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Abstract
Porosity is a crucial aspect of reservoir characterization. It can be estimated by measuring rock samples in the laboratory 
or through indirect methods based on wireline log data. However, both approaches are time-consuming and do not 
cover large areas. Therefore, this study integrates seismic data with well-logging data for porosity estimation, enabling 
the coverage of a larger area. Specifically, we estimate porosity in the F3 block of the Netherlands, where there is limited 
well-logging data available as labelled data. To address this issue, we employ machine learning, consisting of both an 
inversion generator and a forward generator, to estimate porosity from seismic data. The inversion generator facilitates 
the process of converting seismic data into porosity, while the forward generator enables forward modelling, transform-
ing porosity data back into seismic data. This forward generator incorporates geophysical knowledge to mitigate the 
limited amount of labelled data during the training process. Both generators utilize a convolutional neural network-
gated recurrent unit network (CNN-GRU). Additionally, various training schemes, such as closed-loop and cycle-GAN 
(Cycle-Generative Adversarial Network), were employed in this research and compared with an open-loop approach. The 
data from the F3 block consists of six post-stack seismic lines with an inline spacing of 40 meters and three wells. Data 
from two wells (F03-4 and F02-1) were used for training, while one well (F06-1) was used for testing. The results indicate 
that the cycle-GAN produces the most accurate porosity estimates, with a mean square error (MSE) of 0.603 and a Pear-
son correlation coefficient (PCC) of 0.713. The cycle-GAN utilizes cycle-consistent loss to enhance parameter updates 
and employs a discriminator to facilitate competitive learning with the generator, thereby improving accuracy. This 
demonstrates that cycle-GAN can achieve more accurate porosity estimation in locations with insufficient labelled or 
well-logging data compared to open-loop and closed-loop schemes. However, cycle-GAN requires more computational 
time than the other methods due to the need to train multiple networks. Nonetheless, this additional training time is 
justified by the improvement in PCC.
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1. Introduction

Porosity plays a crucial role in identifying hydrocar-
bon prospect rocks and conducting reservoir analysis 
(Ahmadi and Chen, 2019; Russell et al., 2011; Ali et 
al., 2021). A rock’s porosity determines its capacity to 
hold fluids, making high-porosity rocks promising tar-
gets for exploration. Porosity estimation involves direct 
measurements of rock samples in the laboratory and in-
direct methods based on wireline log data (Schön, 2011). 
While direct measurement is time-consuming and re-
sults can be inconsistent due to variations between labo-
ratory and in-situ conditions, the use of wireline logs can 
offer accurate results, although uncertainties may arise 
when interpolating porosity between wells (Yasin et al., 

2021). Hence, integrating seismic data with well-log-
ging data for porosity estimation is often pursued to 
achieve more robust spatial results.

The porosity and seismic data relationship can be ex-
pressed through an empirical equation derived from a 
cross-plot analysis of porosity from well-logging data 
and AI (acoustic impedance) from seismic inversion 
(Wadas and von Hartmann, 2022; Yasin et al., 2021). 
This equation serves to estimate porosity across the en-
tire acoustic impedance cross-section, thereby facilitat-
ing the spatial distribution of porosity in both 2D and 3D 
(Kushwaha et al., 2020). Mojeddifar et al. (2015) uti-
lized a pseudo-forward equation to establish a nonlinear 
relationship between AI and porosity, which has been 
shown to yield more accurate porosity estimations com-
pared to cross-plot methods. However, it’s important  
to note that the equations derived from cross-plots and 
PFE apply only to specific lithologies, necessitating the 
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determination of multiple equations to cover various 
lithological compositions.

