163
1950 – 2000 415032 3 0.612 -0.492 -0.304 0.117
2000 – 2050 456846 3 0.557 -0.585 -0.407 0.106
2050 – 2100 475396 5 0.881 -0.126 0.087 0.168
2100 – 2150 799438 1 0.121 -2.111 -2.060 0.023
2150 – 2200 1343027 19 1.179 0.165 0.473 0.225
2200 – 2250 130374 0 0.019 -3.989 -3.791 0.004
2250 – 2300 68038 0 0.019 -3.989 -3.777 0.004 
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Data layers Number 
of pixels

Number of training 
landslide pixels FR IVM WoE SE

2300 – 2350 52518 0 0.019 -3.989 -3.773 0.004
2350 – 2400 45346 0 0.019 -3.989 -3.772 0.004
2400 – 2450 37697 15 32.662 3.486 4.031 6.237
2450 – 2500 17463 0 0.019 -3.989 -3.765 0.004
2500 – 2550 9126 0 0.019 -3.989 -3.764 0.004
2550 – 2558 368 0 0.019 -3.989 -3.762 0.004
Distance to roads (m)
0 – 100 1628993 20 1.026 0.025 0.023 0.079
100 – 200 887181 12 1.128 0.121 0.136 0.087
200 – 400 748091 1 0.128 -2.054 -2.235 0.010
400 – 800 471194 9 1.585 0.461 0.516 0.122
800 – 1600 415539 2 0.413 -0.883 -0.960 0.032
1600 – 2400 198068 9 3.746 1.321 1.441 0.288
2400 – 3200 79627 0 0.019 -3.989 -4.024 0.001
3200 – 3309 1322 0 0.019 -3.989 -4.007 0.001
Lineaments density
0 – 0.00009 527937 0 0.019 -3.989 -4.193 0.001
0.0001 – 0.00044 572826 3 0.448 -0.803 -0.961 0.023
0.00045 – 0.0008 579228 6 0.868 -0.141 -0.240 0.044
0.00081 – 0.00119 570701 8 1.169 0.156 0.102 0.059
0.0012 – 0.00161 545269 21 3.178 1.156 1.442 0.160
0.00162 – 0.00208 543395 9 1.377 0.320 0.295 0.069
0.00209 – 0.00274 544007 1 0.169 -1.776 -1.965 0.009
0.00275 – 0.00563 546652 5 0.769 -0.263 -0.374 0.039
Distance to lineaments (m)
0 – 34.14 464488 9 1.608 0.475 0.507 0.051
34.15 – 85.34 686948 16 1.929 0.657 0.802 0.061
85.35 – 136.54 552478 10 1.503 0.408 0.440 0.048
136.55 – 204.81 582344 7 1.005 0.005 -0.037 0.032
204.82 – 290.15 557070 3 0.460 -0.776 -0.893 0.015
290.16 – 409.62 558238 6 0.900 -0.105 -0.162 0.029
409.63 – 597.37 515182 2 0.337 -1.088 -1.214 0.011
597.38 – 2176.13 513267 0 0.019 -3.989 -4.152 0.001
Lithology
Tuff, laharic breccia, and lava 2921875 27 0.155 -1.864 -2.834 0.017
Intercalated lava, breccia, and tuff 23735 15 29.693 3.391 3.561 3.195
Clay and silt 662202 0 1.064 0.062 0.074 0.115
Tuffaceous breccia and lava 159641 7 5.151 1.639 1.808 0.554
Intercalated lava, lahar, and breccia 118765 2 7.206 1.975 2.163 0.775
Crystal tuff, tuff breccia, and old laharic deposit 543797 2 1.635 0.492 0.585 0.176
NDVI
-0.2 – 0.1 63057 0 0.019 -3.989 -4.011 0.001
0.11 – 0.22 224763 0 0.019 -3.989 -4.048 0.001
0.23 – 0.32 292594 11 3.103 1.132 1.285 0.175
0.33 – 0.41 478656 9 1.561 0.445 0.507 0.088
0.42 – 0.5 656485 7 0.893 -0.113 -0.140 0.050
0.51 – 0.58 722085 9 1.041 0.040 0.040 0.059

