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Abstract
This study explores the application of advanced clustering techniques – Spectral Clustering, Gaussian Mixture Models 
(GMM), and a hybrid approach combining Autoencoders with K-Means – to classify tin deposits in Malaysia. Geochem-
ical data from 28 tin samples across regions such as Pengkalan Hulu North, Menglembu, Klian Intan, and Sungai Lemb-
ing were analysed to identify distinct mineralization patterns. The results revealed that the integration of Autoencoders 
with K-Means yielded the highest clustering quality, with a Silhouette Score above 0.4 and a Calinski-Harabasz Index of 
90 at four clusters, outperforming the other methods. The classification effectively distinguished between Pegmatite, 
Hydrothermal Veins, Polymetallic, and Disseminated deposits, aligning with the geological characteristics of the re-
gions. These findings enhance the understanding of tin deposit distribution, offering significant potential for optimizing 
exploration strategies and mining operations, thereby contributing to the sustainable economic development of Malay-
sia’s tin mining industry.
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1. Introduction

Machine learning has seen rapid advancements, be-
coming a cornerstone in various scientific fields, includ-
ing geoscience. It enables the processing and analysis of 
complex, large-scale datasets, which are increasingly 
common in modern geological research (Mostafaei et 
al., 2024). By applying machine learning techniques, 
geoscientists can uncover hidden patterns, make predic-
tions, and automate decision-making processes that 
were previously difficult or impossible (Smith et al., 
2023; Mishra, 2022; Lary et al., 2016). Among these 
techniques, clustering stands out as a particularly power-
ful tool for exploratory data analysis, allowing for the 
grouping of data points based on their inherent similari-
ties without needing predefined labels (Kaski et al., 
2023; Konopka et al., 2018). Clustering algorithms are 
essential in geoscience due to the complex, multidimen-
sional nature of geological data. These algorithms ena-
ble the identification of natural groupings within data, 
which can be critical for tasks such as ore classification, 
mineral exploration, and geological mapping (Meyrieux 

et al., 2024; Chen et al., 2023). By leveraging cluster-
ing methods, geoscientists can better understand subsur-
face structures, categorize geological formations, and 
classify mineral deposits, thereby improving resource 
estimation and exploration strategies (Reddy, 2018; 
Riquelme and Ortiz, 2024; Pedregosa et al., 2011). 
Several advanced clustering techniques are commonly 
used in geoscience, each offering unique advantages de-
pending on the dataset and the specific task. Among 
these, Spectral Clustering, Gaussian Mixture Models 
(GMM), and Autoencoder combined with K-Means 
have demonstrated particular efficacy.

Spectral Clustering leverages the eigenvalues of a 
similarity matrix to reduce dimensionality before cluster-
ing in a reduced space. This method is particularly effec-
tive for identifying non-convex clusters and complex 
data distributions, which are typical in geological data-
sets (Fouedjio, 2017). In geoscience, Spectral Clustering 
has been successfully applied to classify geological for-
mations and mineral deposits, identifying distinct geo-
chemical signatures associated with different types of 
mineralization (Talebi et al., 2020). For instance, it has 
been used to delineate mineral zones within polymetallic 
deposits, aiding in the identification of economically vi-
able ore bodies (Zuo et al., 2023). Additionally, Spectral 
Clustering has been utilized to improve the spatial aware-
ness of clustering algorithms, making them more effec-
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tive for geostatistical data (Ergüner et al., 2019). This 
method also helps in defining climate zones and coastal 
environments, which are crucial for environmental stud-
ies (Sinha et.al, 2023). Furthermore, it has been applied 
to identify hazardous waste sites, enhancing environmen-
tal safety and management (Im et al., 2012).

GMM is a probabilistic clustering method that mod-
els data as a mixture of several Gaussian distributions. 
This method is more flexible than K-Means because it 
can accommodate clusters of varying shapes and sizes, 
making it suitable for geoscientific data (Cheng et 
al.,2024; Chen et al., 2024; Reynolds, 2009). In the 
context of geoscience, GMM has been applied to multi-
element geochemical data for classifying ore types and 
understanding underlying geological processes (Yu et 
al., 2024; Bourdeau et al., 2023). GMM is particularly 
effective in distinguishing between various mineraliza-
tion processes in geochemical surveys, providing insight 
into the spatial distribution of elements like gold and 
copper (Zuo and Carranza, 2023).

A combination of Autoencoder and K-Means has 
been applied to classify ores in polymetallic deposits, 
where the high dimensionality of the data poses signifi-
cant challenges. By reducing the data’s dimensionality 
integration, integration of Autoencoder and K-Means al-
lows for more accurate clustering, leading to better re-
source estimation and more efficient mining operations 
(Zhou et al., 2024; Li et al., 2020; Lou and Zuo, 2024).