Since a single empirical equation relating porosity to 
seismic data cannot be applied to all lithologies, several 
researchers have employed machine learning techniques 
to estimate porosity using seismic data or seismic attrib-
utes. For example, Kushwaha et al. (2021) used ma-
chine learning as a geostatistical method to extrapolate 
porosity, density, Vp, and gamma rays from seismic at-
tribute data. Agbadze et al. (2022) employed deep neu-
ral networks, random forests, and decision tree algo-
rithms to determine porosity using acoustic impedance. 
Feng (2020a) used elastic modulus к and M to estimate 
porosity with a convolutional neural network (CNN). 
Gholami et al. (2022) used Vs, Vp, and density to deter-
mine porosity through a bat-inspired optimized neural 
network, bat-inspired optimized support vector regres-
sion, bat-inspired optimized fuzzy inference system, and 
hybrid model based on a committee machine (CM). 
Sang et al. (2021) used a deep extreme learning ma-
chine (DELM) to determine porosity from seismic data, 
using synthetic training data generated through a virtual 
sample generation method to address the lack of labelled 
data in the training process. However, since training data 
can only be generated for specific geological conditions, 
the trained DELM may not apply to all geological set-
tings. Based on these examples, there are two challenges 
in porosity prediction using machine learning. First, the 
accuracy of the seismic attributes used as inputs signifi-
cantly influences the porosity prediction results (Feng, 
2020a). Seismic attributes result from the seismic data 
inversion process, meaning that determining porosity 
using these attributes involves a two-stages inversion. In 
a two-stages inversion, the parameter prediction error 
accumulates from parameter inversion and attribute in-
version, leading to larger errors and increased time con-
sumption compared to a one-stage inversion using ma-
chine learning (Das and Mukerji, 2020). Second, ma-
chine learning requires a large number of labelled data 
points for effective training (Sang et al., 2021).

In this study, we estimate porosity from seismic data 
of the F3 block of the Netherlands using machine learn-
ing. To address the machine learning challenges and im-
prove porosity prediction accuracy, we utilize seismic 
data as the input for machine learning. We then employ 
closed-loop and cycle-GAN schemes to train the ma-
chine learning models. The closed-loop scheme uses an 
inversion generator and forward generator simultane-
ously in the training process and is applied to labelled 
and unlabelled seismic data (Alfarraj and AlRegib 
2019a; Wang et al., 2021, 2020). The inversion genera-
tor inverts seismic data into porosity and the forward 
generator reconstructs seismic data from porosity (in-
version generator output). The forward model is used as 
additional information to constrain the training process 
and overcome the need for large labelled data (Adler et 
al., 2021; Wang et al., 2020). Cycle-GAN is an integra-

tion of a forward generator and an inversion generator in 
a GAN (generative adversarial network) architecture 
(Zhu et al., 2017). In cycle-GAN, the inversion genera-
tor and forward generator are referred to as generators 
and there are 2 additional discriminators (Wang et al. 
2022; Zhang et al., 2022). The discriminator differenti-
ates between the generator results and the label data. The 
generator has good capabilities if it can produce output 
that is very similar to the label data and cannot be dif-
ferentiated by the discriminator. The generator and dis-
criminator are trained simultaneously so that their ability 
levels outperform each other during the training process 
until maximum generator capability is obtained (Good-
fellow et al., 2014). The inversion and forward genera-
tor in this study uses a combination of CNN and GRU to 
extract high and low-frequency features so that it does 
not require a low-frequency model as additional input 
(Alfarraj and AlRegib, 2019a, 2019b). High-frequen-
cy features denote local patterns of output data within a 
short data range, while low-frequency features represent 
global patterns or variations in output data trends across 
the entire dataset (Wang and Cao, 2022). The results of 
the closed-loop and cycle-GAN schemes will be com-
pared with the open-loop scheme.