Table 2: Continued




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Data layers Number 
of pixels

Number of training 
landslide pixels FR IVM WoE SE

0.59 – 0.67 933288 13 1.161 0.149 0.185 0.065
0.68 – 0.82 1059087 4 0.328 -1.114 -1.313 0.018
Distance to faults (m)
0 – 100 263495 15 4.689 1.545 1.804 0.283
100 – 200 252447 9 2.943 1.080 1.198 0.178
200 – 300 232409 1 0.372 -0.990 -1.031 0.022
300 – 500 411262 2 0.417 -0.874 -0.938 0.025
500 – 1000 809152 9 0.931 -0.071 -0.094 0.056
1000 – 1500 652349 9 1.150 0.140 0.160 0.070
1500 – 3000 1288490 7 0.464 -0.767 -0.973 0.028
3000 – 6392 520411 1 0.176 -1.736 -1.847 0.011
Slope (%)
0-2 359716 0 0.019 -3.989 -4.352 0.002
2-7 603748 1 0.154 -1.868 -2.273 0.015
7-15 885918 1 0.111 -2.197 -2.678 0.011
15-30 1255909 13 0.868 -0.142 -0.473 0.085
30-70 1202005 34 2.339 0.850 1.260 0.230
70-140 122618 4 2.695 0.991 0.761 0.265
140-184.6 101 0 0.019 -3.989 -4.269 0.002
SPI
-13.82 - -6.93 519831 0 0.019 -3.989 -4.144 0.001
-6.92 - -3.26 586919 8 1.137 0.128 0.116 0.043
-3.25 - -1.08 529848 0 0.019 -3.989 -4.147 0.001
-1.07 – 0.41 580808 5 0.725 -0.322 -0.395 0.027
0.42 – 1.78 530627 9 1.410 0.344 0.368 0.053
1.79 – 3.62 547999 9 1.366 0.312 0.332 0.051
3.63 – 6.37 578082 9 1.296 0.259 0.272 0.048
6.38 – 15.43 555901 13 1.937 0.661 0.773 0.072
River density
0.15 – 0.72 64288 0 0.019 -3.989 -4.315 0.002
0.73 – 1.29 245001 0 0.019 -3.989 -4.356 0.002
1.3 – 1.86 585880 2 0.299 -1.209 -1.622 0.031
1.87 – 2.44 963905 10 0.870 -0.140 -0.487 0.090
2.45 – 3.01 1373724 35 2.109 0.746 1.124 0.217
3.02 – 3.58 850676 6 0.597 -0.516 -0.918 0.061
3.59 – 4.16 318126 0 0.019 -3.989 -4.374 0.002
4.17 – 4.73 28415 0 0.019 -3.989 -4.307 0.002
Distance to rivers (m)
0 – 23.34 513894 3 0.497 -0.698 -0.784 0.009
23.35 – 50.58 652854 9 1.149 0.139 0.143 0.021
50.59 – 81.71 593156 8 1.125 0.118 0.115 0.021
81.72 – 112.83 590553 12 1.686 0.522 0.611 0.031
112.84 – 147.85 518247 9 1.443 0.367 0.405 0.026
147.86 – 198.43 537009 8 1.241 0.216 0.227 0.023
198.44 – 295.7 523421 3 0.489 -0.716 -0.804 0.009
295.71 – 992.16 500881 1 0.182 -1.702 -1.823 0.003

Table 2: Continued


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ranking fifth out of the eight classes. Similarly, the dis-
tance to rivers does not have the most significant weight 
in the class closest to the river, but rather in the fourth 
highest ranked class out of eight classes. The occurrence 
of road constructions, lineaments, and rivers differs from 
the occurrence of faults. The class closest to faults with-
in a range of 0 to 100 meters has the highest likelihood 
of landslides, indicating that faults play a substantial role 
in causing landslides. Regarding SPI, SPI significantly 
affects landslides; the highest SPI has the highest weight 
of landslide susceptibility.