While significant advancements have been made in 
applying machine learning to geosciences, there remains 
a gap in assessing the comparative effectiveness of dif-
ferent clustering techniques for classifying complex ge-
ological data. This study specifically addresses this gap 
by evaluating Spectral Clustering, Gaussian Mixture 
Models (GMM), and a hybrid Autoencoder with K-
Means approach. Highlighting these methods in the con-
text of geoscientific data analysis responds to the exist-
ing limitations in accurately clustering non-linear and 
high-dimensional datasets, thus providing an enhanced 
understanding of their suitability for mineral deposit 
classification.

In our research, we aim to utilize the aforementioned 
clustering methods to classify tin samples collected from 
tin deposits in Malaysia. The selection of sampling loca-
tions – Pengkalan Hulu North, Menglembu, Klian Intan, 
and Sungai Lembing – was strategically made to repre-
sent the variation in tin deposit types found in Malaysia. 
Each location was chosen based on its geological sig-
nificance: Pengkalan Hulu North and Menglembu are 
known for Pegmatite deposits, Klian Intan features Hy-
drothermal Vein deposits, and Sungai Lembing is asso-
ciated with Disseminated and Polymetallic deposits. 
This selection ensures a comprehensive analysis that 
reflects the diversity of tin mineralization in the region.

The main scientific contribution of this research is to 
demonstrate the efficacy of advanced clustering tech-
niques – specifically Spectral Clustering, Gaussian Mix-

ture Models (GMM), and a hybrid approach combining 
Autoencoders with K-Means – in classifying tin deposits 
based on geochemical data. By evaluating these meth-
ods on a dataset of 28 tin samples from Malaysia, we 
provide a comparative analysis of their performance, 
highlighting the advantages of the hybrid Autoencoder 
with K-Means approach. Our findings contribute to the 
field of geosciences by offering a data-driven approach 
to mineral deposit classification, which can enhance ex-
ploration strategies and resource estimation. Further-
more, this study sets a precedent for the application of 
hybrid machine learning models in geological data anal-
ysis, paving the way for more nuanced and accurate in-
terpretations of complex geological datasets.

2. Case study

Tin is a vital metal with numerous industrial uses, 
such as in electronics, soldering, plating, and alloys. Its 
unique characteristics, including corrosion resistance 
and low toxicity, make it essential in modern manufac-
turing. The demand for tin has been steadily rising, driv-
en by technological progress and the need for sustaina-
ble materials (see Figure 1). Consequently, effective 
exploration and classification of tin deposits are crucial 
for meeting global supply demands and fostering eco-
nomic growth (International Tin Association, 2020). 
Malaysia, historically a major tin source (see Figure 2), 
was once the world’s leading producer. Although pro-
duction has significantly decreased since the mid-20th 
century, tin remains a key mineral for the country’s min-
ing industry. Efforts are underway to revitalize tin min-
ing activities, focusing on discovering new deposits and 
reassessing previously mined areas. Modern exploration 
techniques, including machine learning and advanced 
geochemical analysis, are being utilized to identify eco-
nomically viable tin deposits (Iglesias et al., 2020).

Malaysia is home to various types of tin deposits, 
each with unique geological characteristics. Our study 
focuses on Pegmatite, Hydrothermal Veins, Polymetal-
lic, and Disseminated deposits (Lehmann, 2021; Baso-
ri, 2022; Cao et al., 2020; Adnan et al., 2024):

Figure 1. Demand of tin (F-forecast) (Bloomberg, 2023)
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A. Pegmatite Deposits: these deposits consist of 
coarse-grained igneous rocks formed during the final 
stages of magma crystallization. Pegmatites are important 
sources of tin and other rare elements, typically found in 
association with granite intrusions. In these deposits, tin is 
usually present as cassiterite (SnO₂) crystals.

B. Hydrothermal Veins: these deposits arise from 
hot, mineral-rich fluids that precipitate minerals within 
fractures and cavities of host rocks. Hydrothermal vein 
deposits of tin are typically associated with granitic in-
trusions and can contain high-grade ore bodies. Cassiter-
ite is the primary tin mineral found in these veins.

C. Polymetallic Deposits: these deposits are rich in 
multiple metals, including tin, copper, zinc, and lead. 
They form through intricate geological processes such 
as hydrothermal activity and magmatic differentiation. 
Polymetallic deposits are particularly valuable due to 
their diverse metal content, which provides a range of 
mining opportunities and economic benefits.

D. Disseminated Deposits: these deposits feature a 
widespread distribution of tin minerals throughout the 
host rocks, rather than being concentrated in specific 
veins or discrete ore bodies. Extracting tin from dissem-
inated deposits often requires large-scale mining tech-
niques and sophisticated processing methods to be eco-
nomically viable.

In our study, we utilized data from various regions 
across Malaysia (see Figure 3), Pengkalan Hulu North, 
Menglembu, Bukit Kachi (also known as Sintok), Klian 
Intan, and Sungai Lembing namely.