2. Geological setting of F3 block

The location and surface geology of the F3 block is 
shown in Figure 1. The F3 offshore block lies to the 
north of the Netherlands within the central graben, part 
of the expansive North Sea basin (Rondeel et al., 1996). 
Rifting within the North Sea basin created most of the 
geological structures in the Netherlands during the late 
Jurassic to early Cretaceous period (Rondeel et al., 
1996). However, rifting activities began during the tran-
sition between the Permian and Triassic periods (Zie-
gler, 1992). During the earliest Triassic, the rift in the 
Norwegian-Greenland Sea propagated into the North 
Sea, leading to the subsidence of the Horda-Egersund 
half-graben, the Viking and central graben, the Moray 
Firth-Witch ground graben system. The subsidence of 
the North Sea rift system continued throughout the early 
Jurassic period (Ziegler, 1992).

During the mid-Jurassic period, a wide arc uplifted in 
the central North Sea, extending across the central graben 
and creating the central North Sea dome. This uplift led to 
a reversal in the subsidence pattern of the central graben. 
Sediments from the Early Jurassic, Triassic, and even Per-
mian periods that once covered the dome’s crest were 
largely eroded and then redeposited in neighboring basins 
that were undergoing continuous subsidence, especially 
within major deltaic complexes. Rifting activity reached 
its peak at the transition from the Jurassic to the Creta-
ceous, focusing on the Viking, central graben, and Moray 
Firth-Witch ground graben systems. This led to rapid sub-
sidence and faulting deformation (Ziegler, 1992).

During the Late Cretaceous and Paleocene, the North 
Sea basin experienced the later stages of rifting, with 
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rifting activity diminishing further. Regional thermal 
subsidence, combined with rising sea levels, played a 
crucial role in eroding the basin margins. During the Ce-
nozoic era, the North Sea basin evolved into a wide, 
saucer-shaped thermal sag basin (Ziegler, 1992). Sedi-
ment accumulation was most pronounced in the central 
graben area during Cenozoic times (Sorensen et al., 
1997). Hydrocarbon generation within the North Sea rift 
basin was accelerated by the subsidence that occurred 
during the late Jurassic to early Cretaceous rifting phas-
es (Rondeel et al., 1996; Sorensen et al., 1997). Most 
of the gas in the basin has been generated from Triassic 
sediments and Westphalian coals, while the majority of 
the oil originates from the Lower Posidonia Shale (De 
Jager and Geluk, 2007).

Hydrocarbon generation ceased due to inversion 
during the Late Cretaceous, which involved uplift and 
erosion that reduced heat flow. In the Tertiary period,  
the effects of inversion were limited, and substantial 
subsidence occurred at the basin margins. In this region, 
hydrocarbon charge from Westphalian sources resumed 
and has continued to the present day (De Jager and 
Geluk, 2007).

per North Sea, where the TWT (two-way travel time) 
ranges from 600 to 1100 milliseconds (Alaudah et al., 
2019). We used post-stack seismic data. The seismic line 
crosses the well location on lines 244, 362, and 442. The 
F03-4 and F02-1 wells are used as training datasets, and 
F06-1 is used as testing datasets (see Figure 2). The test-
ing dataset is used as a control to evaluate the generali-
zation capability of trained machine learning. Generali-
zation capability means the ability of machine learning 
to obtain the correct output from unknown data that is 
not contained in the training data (Biswas et al., 2019a). 
The porosity obtained from well-logging data has a sam-
pling rate six times higher than seismic data.