The intercalated lava, breccia, and tuff lithology 
classes have the highest probability of landslides. The 
vegetation index ranging from 0.23 to 0.32 has the most 
significant weight; this is reasonable, as lower vegeta-
tion index values may indicate the presence of water 
bodies or open areas with flat terrain.

3.4. LSM maps of FR, IVM, WoE, and SE

The LSI maps of the study area by four models were 
produced based on the weights from the 15 causative 
factors and the landslide training data (see Table 2). The 

LSI maps of the Cisangkuy Sub-watershed were ob-
tained by summing the weight of all the 15 causative 
factors. The LSI for the FR model in the study area rang-
es from 3.179 to 94.599. The LSI for IVM, WoE, and SE 
are -36.637 to 17.458, -38.755 – 20.801, and 0.199 – 
11.276, respectively. The data distribution type of each 
LSI is skewed. The LSI values of FR and SE have a data 
distribution type skewed right, while the LSI values of 
IVM and WoE have a data distribution left skewed. All 
those LSI values were categorized into five susceptibili-
ty classes using the quantile classification method (Umar 
et al., 2014). The LSI values for FR were categorized 
into five classes: very low (3.179 – 10.399), low (10.935 
– 13.171), moderate (13.171 – 15.148), high (15.148 – 
17.804), and very high (17.804 – 94.599). The LSI val-
ues of IVM are categorized into five groups based on 
their magnitude: very low (-36.637 – -2.942), low 
(-12.941 – -7.919), moderate (-7.919 – -4.890), high 
(-4.890 – -2.161), and very high (-2.161 – 17.458). The 
WoE values are classified into the following categories: 
very low (-38.755 – -14.643), low (-14.643 – -9.400), 
moderate (-9.400 - -6.014), high (-6.014 – -2.836), and 
very high (-2.837 – 20.801). The SE values are classified 

Figure 6: Maps of LSM for the study area using FR, IVM, WoE, and SE models
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Table 3: Validation model using landslide density index (LDI)

Landslide 
susceptibility class

Number of landslide 
training pixels

Number of landslide 
test pixels

Number  
of pixels

LDI using 
training data

LDI using  
test data

FR
Very low 0 1 886281 0.0000000 0.0000011
Low 1 1 886310 0.0000011 0.0000011
Moderate 4 0 886133 0.0000045 0.0000000
High 7 9 885698 0.0000079 0.0000102
Very high 41 12 885593 0.0000463 0.0000136
IVM
Very low 0 1 886107 0.0000000 0.0000011
Low 1 0 886121 0.0000011 0.0000000
Moderate 0 4 886174 0.0000000 0.0000045
High 6 4 885864 0.0000068 0.0000045
Very high 46 14 885749 0.0000519 0.0000158
WoE
Very low 0 1 886007 0.0000000 0.0000011
Low 1 0 886137 0.0000011 0.0000000
Moderate 1 3 886127 0.0000011 0.0000034
High 6 5 885908 0.0000068 0.0000056
Very high 45 14 885836 0.0000508 0.0000158
SE
Very low 1 1 891294 0.0000011 0.0000011
Low 1 1 887333 0.0000011 0.0000011
Moderate 4 0 888531 0.0000045 0.0000000
High 6 8 882122 0.0000068 0.0000091
Very high 41 13 880735 0.0000466 0.0000148

into the following categories: very low (0.199 – 0.677), 
low (0.677 – -0.815), moderate (0.815 – 0.945), high 
(0.945 – 1.128), and very high (1.128 – 11.276). All re-
sulting LSM maps can be seen in Figure 6.