3. Methodology

3.1 Tin geochemistry and analysis

Cassiterite (SnO₂) is the main source of tin, and its 
geochemical analysis is vital for mineral exploration. 
Laser Ablation Inductively Coupled Plasma Mass Spec-
troscopy (LA-ICPMS) is used to determine the elemen-

Figure 2. The distribution of tin ore deposit around the world (Metallurgy in the Americas – Part VII, 2019)

Figure 3. Simplified Malaysia geological map along  
with the location of studied deposits (Yeap, 1993)
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tal composition of cassiterite grains. By examining the 
element concentrations in cassiterite, geologists can 
classify the ore into various deposit types, such as Peg-
matite, Hydrothermal veins, polymetallic, or dissemi-
nated. This classification is crucial for understanding the 
geological environment and assessing the economic po-
tential of the deposits (Wang et al., 2022; Kumar et al., 
2024; Guo et al., 2018). The study analyzed 28 samples, 
a number that was dictated by the available data at the 
time of the research. While this number was not pre-de-
termined through statistical methods, it represents the 

most comprehensive dataset accessible from the select-
ed locations. This sample size enables the study to ex-
plore preliminary patterns and validate the clustering 
methods used, while recognizing that further research 
with an expanded sample pool would strengthen and 
build upon these initial findings.

Elements like Fe, Sb, Mn, Zr, Hf, Ta, Nb, V, Ti, U, and 
W are important in cassiterite studies due to their geo-
chemical properties and their roles as indicators of dif-
ferent geological processes and environments. Iron (Fe) 
and manganese (Mn) are typically linked to hydrother-

Table 1. Chemical analysis of studied ore samples

Smple 
Location Ti V Mn Fe Zr Nb Sb W Ta Hf U

Pengkalan 
Hulu 180.55 1.16 0.02 67.58 1.56 16.69 328.45 84.36 3.83 1.61 0.27

Pengkalan 
Hulu 182.41 0.44 0.01 63.59 1.96 17.15 68.09 8.71 20.60 2.80 0.15

Pengkalan 
Hulu 112.60 0.44 0.16 35.25 0.67 39.95 1550.66 5175.72 8.02 0.60 10.46

Pengkalan 
Hulu 7.55 0.02 0.04 158.28 0.10 0.21 168.39 503.05 0.05 0.12 0.41

Pengkalan 
Hulu 138.79 0.85 0.02 25.66 1.67 14.84 295.02 102.24 18.36 3.49 0.77

Pengkalan 
Hulu 28.45 0.01 0.14 31.19 0.39 3.80 1585.14 10671.17 0.32 0.29 13.74

Menglembu 429.46 0.25 0.09 165.40 0.07 551.77 855.00 54692.97 55.64 0.04 204.94
Menglembu 20.46 0.04 0.05 302.57 0.00 5.44 744.41 35970.97 3.09 1.48 88.86
Menglembu 22.38 0.03 0.33 157.65 0.01 23.27 1162.56 49658.54 26.60 0.01 110.54
Menglembu 328.59 0.41 0.11 153.85 0.29 337.04 155.29 62.20 17.16 0.19 4.90
Menglembu 4.04 0.00 0.11 218.76 0.08 20.08 190.96 2094.96 86.74 0.23 3.47
Menglembu 242.73 0.26 0.58 214.63 3.19 2092.60 601.69 10233.43 6860.79 6.86 259.65
Klian Intan 119.64 34.83 0.02 1142.95 0.00 0.00 2.61 2.79 0.00 0.00 0.28
Klian Intan 98.28 26.91 0.21 1032.17 0.00 0.21 2.49 4.95 0.00 0.00 0.29
Klian Intan 67.36 1.96 0.02 1915.50 0.07 0.06 4.56 5.33 0.00 0.01 0.64
Klian Intan 94.76 11.13 1.21 1007.32 0.41 6.61 6.94 605.06 0.00 0.00 1.26
Sungai 
Lembing 1542.54 122.45 5.13 2568.84 3.14 1.10 6.48 2554.98 0.00 0.08 0.81

Sungai 
Lembing 476.20 17.21 9.64 10688.29 2.54 3.79 50.93 811.08 0.05 0.05 4.05

Sungai 
Lembing 3274.30 424.46 8.92 1069.34 160.06 91.29 2.94 40.18 6.23 8.46 1.88

Sungai 
Lembing 2510.39 19.50 1.06 417.54 19.05 336.59 0.84 3803.59 1.72 0.63 0.48

Bukit Kachi 5540.92 0.01 1214.54 2962.95 2639.72 18607.70 0.22 9813.59 4858.97 407.75 17.75
Bukit Kachi 2042.31 0.34 109.95 2879.91 893.05 3457.61 0.35 124.65 9120.17 303.26 9.47
Bukit Kachi 411.25 0.36 42.02 3105.02 1148.50 2623.31 3.24 3937.89 8201.65 239.28 22.57
Bukit Kachi 5087.27 0.00 400.48 2664.46 3481.08 7538.86 0.61 376.00 2549.31 500.72 83.32
Bukit Kachi 3826.08 2.84 2015.10 4638.62 1847.57 8389.18 6.41 370.99 29434.98 549.37 5.01
Bukit Kachi 425.91 0.09 99.28 3323.53 685.31 5598.07 11.10 1341.03 13880.27 153.64 10.07
Bukit Kachi 473.00 0.15 166.39 6961.73 1039.73 6419.50 6.11 3469.30 30088.60 256.91 18.39
Bukit Kachi 349.41 0.34 213.14 12523.20 1005.14 7079.85 15.39 2398.81 41647.92 257.76 16.35