3.2. Inversion generator

The inversion generator adopts the CNN-GRU net-
work from Alfarraj et al. (2019a, 2019b) to estimate 
porosity from seismic data. The inversion generator in-
put is seismic data while the output is estimated porosity. 
CNN is used to extract the high frequency features of the 
input, while GRU extracts low-frequency, eliminating 
the need for a separate low-frequency model as addi-
tional input (Alfarraj and AlRegib, 2019a, 2019b). 
Figure 3 illustrates that the CNN-GRU networks consist 
of three CNN layers and three GRU layer. The three 
CNN layers extract high-frequency information from 
seismic data using different hyperparameters. The hy-
perparameters for the first CNN layer are a kernel size of 
5, padding of 2, and dilation of 1. The second CNN layer 
uses a kernel size of 5, padding of 6, and dilation of 3, 
while the third CNN layer features a kernel size of 5, 
padding of 12, and dilation of 6. The outputs of the three 
CNN layers are concatenated and subsequently fed into 
additional CNN networks. The three GRU layers extract 
the low-frequency information from seismic data. These 
simultaneous GRUs are used to achieve desirable low-
frequency information because a deeper layer of GRU 
results in a smoother low-frequency model. The results 
from the three CNN and three GRU layers are summed 
and then passed into deconvolution networks to upscale 
the resolution to match that of the porosity data. This 
approach allows the network to generate porosity values 
with a higher resolution than that of the seismic data. 
The final layer, which regresses the results into the po-
rosity domain, consists of a GRU and a fully connected 
layer. The hyperparameters of the inversion generator 
are updated during the training process based on the loss 
function, which depends on the scheme being used.

3.3. Forward generator

The forward generator adopts the same CNN-GRU 
network (Alfarraj and AlRegib, 2019a, 2019b), but it 
is used to reconstruct seismic data from porosity, result-
ing in an inversion generator (see Figure 4). Three lay-
ers of the CNN network and three layers of GRU are 

Figure 1: F3 block location map

3. Methods

3.1. Data

We use the F3 data located in the Netherlands, which 
consists of three wells and six lines of post-stack seismic 
data (see Figure 2). The seismic data ranges from 
crossline 300 to 1250 without interval steps and inline 
244 to 442 with interval 40 steps. The seismic data has a 
4 ms sampling rate. In this study, the focus is on the Up-
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Figure 2: The seismic data  
and well position

Figure 3: Inversion generator

also used to extract low and high-frequency information 
from the input. Different from the inversion generator, 
the deconvolution networks are replaced by downscale 
calculation in the forward model since the seismic data 
(output in the forward model) has a lower resolution 
than porosity (input in the forward model).

3.4. Machine learning architecture

In this study, we compared porosity predictions ob-
tained from a common open-loop scheme with those 
from a closed-loop scheme and Cycle-GAN. Each scheme 
utilized the same dataset from the F3 block but differed 
in architecture and loss functions during model training. 

The results for each scheme will be evaluated based on 
mean squared error (MSE), the Pearson correlation coef-
ficient (PCC), and computation time to determine the 
best machine learning architecture for predicting poros-
ity in the F3 block. The optimal scheme will be the one 
that achieves a higher PCC and a lower MSE in the test-
ing well.

The Pearson correlation coefficient (PCC) measures 
the linear correlation between estimated porosity and 
porosity from well-logging data, based on the following 
equation:

	 � (1)
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where N is the total number of porosity data from well-
logging, P* is the predicted porosity from the inversion 
generator, P is the true porosity from well-logging, σ is 
the standard deviation and μ is the mean value.

MSE measures the average of the squares error be-
tween predicted porosity and true porosity based on the 
equation as follows:

	 � (2)

This study uses the same training parameters for all 
schemes, which are as follows: the learning rate is 0.005, 
the number of epochs is 1000, the batch size for unla-
belled data is 40, and the Adam optimizer is employed 
(Kingma and Ba, 2015) as the optimization method. 
The parameter was determined through a trial-and-error 
process to achieve optimal results. All schemes also run 
on the same laptop (Intel i7 CPU and a 4GB Nvidia Ge-
Force RTX 3050Ti GPU).

3.4.1. Open-loop

The open-loop scheme inverts the seismic data into 
porosity using an inversion generator (see Figure 5). 