In Figure 6, it can be seen that areas that have a high 
level of landslide susceptibility are in the western Pan-
galengan region, which consists of tea and coffee planta-
tions, and the eastern Pangalengan region, which con-
sists of mountains (Mount Wayang, Mount Malabar, and 
Mount Puntang), as well as in the Arjasari Hill region 
which is in the northeast of the Cisangkuy Sub-Water-
shed. In fact, landslides occur every year and can even 
occur several times a year. For example, on November 4, 
2021, a landslide occurred in Cinangka, Wargaluyu vil-
lage, Arjasari District, which caused the house to be 
damaged and seven residents to be buried. In 2022, on 
October 11, a landslide occurred in Pasirsari, Patrolsari 
village, Arjasari District, which caused a land retaining 
wall to collapse and block road access for residents. In 
the same year (2022), there was also a landslide that 
caused one person to die, namely on January 15 in Giri 
Awas, Sukaluyu village, Panglangengan District. Both 
the Arjasari and Pangalengan areas have clayey soil, 
which is identical to the mineral montmorillonite 
(Wibawa et al., 2018), which has the property of crum-
pling and unfolding causes potential landslides.

Areas with very low landslide susceptibility are most-
ly found in the northern part of the Cisangkuy Sub-wa-
tershed, namely in the Baleendah and Banjaran areas. 
Gentle slopes dominate both areas. Historically, in the 
last decade, there has only been one landslide, namely in 
Cipancur, Baleendah village, on March 18, 2023. How-
ever, in general, this area is prone to flooding caused by 
the overflowing of the Citarum River (Nurwulandari 
and Rismana, 2021; Theophilus et al., 2022).

Figure 7: The AUC values of ROC identify model 
performances: FR, IVM, WoE, and SE
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3.5. Model validation

Model validation in this study used ROC analysis and 
the LDI method. AUC of ROC evaluated the perfor-
mance of each model by comparing the LSI with test 
data of landslides to produce a predictive rate. However, 
the success rate was calculated by comparing the LSI 
with training data of landslides. The findings indicate 
that all success rates are above the corresponding predic-
tion rates for each model by a small margin; it suggests 
that the models are working accurately. The success 
rates of FR, IVM, WoE, and SE are 0.874, 0.925, 0.918, 
and 0.868, respectively.

In comparison, the predictive rates are as follows: 
0.770 for FR, 0.790 for IVM, 0.793 for WoE, and 0.788 
for SE (see Figure 7). WoE has the best performance 
because it has the highest predictive rate compared to the 
others. According to the AUC values classified by 
Pourghasemi et al. (2013), all four models have good 
performance, which is in the range of 0.7 – 0.8.

The LDI method is the ratio between landslide pixels 
to the total number of pixels in each class on a landslide 
susceptibility map; in this study, LSM maps have five 
classes, namely very low, low, moderate, high, and very 
high. LDI was performed either using training data or 
test data of landslides for all LSM maps (see Table 3). 
Table 3 shows that the LDI values using test data for 
very high susceptibility classes are 0.0000136, 
0.0000158, 0.0000158, and 0.0000148 for the FR, IVM, 
WoE, and SE models, respectively. These values are sig-
nificantly higher than those of the other classes. LDI, 
which utilizes training data of landslides, experiences a 
similar phenomenon. Those values for very high suscep-
tibility classes can indicate that the LSM maps are valid 
if there is a gradual decrease in LDI values, ranging from 
high to low susceptibility. The results of this study show 
there is no gradual decrement in landslide density values 
from very high to very low susceptibility (see Figure 8). 
Nevertheless, the outcomes remain favorable as the 
classes that are most susceptible in all models exhibit the 
highest LDI.