https://doi.org/10.17794/rgn.2025.3.10


135 Advanced Clustering Techniques for Tin Deposit Classification in Malaysia…

Rudarsko-geološko-naftni zbornik 2025, 40 (3), pp. 131-145, https://doi.org/10.17794/rgn.2025.3.10

mal processes. Zirconium (Zr) and hafnium (Hf) often 
replace tin (Sn) in the cassiterite structure, and their ra-
tios can reveal the type of mineralization. Tantalum (Ta) 
and niobium (Nb) help distinguish between magmatic 
and hydrothermal deposits. Vanadium (V) and titanium 
(Ti) provide insight into the redox conditions during 
mineral formation. Uranium (U) and tungsten (W) con-
centrations indicate specific types of tin deposits and as-
sist in determining the thermal history and origin of the 
deposits (He et al., 2022; Liu et al., 2021).

The trace element contents in selected cassiterite 
grains from various deposits were analyzed using Laser 
Ablation-Inductively Coupled Plasma-Mass Spectrom-
etry (LA-ICP-MS) at the Centre for Ore Deposit and 
Earth Sciences (CODES), University of Tasmania. The 
instrument used combines a Resolution 193 nm excimer 
laser with an Agilent 7700x ICP-MS. To map trace ele-
ment distribution, the signal was acquired in time-re-
solved mode with a 5 µm laser beam, a laser fluency of 
~3.5 J/cm², and a repetition rate of 5 Hz. The signal from 
the carrier gas without ablation was regularly acquired 
to correct for instrumental background. To manage val-
ues that fell below the detection limit, we applied the 
rule, substituting them with 75% of the detection limit to 
provide a conservative yet realistic estimate. For values 
exceeding an upper threshold, we used the rule, substi-
tuting them with 133% of the detection limit to maintain 
data consistency while addressing potential overestima-
tions. After substitution values according to the detec-
tion limit rules, we employed the Interquartile Range 
(IQR) method to identify outliers. To ensure data integ-
rity and maintain sample size, we preferred to cap ex-
treme outliers at the 95th percentile. This capping ap-
proach preserves the dataset’s comprehensiveness, re-
duces the undue influence of outliers, and acknowledges 
the potential for rare but valid geochemical variations. 
Table 1 presents the geochemical analysis of 28 samples 
from selected areas in Malaysia.

The elements were selected according to previous 
studies (He et al., 2022; Liu et al., 2021), that identified 
them as highly effective for distinguishing tin deposits. 
These elements – including Fe, Zr, Nb, Ta, Hf, and U – 
significantly influence statistical analyses by providing 
distinct geochemical signatures that enhance clustering 
accuracy and facilitate the classification of different 
mineralization types.

To validate the influence of these elements, we con-
ducted t-tests and F-tests to examine differences in their 
concentrations across sample locations. Significant dif-
ferences in means were found for Fe (p-value = 0.0012), 
Zr (p-value = 0.0096), Nb (p-value = 0.0080), Ta (p-
value = 0.0153), Hf (p-value = 0.0053), and U (p-value 
= 0.0312). These results confirm that these elements 
contribute distinctively to the classification of tin depos-
it types. Although most elements did not show signifi-
cant variance differences, Fe displayed a marginal result 
(p-value = 0.0713), indicating a potential difference in 

variance that warrants further investigation. These sta-
tistical analyses reinforce the importance of these ele-
ments in enhancing clustering outcomes and confirm 
their role in providing geochemical differentiation 
among tin deposits.

3.2. Dendrogram Clustering

Dendrogram clustering, a key technique in hierarchi-
cal clustering, involves creating a diagram to represent 
the arrangement of clusters formed by hierarchical algo-
rithms (Forina et al., 2002; Sangaiah et al., 2022). The 
process starts with each data point as its own cluster and 
progressively merges the closest pairs of clusters based 
on a chosen distance metric, such as Euclidean or Man-
hattan distance. This merging continues until all data 
points are grouped into a single cluster. The resulting 
dendrogram visually illustrates the hierarchical relation-
ships between clusters, with branch lengths indicating 
the distance or dissimilarity between them (Ogasawara 
and Kon, 2021).

In this study, we used Ward’s linkage method, an ag-
glomerative hierarchical clustering technique that mini-
mizes the variance within clusters by merging clusters 
that result in the smallest increase in total within-cluster 
variance. This approach tends to create clusters of rela-
tively equal size and is effective in identifying compact, 
spherical clusters. The distance measure used in this 
analysis is Euclidean distance, which is calculated as the 
straight-line distance between two points in a multidi-
mensional space. It is a common distance metric used in 
clustering algorithms due to its simplicity and effective-
ness in capturing the geometric distance between data 
points.