This is supervised learning that depends on the labelled 
data in the training process. An open-loop scheme needs 
large, labelled data to obtain good accuracy predictions 
(Das et al., 2019). In the open-loop training process,  
the loss function is calculated in each iteration to opti-
mize the inversion generator using the backpropagation 
method (LeCun et al., 1989). The open-loop loss is de-
noted as:

	 � (3)

where Lopen is open-loop loss, GI is the inversion genera-
tor that generates porosity from seismic data, m is the 
number of labelled data, S is seismic used as labelled 
data, and P is porosity used as labelled data.

3.4.2. Closed-loop

The closed-loop is designed to reduce machine learn-
ing’s reliance on large volumes of labelled data (Wang 
et al., 2020). The closed-loop scheme consists of an in-
version generator and forward generator, which simulta-
neously models the seismic inversion and forward pro-

Figure 4: Forward generator
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cesses using both labelled and unlabelled data (see Fig-
ure 6). The closed-loop scheme learns not only from 
labelled data but also from unlabelled data information. 
During the closed-loop training process, the loss func-
tion is computed in each iteration to optimize both the 
inversion generator and the forward generator using the 
backpropagation method (LeCun et al., 1989). The 
closed-loop loss function is denoted as:

	 � (4)

	

	 � (5)

	 � (6)

where Lclose is closed-loop loss, Llabel is the loss function 
of labelled data, Lunlabel is the loss function of unlabelled 
data GI is the inversion generator, GF is the forward gen-

erator, S is seismic used as labelled data, S* is seismic 
used as unlabelled data, P is porosity used as labelled 
data, m is the number of labelled data, α, and β are the 
weight coefficient for labelled and unlabelled data. To 
achieve the best accuracy prediction, we choose α=1 and 
β=0.2 through a trial-and-error process.

3.4.3. Cycle-GAN

The cycle-GAN was developed by Zhu et al. (2017) 
to mitigate the limitation of paired training data in im-
age-to-image translation problems. Zhu et al. (2017) 
modified the GAN by adding inverse mapping to recon-
struct the data. In this study, we implement the cycle-
GAN to predict the porosity from seismic data and use a 
forward generator (see Figure 4) as inverse mapping to 
reconstruct the seismic data. Figure 7 shows the cycle-
GAN scheme consisting of two generators and two dis-
criminators. All generators and discriminators are 
trained simultaneously in a min-max game so that their 
ability levels outperform each other until maximum gen-
erator capability is obtained. If the generator achieves 
maximum capabilities, it can produce output that is very 

Figure 7: Cycle-GAN

Figure 5: Open-loop scheme

Figure 6: Closed-loop scheme
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similar to the label data and hard to differentiate by the 
discriminator. The forward and inversion discriminators 
use the same CNN networks shown in Figure 8.

In the cycle-GAN training process, the loss function 
is calculated in each iteration to optimize both genera-
tors and discriminators using the backpropagation meth-
od (LeCun et al., 1989). We used a modified generator 
loss function that is different from (Zhu et al., 2017). 
The modified generator loss function is denoted as:

	

	 � (7)

where LossGI is the inversion generator loss, Lcycle is the 
cycle-loop loss, LossGF is the forward generator loss, DF 
is the forward discriminator that distinguishes between 
seismic used as labelled data and seismic generated from 
forward, DI is the inversion discriminator that distin-
guishes between porosity used as labelled data and gen-
erated porosity.

The cycle loop loss function is the loss function cal-
culated from a closed-loop framework (semi-supervised) 
and is denoted as:

	 � (8)

	 � (9)

	 � (10)

	 � (11)

	 � (12)

	 � (13)

where Lcycle is the cycle-loop loss, L1 is the loss of inver-
sion generator result using seismic labelled data, and L2  
is the loss of forward generator result using porosity la-
belled data. L3 is the loss of forward generator result us-
ing seismic labelled data, L4 is the loss of forward gen-
erator result using seismic unlabelled data, L5 is the loss 
of inversion generator result using porosity labelled 
data, and M is the number of unlabelled data.