4. Discussion

Most of the Cisangkuy Sub-watershed area is prone to 
landslides due to its rugged terrain. Hence, it is essential 
to have an understanding of particular areas prone to 
landslides. There is an urgent need for detailed informa-
tion that includes exact spatial information. Bivariate 
statistical methods correlate the classes of landslide 
causative factors with landslides. This work utilized var-
ious bivariate statistical models (FR, IVM, WoE, and 
SE) to evaluate and generate LSM maps using 76 land-
slide pixels.

The scarcity of landslide data in this context is under-
standable due to the limited availability of high-resolu-
tion time-series images. The limited amount of landslide 
data is often encountered in data-scarce environments, 
like those used by some previous studies. Sun et al. 
(2018) utilized a dataset consisting of 40 landslide oc-
currences for their models. Sun et al. (2018) achieved a 
model accuracy of 84.9% using the logistic regression 
approach. Mallick et al. (2018) employed a dataset of 
38 landslide occurrences. They produced a high-reliabil-
ity susceptibility map (89.1%) using an integration 
method between fuzzy and AHP-MCDA (analytical hi-
erarchy process – multi-criteria decision analysis).

Twenty-seven landslide causative factors were pre-
pared in the study. The primary determinant for prepar-
ing those is the presence of data sources throughout the 
study area (Melati et al., 2024) related to geological, 
topographical, hydrological, and anthropological as-
pects. There is less agreement on the landslide causative 
factors or the specific number that should be chosen to 
generate LSM maps. Based on the analysis of those 27 
factors, seven factors have a strong correlation with each 
other, and five factors have a weak relationship with 
landslides, leaving only 15 causative factors. Only the 
15 chosen parameters were utilized for modelling.

Bivariate statistical methods require categorical data 
for causative factors. The continuous causal factors need 
to be classified as categorical data. Currently, there is no 
consensus on the specific number of classes and classifi-
cation methods that should be used to categorize the 
continuous causative factors. It is typically a heuristic 
categorization (Chen et al., 2017). It can cause the LSM 
maps produced to be less accurate. Upon closer inspec-
tion of the LSM maps, it becomes noticeable that there is 
a remarkable pattern present in all of the maps (see Fig-
ure 6). This pattern is caused by the factor of distance to 
fault, as depicted in Figure 5. The map of distance to 
faults is divided into eight classes using manual classifi-
cation. The first class, which represents distances from 0 
to 100 m, has the highest number of landslides and car-
ries the greatest weight in terms of landslide susceptibil-
ity across all models. Conversely, the fifth class, which 
ranges from 1500 to 3000 m, contains the largest portion 
of the entire area, accounting for 29.1% of the total area. 
The first class of fault distance carries an FR weight of 

Figure 8: Landslide density index for FR, IVM, WoE,  
and SE using test data of landslides
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4.689, whereas the fifth category of fault distance carries 
an FR weight of 0.464. The FR’s weight is in line with 
the other models, namely IVM, WoE, and SE. The con-
dition results in the LSM map having a prominent look, 
with the distance to the fault factor having the largest 
weight. A noticeable appearance on the final map could 
indicate that the model is less satisfactory in producing 
the resulting map. The model’s performance may be in-
fluenced by the number of classes and classification 
methods used for categorizing each continuous parame-
ter. Similarly, likewise when it regards landslide inven-
tory data, enhancing both the accuracy and amount of 
the data also has an impact on the effectiveness of the 
model.