While this clustering approach has its strengths, it can 
be misleading, especially if the cut-off line falls near 
zero, as happened in our dataset. In such cases, consider-
ing alternative machine learning clustering methods can 
provide more robust and scalable solutions. These meth-
ods can handle larger datasets, noise, and varying cluster 
shapes more effectively.

3.3. Spectral Clustering

Spectral clustering is a powerful technique used to 
partition data points into clusters by leveraging the ei-
genvalues and eigenvectors of a similarity matrix de-
rived from the data (Von Luxburg, 2007). The process 
begins with data preprocessing, where the input data, 
typically an n×m matrix (with n representing the number 
of data points and m the number of features), is normal-
ized if necessary to ensure equal contribution from each 
feature to the similarity measurement (Ng et al., 2001).

Following this, a similarity matrix is constructed us-
ing a defined similarity measure, such as the Gaussian 
(RBF) kernel, which calculates the similarity between 
data points xi and xj based on their Euclidean distance:

https://doi.org/10.17794/rgn.2025.3.10
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  (1)

Where  is the Euclidean distance between data 
points xi and xj, and σ is a scaling parameter that controls 
the width of the Gaussian (Shi and Malik, 2000).

Once the similarity matrix S is established, the degree 
matrix D is computed as a diagonal matrix where each 
diagonal element D(i,i) is the sum of the corresponding 
row of the similarity matrix:

  (2)

The Laplacian matrix, a key component in spectral 
clustering, is then derived by subtracting the similarity 
matrix from the degree matrix:

 L = D – S (3)

Alternatively, a normalized Laplacian matrix can be 
used:
 Lsym = D–0.5 LD–0.5 (4)

This matrix transformation ensures that the resulting 
clusters are balanced, especially in terms of the number 
of data points (Chung, 1997). Subsequently, eigen de-
composition is performed on the Laplacian matrix to ob-
tain its eigenvalues and eigenvectors. The first k eigen-
vectors corresponding to the smallest eigenvalues are 
selected to form a new feature matrix U, where each row 
represents a data point in the reduced-dimensional space. 
This feature matrix is then subjected to k-means cluster-
ing, which assigns each data point to a cluster based on 
its representation in this lower-dimensional space (Von-
Luxburg, 2007).

Finally, the implementation of spectral clustering re-
quires careful consideration of parameter tuning, such as 
the number of clusters k and the scaling parameter σ for 
the similarity measure, to optimize performance (Ng et 
al., 2001). The computational complexity, particularly 
during eigen decomposition, needs to be managed, espe-
cially for large datasets, where approximate methods or 
exploiting sparsity in the similarity matrix may reduce 
computational costs (Zelnik-Manor and Perona, 2004).

3.4. Gaussian Mixture Models (GMM)

Gaussian Mixture Models (GMM) clustering is a prob-
abilistic approach that assumes data is generated from a 
mixture of several Gaussian distributions, each represent-
ing a different cluster. The process begins with data pre-
processing, where the data matrix is normalized to ensure 
each feature contributes equally to the clustering process. 
Optionally, dimensionality reduction techniques like Prin-
cipal Component Analysis (PCA) may be applied to re-
duce the number of features, improving clustering perfor-
mance by mitigating the curse of dimensionality. The next 
step involves initializing the GMM by determining the 
number of Gaussian components (clusters), a critical hy-

perparameter that can be chosen using model selection 
criteria such as the Bayesian Information Criterion (BIC) 
or Akaike Information Criterion (AIC) (Fraley and Raf-
tery, 2007; McLachlan, 2000).

Initialization can be performed using random meth-
ods or by leveraging the results from k-means clustering 
to initialize the means of the Gaussian components. 
Once initialized, the Expectation-Maximization (EM) 
algorithm is employed to iteratively refine the parame-
ters of the Gaussian components. In the E-step, the algo-
rithm calculates the responsibility (posterior probability) 
that each data point belongs to each Gaussian compo-
nent based on the current parameter estimates. The M-
step then updates the parameters – mean, covariance, 
and mixing coefficients – by maximizing the expected 
log-likelihood function given these responsibilities. The 
algorithm alternates between these steps until conver-
gence, typically determined by the change in the log-
likelihood or after a fixed number of iterations. The 
GMM clustering process produces soft assignments, 
meaning each data point has a probability of belonging 
to each cluster, which is particularly useful for handling 
overlapping clusters (Murphy, 2012).

Additionally, the selection of the covariance matrix 
type – spherical, diagonal, tied, or full – can significantly 
impact the clustering outcome, with more complex co-
variance structures offering greater flexibility at the cost 
of increased computational complexity. This process is 
computationally intensive, particularly for large datasets, 
but can be optimized using techniques like parallelization 
or variational inference methods (Blei et al., 2017).