The forward discriminator loss and the inversion dis-
criminator loss are denoted as:

	 � (14)

	 � (15)

where LDF is forward discriminator loss, and LDI is inver-
sion discriminator loss.

4. Results and discussion

4.1. Open-loop

Figure 9 shows the inversion results from the open-
loop scheme. The porosity estimation in inline 362 shows 
fairly good spatial continuity around the training well 
(F02-1), but in inline 442 does not show good spatial 
continuity between the porosity estimate and the training 
well (F03-4). The porosity estimation in inline 244 also 
does not match the testing well. These results show that 
the estimation results are not good spatially, both around 
the well that is used as testing and training data. The 
porosity results show a less smooth or rough pattern 
with fluctuations in values over a fairly large range. Ta-
ble 1 and Table 2 show that the range of estimated po-
rosity values is wider than the well-logging data for both 
testing and training data. This indicates that the open 
loop tends to overestimate porosity values and cannot 
provide accurate predictions in the F3 block due to the 
limited labelled data available for training the network. 
Open-loop systems employ supervised learning, which 
requires a large amount of labelled data during training 
to effectively establish the best input-output relation-
ships.

4.2. Closed-loop

Figure 10 shows the inversion results from the 
closed-loop scheme. The porosity estimation in lines 
362 and 442 shows quite good spatial continuity with 
training wells. Meanwhile, the porosity estimation in 
line 244 does not match the testing well. These results 
show good porosity estimation results spatially around 
the training well but are not accurate on seismic data 
located far from the training data. Due to the relatively 
large distance between the well location and the seismic 
line, the inverted results are suboptimal (Feng, 2020). 
The porosity results show a smoother pattern than the 

Figure 8: Discriminator
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Table 1: The range value of predicted porosity in Line 244 
and true porosity of testing well

max Min
Open-loop 0.665 0.149
Closed-loop 0.693 0.209
Cycle-GAN 0.481 0.219
Testing well 0.390 0.240

Table 2: The range value of predicted porosity in Lines 362 
and 442 and true porosity of training well

Line 362 Line 442
max min Max Min

Open-loop 0.678 0.164 0.674 0.159
Closed-loop 0.694 0.209 0.691 0.208
Cycle-GAN 0.675 0.218 0.567 0.223
Training well 0.673 0.210 0.371 0.249

Table 3: Evaluation of porosity prediction in testing well

MSE PCC Time (s)
Open-loop 1.020 0.417 17
Closed-loop 0.965 0.421 75
Cycle-GAN 0.603 0.713 164

Figure 9: Predicted porosity from open-loop scheme and the spatial correlation with porosity from well-logging data

open-loop results, with slight fluctuations in values at 
certain points. Table 1 and Table 2 indicate a fairly good 
range of estimated porosity values, with lower values 
closely aligning with well-logging but showing overesti-
mation at higher values. This suggests that forward mod-
elling can provide additional information during train-
ing, resulting in better prediction accuracy compared to 
open-loop methods. However, the results are still inade-
quate at locations far from the training data, as evidenced 
by the low Pearson correlation coefficient (PCC) and 
high mean squared error (MSE) values in the test data 
(see Table 3). Further improvements are necessary to 
extract more information from the data, especially since 
the labelled data in the F3 block is very limited (only 
two wells).

4.3 Cycle-GAN

Cycle-GAN scheme is the improvement of closed-
loop scheme by incorporating discriminators and utiliz-
ing cycle consistent loss. Figure 11 shows the inversion 
results from the cycle-GAN scheme exhibit sufficient 
spatial continuity of porosity between the training and 
testing data. These results show good spatial porosity es-
timations both around the training wells and in the test-
ing data, which is located far from the training set. The 



23� Comparison of Porosity Prediction from Seismic Data in the F3 Block, Netherlands using Machine Learning

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 15-26, DOI: 10.17794/rgn.2025.2.2