5. Conclusions

Four bivariate statistical models (FR, IVM, WoE, and 
SE) were used to analyze the relationship between land-
slide occurrences and landslides causative factors in the 
Cisangkuy Sub-watershed. The model utilized 76 land-
slide pixels and 15 causative factors. The landslide in-
ventory data was derived from 25 landslide polygons 
identified through visual interpretation of Google Earth 
imagery, as well as 33 landslide points obtained by in-
vestigating official landslide records and conducting 
field surveys. The 15 factors were selected from 27 caus-
ative factors. The highly correlated causative factors 
were removed to address multicollinearity. In addition, 
only causal factors related to landslide data are involved 
in the modelling. The aim was to produce maps that 
show the landslide susceptibility level. The success rates 
of the different models are as follows: 0.874 for FR, 
0.925 for IVM, 0.918 for WoE, and 0.868 for SE. While 
the predictive rates are as follows: 0.770 for FR, 0.790 
for IVM, 0.793 for WoE, and 0.788 for SE. All four 
models indicate good and balanced performance, with 
results ranging from 0.7 to 0.8. The WoE model shows a 
small superiority over the other three models. The re-
sults of this study show there is no gradual decrement in 
landslide density values from very high to very low sus-
ceptibility. LSM maps are considered valid when there is 
a gradual decrease in LDI values, ranging from high to 
low susceptibility. In this case, the resultant maps are 
still favorable because the classes that are most suscepti-
ble in all models have the highest LDI.

A noticeable appearance on the final map might indi-
cate that the model is less successful in generating the 
resulting map. The performance of the model can be af-
fected by the number of classes and classification meth-
ods employed to categorize each continuous parameter. 
Similarly, when it relates to landslide inventory data, 
improving both the precision and quantity of the data 
significantly affects the efficiency of the model. This 
study recommended future research regarding the clas-
sification method and the number of classes to catego-
rize the continuous landslide causative factor to obtain 

the most optimal for a single causative factor. In addi-
tion, this study advises that there should be an increased 
effort to collect landslide data in order to get more repre-
sentative landslide data. This could be an attempt to en-
hance the accuracy and reliability of the bivariate statis-
tic models.
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SAŽETAK

Učinkovitost bivarijantnih statističkih modela u kartiranju podložnosti  
na klizanje (studija slučaja: podslijev Cisangkuy, Bandung, Indonezija)

Pojave klizišta česte su u brdsko-planinskim područjima, posebice u tropskim zemljama s velikom količinom oborina i 
intenzivnim vremenskim utjecajima. Kartiranje podložnosti na klizanje (LSM) prvi je korak u ublažavanju opasnosti od 
klizišta. Ovim istraživanjem provedena je usporedba četiriju LSM modela, odnosno metode omjera učestalosti (FR), 
metode informacijske vrijednosti (IVM), modela težinskih faktora (WoE) i Shannonove entropije (SE), za podslijev 
Cisangkuy, Zapadna Java. Navedene metode uzimaju u obzir odnos između gustoće klizišta i faktora klizanja. Za mode-
liranje je korišteno 76 piksela klizišta i 15 faktora klizanja. 70 % klizišta korišteno je kao podatak za treniranje modela, a 
ostatak je korišten za validaciju modela. Od 27 analiziranih preduvjeta klizanja odabrano je ukupno 15 faktora klizanja. 
Faktori koji pokazuju visoku kolinearnost uklonjeni su kako bi se izbjegla multikolinearnost podataka. Osim toga, u 
modeliranje su uključeni samo faktori klizanja koji se odnose na prikupljene podatke o klizištima. Za validaciju modela 
korištena je krivulja radnih karakteristika prijamnika (ROC) i metoda indeksa gustoće klizišta (LDI). Svi modeli poka
zuju odgovarajuće stope predviđanja za FR, IVM, WoE i SE metode, koje iznose 0,770, 0,790, 0,793 odnosno 0,788. Na 
temelju LDI analize, LDI vrijednosti nisu postupno rasle od vrlo niske do vrlo visoke klase osjetljivosti za svaku LSM 
kartu. Međutim, karte su još uvijek povoljne jer klase koje su najpodložnije na klizanje u svim modelima imaju najviši 
LDI. Na učinkovitost modela može utjecati broj klasa i metoda klasifikacije koje se koriste za kategorizaciju kontinuira-
nih parametara, kao i mala količina podataka o klizištima u inventaru.

Ključne riječi: 
modeliranje podložnosti na klizanje, bivarijantna statistička metoda, ROC krivulja, indeks gustoće klizišta
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