3.5. Integration of autoencoders and K-means

The combination of autoencoders and K-means clus-
tering is a powerful hybrid approach for handling high-
dimensional data, where traditional clustering methods 
may struggle. The process begins with data pre-process-
ing, including normalization to ensure that each feature 
contributes equally to the clustering process. An autoen-
coder, which consists of an encoder and a decoder, is 
then trained in an unsupervised manner to compress in-
put data into a lower-dimensional latent space while 
minimizing the reconstruction error between the input 
and output data (Goodfellow, 2016). Once trained, the 
encoder is used to transform the original high-dimen-
sional data into this compact latent representation. K-
means clustering is then applied to the data in this latent 
space, where the reduced dimensionality typically al-
lows for better cluster separability and improved cluster-
ing performance (Xie et al., 2016). Hyperparameters, 
such as the number of clusters K and the structure of the 
autoencoder, including the number of layers and neu-
rons, are carefully tuned to enhance clustering effective-
ness (Guo et al., 2017). This combined approach effec-
tively leverages deep learning to learn meaningful data 
representations, making clustering more robust and scal-
able, especially for complex and noisy datasets.

https://doi.org/10.17794/rgn.2025.3.10
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4. Results

Table 2 refers to the parameters and their values for 
three mentioned clustering methods, while Figure 4 il-
lustrates the applied clustering approaches.

The quality of the clustering is assessed using internal 
validation measures (Arbelaitz et al., 2013; Xu and 
Tian, 2015; Van der Maaten and Hinton, 2008). The 
performance of applied clustering methods was analysed 
using two metrics: the Silhouette Score and the Calinski-
Harabasz Index. Each metric provides unique insight 
into the clustering quality, allowing compression of the 
effectiveness of these methods when choosing 4 clusters 
(4 primary mineralization have been proposed in areas). 
The applied methods used to assess the effectiveness of 

clustering algorithms without relying on external labels 
or ground truth data. These measures provide insight 
into how well the clusters are separated and how com-
pact the data points are within each cluster. In this study, 
we used two widely recognized internal validation meas-
ures: the Silhouette Score and the Calinski-Harabasz In-
dex. The Silhouette Score quantifies how similar each 
data point is to its own cluster compared to other clus-
ters, with higher values indicating better-defined clus-
ters. Specifically, the Silhouette Score ranges from -1 to 
1, where values closer to 1 suggest that the data points 
are well-clustered, while values near 0 indicate overlap-
ping clusters. The Calinski-Harabasz Index measures 
the ratio of between-cluster dispersion to within-cluster 
dispersion, with higher values indicating more distinct 

Figure 5. Silhouette Score plot

Figure 4. Clustering plots using

Table 2. Parameters and their corresponding values used for clustering

Method Parameter Value

Spectral Clustering [‘number of clusters’, ‘affinity’, ‘similarity matrix’] [4, ‘precomputed’,  
‘RBF kernel similarity matrix’]

Gaussian Mixture 
Models (GMM) [‘number of components’, ‘random of state’, ‘covariance type’] [4, 0, ‘full’]

Integration  
of Autoencoder  
and K-means

[‘input dim’, ‘encoding dim’, ‘epochs’, ‘batch size’, ‘optimizer’, 
‘loss’, ‘number of clusters’, ‘random_state’, ‘init ‘, ‘number of init ‘]

[11, 2, 50, 256, ‘adam’, ‘mse’, 
4, 0, ‘k-means++’, 10]
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and well-separated clusters. These metrics allow us to 
objectively compare the performance of different clus-
tering methods and ensure that the clusters formed are 
meaningful and representative of the underlying geo-
chemical patterns.

Figure 5 displays the Silhouette Score plot for ap-
plied clustering methods. By comparing the silhouette 
coefficient values for each cluster label across the three 
methods, it was observed that Spectral Clustering has a 
varied distribution of silhouette scores with most clus-
ters having coefficients below 0.4, indicating that some 
points may be poorly clustered or lie between clusters. 
The Gaussian Mixture Models (GMM) method shows a 
similar trend with most silhouette scores around 0.3 to 
0.4, but with slightly better-defined clusters than Spec-
tral Clustering as fewer scores are negative. The integra-
tion of Autoencoders and K-means (IAK) Clustering ap-
pears to perform the best, with most silhouette scores 
above 0.4, suggesting more distinct and well-defined 
clusters. This method demonstrates a more balanced 
clustering performance, minimizing overlap between 
clusters and suggesting it is more effective in finding 
well-separated groups in the data.

Figure 6 compares the Calinski-Harabasz Index for 
different clustering methods – Spectral Clustering, Gauss-
ian Mixture Models (GMM), and Autoencoders with K-
means – as the number of clusters, k, increases from 2 to 
10. The Calinski-Harabasz Index is a metric used to eval-
uate the quality of clustering, where higher values indi-
cate better-defined clusters. At k=4, the integration of Au-
toencoders and K-means (IAK) exhibits the highest Cal-
inski-Harabasz Index, around 90, indicating it achieves 
the most distinct and well-separated clusters among the 
three methods. Gaussian Mixture Models (GMM) has a 
moderate Calinski-Harabasz Index value around 70 at 
k=4, suggesting reasonable cluster quality but not as ef-
fective as IAK. Spectral Clustering consistently shows the 
lowest Calinski-Harabasz Index across all values of k, 

hovering around 5, indicating poor clustering quality and 
less distinct separation between clusters.