Figure 10: Predicted porosity from closed-loop scheme and the spatial correlation with porosity from well-logging data

porosity results display a smoother pattern compared to 
those obtained from other schemes. Figure 12 shows 
that the estimated porosity pattern at the testing well lo-
cation from the open-loop and closed-loop results has 
values that fluctuate suddenly at several points and do 
not match the true porosity from the well-logging data. 
This may be due to the amount of label data being too 
small so that the results follow the pattern of the training 
data too closely. Meanwhile, the cycle-GAN results 
have a good pattern, following true porosity without any 
large fluctuations. Future research can explore varying 
the number of wells, utilizing either synthetic data or 
real data with a substantial amount of well-logging data. 
This approach can help identify the optimal number of 
labelled data for each training scheme, particularly for 
the Cycle-GAN scheme.

Table 1 and Table 2 indicate a good range of esti-
mated porosity values, with both high and low values 
closely aligning with well-logging data. This demon-
strates that the GAN training scheme with cycle-consist-
ent loss and discriminators can extract more information 
from the data to enhance the training process and enable 
accurate prediction results even with limited labelled 
data. In Table 3, cycle-GAN has the highest PCC and 
lowest MSE values, so it is the best scheme compared to 

the others. This is because cycle-GAN is trained using a 
more complex loss function, namely the cycle-loss func-
tion. In addition, competition between the generator and 
discriminator in the cycle-GAN training process has also 
been proven to increase the accuracy of the inversion 
generator. However, cycle-GAN has a longer processing 
time than other schemes because it has to train more 
machine learning (2 discriminators and 2 generators). In 
an open loop, it only trains 1 generator, while a closed-
loop trains 2 generators. However, the cycle processing 
time is proportional to the prediction accuracy. Since  
we are currently using a single small GPU, employing 
multiple larger GPUs for data processing can signifi-
cantly reduce processing times, particularly with larger 
datasets.

The data used in this study focuses on the Upper 
North Sea, which is primarily composed of claystone 
and sandstone from the Miocene to Quaternary periods. 
The machine learning models may require adaptation or 
retraining to be applicable in different lithological con-
texts. Table 3 presents the best results from the Cycle-
GAN, with a Pearson Correlation Coefficient (PCC) of 
0.713, which could be improved for more accurate po-
rosity predictions. Accuracy can be enhanced by adding 
labelled data or by applying further processing steps to 
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Figure 11: Predicted porosity from cycle-GAN scheme and the spatial correlation with porosity from well-logging data

determine the porosity. The results show that the Cycle-
GAN scheme provides the best estimation results on test 
data than closed-loop and open-loop, even when the test 
data is located at a considerable distance from the train-
ing data. This is because cycle-GAN obtains additional 
information from forward inversion in the form of cycle-
consistent loss and there is a competition process be-
tween the discriminator and generator. 

This demonstrates that cycle-GAN can provide good 
porosity estimation in locations with insufficient labelled 
or well-logging data. Accurate porosity prediction is a 
crucial parameter in reservoir characterization, as it 
helps evaluate hydrocarbon accumulation and determine 
flow patterns. 

The disadvantage of Cycle-GAN is that it requires 
longer computational time due to the need to train two 
discriminators and two generators. However, the accu-
racy of the obtained results is quite promising, and ad-
vancements in GPU technology continue to enhance 
computational performance. The use of multiple larger 
GPUs, as well as the development of advanced Cycle-
GAN techniques like Cycle-Wasserstein GAN or gradi-
ent penalty methods, can be explored in the future to 
further reduce computational time and enhance the ac-
curacy of the results.

Figure 12: Inversion results in testing well and training wells

the post-stack data to reduce noise in the input data. 
Since we used unfiltered post-stack data, it may still con-
tain noise that can lead to discrepancies in porosity.