5. Discussion

5.1. Findings

To further elucidate the relationships between the ge-
ochemical elements and their contributions to the clus-
tering of tin deposit types, we conducted hierarchical 
clustering analysis. The resulting diagram provides a 
visual representation of how the elements group together 
based on their geochemical similarities. This analysis 
complements the clustering results and offers deeper in-
sight into the underlying patterns that differentiate the 
mineralization types. The dendrogram was generated us-
ing Ward’s linkage method, which minimizes the vari-
ance within clusters, and the distances between clusters 
reflect the dissimilarity between the elements. This hier-
archical approach allows us to identify which elements 
are statistically significant in differentiating the deposit 
types and how they contribute to the overall clustering 
structure.

The hierarchical cluster diagram (see Figure 7) re-
veals significant insight into the geochemical relation-
ships among the elements analyzed in this study. The 
dendrogram shows the separation of W, Ta, and Sb from 
other elements in the hierarchical cluster diagram indi-
cating their strong association with hydrothermal pro-
cesses, which are common in Hydrothermal Vein and 
Polymetallic deposits. Similarly, elements like Mn, Hf, 
and V group together, suggesting their roles in indicating 
redox conditions and hydrothermal alteration, which are 
critical for distinguishing between different mineraliza-
tion types (Coyte and Vengosh, 2020; Schreiber, 1977; 
Scholtysik et al., 2020; Underwood et al., 2013; Ned-
erbo, 2023; Gao et al., 2021). Fe is indeed a redox-sen-
sitive element, similar to Mn, Hf, and V (Debret et al., 

Figure 6. Calinski-Harabasz 
Index plot
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2020), which indicates its involvement in redox condi-
tions and hydrothermal alteration processes (Stude-
meister, 1983). However, the reason Fe might not be 
grouped with Mn, Hf, and V in the dendrogram could be 
due to several factors. This refers to distinct geochemi-
cal environments and processes. Fe may share stronger 
similarities with elements like Zr and Nb in other geo-
chemical aspects, such as magmatic processes or the for-
mation of Pegmatite deposits, where these elements are 
often found together (Yan et al., 2018; Möller and Wil-
liams-Jones, 2017).

Additionally, variations in the concentrations and in-
teractions of elements within our samples could lead to 
Fe forming a separate cluster, influenced by factors like 
pH, salinity, and the presence of other elements. Fe’s as-
sociation with Zr and Nb might highlight its role in iden-
tifying Pegmatite deposits, reflecting its importance in 
magmatic processes (Gysi et al., 2016). This distinction 
illustrates the complexity and multi-faceted nature of 
geochemical clustering, providing a comprehensive un-
derstanding of the elemental relationships within our 
study. Notably, Fe, Zr, and Nb form another cluster, 
highlighting their importance in identifying Pegmatite 
deposits, where these elements are often associated with 
magmatic processes. Even in the absence of significant 
Fe-bearing minerals like tourmalines (e.g. schorl) or 
other Fe-rich minerals in pegmatite deposits, there are 
still several possible reasons why Fe might cluster with 
Zr and Nb. Fe might be present as trace element inclu-
sions within the pegmatite matrix or in minor minerals, 
sufficient to influence clustering patterns (Thomas et 
al., 2019). Additionally, Fe could be associated with Zr 
and Nb due to similar geochemical processes during 
pegmatite formation, leading to their co-precipitation or 
involvement in similar geochemical environments 
(Hadlich et al., 2024). The grouping of U, Ti, and Zr 
further emphasizes their role in differentiating Dissemi-
nated deposits, where these elements are indicative of 

widespread mineralization within host rocks (Mikysek 
et al., 2019). These groupings align with the statistical 
significance of these elements, as highlighted in the t-
tests and F-tests, which confirm their distinct contribu-
tions to the classification of tin deposit types.

The clustering analysis (see Figure 8) reveals insight-
ful patterns regarding the mineralization types and geo-
logical settings of the samples. The overall cluster distri-
bution pie chart indicates how the samples are grouped 
into four distinct clusters, each characterized by specific 
mineralization types. The zero cluster contains a mix of 
Disseminated, Hydrothermal Vein, and Polymetallic 
samples, suggesting overlapping geochemical signa-
tures. The bar plot of mineralization type distribution by 
cluster further illustrates that zero cluster has the most 
diversity, comprising 6 Disseminated, 4 Hydrothermal 
Vein, and 4 Polymetallic samples. This mix suggests a 
geological environment where multiple mineralization 
processes might occur simultaneously or in succession, 
leading to transitional or hybrid samples.

The 1 and 3 clusters are exclusively composed of Peg-
matite samples. Cluster 1 has 5 Pegmatite samples, while 
Cluster 3 has 3. The clear separation into two clusters, as 
shown in the bar plot, suggests possible subtypes within 
the Pegmatite samples or variations due to different geo-
logical conditions at their respective sample locations, 
such as Menglembu and Pengkalan Hulu North. Compris-
ing 6 Disseminated samples, Cluster 2 reflects a homoge-
neous mineralization type. The consistent geochemical 
profile across these samples suggests a stable geological 
environment that favors Disseminated mineralization, 
primarily from the Pengkalan Hulu North location.