5. Conclusions
Several different schemes of machine learning have 

been applied in F3 block data with small labelled data to 
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SAŽETAK

Usporedba predviđanja poroznosti iz seizmičkih podataka u bloku F3, Nizozemska, 
korištenjem strojnoga učenja
Poroznost je ključni aspekt karakterizacije ležišta. Može se procijeniti temeljem ispitivanja uzoraka stijena u laboratoriju 
ili neizravnim metodama temeljenim na karotažnim podatcima. Međutim, oba navedena pristupa dugotrajna su i ne 
pokrivaju velike površine. Stoga ovo istraživanje objedinjuje seizmičke i karotažne podatke u svrhu procjene poroznosti 
omogućujući na taj način obuhvaćanje većega područja. U ovome istraživanju procijenjena je poroznost u bloku F3 u 
Nizozemskoj za koji su dostupni ograničeni karotažni podatci iz bušotina. Kako bi se riješio taj problem, u ovome su 
istraživanju korišteni inverzijski generator (engl. inversion generator) i prediktivni generator (engl. forward generator). 
Inverzijski generator olakšava proces pretvorbe seizmičkih podataka u poroznost, dok prediktivni generator omogućuje 
modeliranje pretvarajući podatke o poroznosti natrag u seizmičke podatke. Prediktivni generator primjenjuje znanje iz 
geofizike kako bi nadomjestio nedostatak potrebnih podataka tijekom procesa obuke. Oba generatorska modela koriste 
se kombinacijom konvolucionarne neuronske mreže i mreže zatvorenih rekurentnih jedinica (engl. convolutional neural 
network-gated recurrent unit network (CNN-GRU)). Dodatno, u ovome su istraživanju korištene različite sheme obuke, 
kao što su zatvorena petlja (engl. closed-loop) i ciklički GAN (engl. Cycle-Generative Adversarial Network, Cycle-GAN), 
koje su uspoređene s pristupom otvorene petlje. Podatci iz bloka F3 sastoje se od šest naknadno skupljenih (post-stack) 
seizmičkih linija s međulinijskim razmakom od 40 metara i triju bušotina. Podatci iz dviju bušotina (F03-4 i F02-1) 
korišteni su za treniranje modela, dok su podatci iz bušotine F06-1 korišteni za validaciju. Rezultati pokazuju da ciklički 
GAN daje najtočnije procjene poroznosti sa srednjom kvadratnom pogreškom (MSE) od 0,603 i Pearsonovim koeficijen-
tom korelacije (PCC) od 0,713. Ciklički GAN primjenjuje gubitak cikličke konzistencije za poboljšanje ažuriranja para
metara i diskriminator za olakšavanje konkurentnoga učenja s generatorom, čime se povećava točnost. To pokazuje da 
ciklički GAN može postići točniju procjenu poroznosti na lokacijama s nedovoljnim brojem označenih podataka ili ne-
dovoljno karotažnih podataka u usporedbi s otvorenim i zatvorenim petljama. Međutim, ciklički GAN zahtijeva više 
računalnoga vremena od ostalih metoda zbog potrebe za obukom više mreža. S druge strane, navedeno dodatno vrijeme 
obuke opravdano je poboljšanjem Pearsonova koeficijenta korelacije (PCC).

Ključne riječi: 
strojno učenje, poroznost, zatvorena petlja, ciklički GAN

Author’s contribution
Urip Nurwijayanto Prabowo (1) (M.Sc, Physics, expertise in microtremor and machine learning) provided the Python 
code, data analysis, interpretation, and writing the original draft and editing. Sudarmaji (2) (PhD, Physics, expertise in 
seismic exploration and machine learning) performed the data analysis, data collection, editing draft, and supervision. 
Jarot Setyowiyoto (3) (PhD, Geological Engineering, expertise in Petroleum Geology) provided the data interpretation 
and supervision. Sismanto (4) (PhD, Professor, expertise in Seismic Exploration and Rock Physics) performed the data 
interpretation and supervision.

https://doi.org/10.1016/0040-1951(92)90336-5