The sample location distribution by cluster bar plot, 
on the other hand, provides a geographical perspective 
on the clustering results. Samples in the zero cluster 
originate from diverse locations, including Pengkalan 
Hulu North and Menglembu. This geographical diversi-
ty aligns with the cluster’s mixed mineralization types, 

Figure 7. Hierarchical clustering 
dendrogram
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suggesting that these locations are geologically com-
plex. The overlap of Disseminated, Hydrothermal Vein, 
and Polymetallic samples within this cluster may point 
to transitional zones where multiple mineralization pro-
cesses interact, such as areas of active hydrothermal ac-
tivity coupled with disseminated mineralization.

The samples in the 1 and 3 clusters are mainly from 
distinct locations. Cluster 1 samples, primarily from Men-
glembu, and Cluster 3 samples, predominantly from 
Pengkalan Hulu North, highlight that different geological 
environments or zones within these areas may influence 
the formation of Pegmatite subtypes. The clear grouping 
suggests distinct geological conditions that are conducive 
to Pegmatite formation in these specific areas.

Cluster 2 mainly consists of samples from Pengkalan 
Hulu North, indicating a uniform geological setting that 
supports Disseminated mineralization. The consistency 
in mineralization type across this cluster suggests a sta-
ble geological environment with a single, dominant min-
eralization process. In other words, a stable geological 
environment refers to regions where consistent geo-
chemical profiles are observed, supporting uniform min-
eralization processes. For instance, the samples in Clus-
ter 2 demonstrate a homogenous geochemical composi-
tion that reflects a stable environment favoring 
Disseminated mineralization. Such stability is often a 
result of continuous, long-term geological conditions 
that allow for the uniform distribution of tin within the 
host rocks. The clusters containing Pegmatite samples 

(Clusters 1 and 3) suggest distinct geological zones 
within the respective sampling areas. The clear demarca-
tion between these clusters indicates that the geochemi-
cal conditions at these sites favored Pegmatite forma-
tion, potentially influenced by localized magmatic activ-
ity or late-stage crystallization processes.

The hierarchical cluster diagram (see Figure 7) pro-
vides a complementary perspective to the pie chart in 
Figure 8, which summarizes the distribution of miner-
alization types across the clusters. The dendrogram re-
veals that the elements contributing to the mixed miner-
alization types in Cluster 0 (Disseminated, Hydrother-
mal Vein, and Polymetallic) are grouped together, 
suggesting that these deposits share overlapping geo-
chemical signatures. For instance, the grouping of Fe, 
Zr, and Nb in the dendrogram corresponds to the Pegma-
tite-dominant clusters (Clusters 1 and 3), indicating that 
these elements are critical for distinguishing Pegmatite 
deposits from others. Similarly, the elements associated 
with Disseminated deposits (Cluster 2) form a distinct 
cluster, reinforcing the homogeneity of this mineraliza-
tion type. The dendrogram thus provides a clearer under-
standing of the geochemical basis for the clustering re-
sults and validates the statistical significance of the ele-
ments in differentiating the deposit types.

5.2. Interpretation of results

The clustering analysis performed in this study re-
veals significant insight into the geochemical character-

Figure 8. Cluster Distribution plots
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istics and geological settings of the tin deposits. The 
geochemical analysis involved a detailed examination of 
trace elements, including Fe, Sb, Mn, Zr, Hf, Ta, Nb, V, 
Ti, U, and W. Each of these elements plays a crucial role 
in identifying and distinguishing different mineraliza-
tion types. Iron and Mn are typically associated with hy-
drothermal processes and provide insight into the nature 
of hydrothermal alteration. Zirconium and Hf often sub-
stitute Sn in the cassiterite structure, and their ratios can 
indicate the mineralization type (e.g. magmatic or hy-
drothermal origins) (Breiter and Škoda, 2017; Clai-
borne et al., 2006).

Tantalum and Nb are key indicators for distinguishing 
between magmatic and hydrothermal deposits. Vanadi-
um (V) and Ti help reveal the redox conditions prevalent 
during the formation of the deposits. Uranium and W 
concentrations contribute to understanding the thermal 
history and genesis of the deposits (Ahmed, 2022; Bal-
louard et al, 2016).

The application of clustering methods – Spectral Clus-
tering, Gaussian Mixture Models (GMM), and the inte-
gration of Autoencoders with K-Means – resulted in the 
identification of four distinct clusters. Each cluster repre-
sents unique geochemical and geological characteristics. 
Cluster 0 includes a combination of Disseminated, Hy-
drothermal Vein, and Polymetallic samples, suggesting 
overlapping geochemical signatures. The presence of 
multiple mineralization types implies transitional zones 
where diverse geological processes may coexist or inter-
act. Clusters 1 and 3 (Pegmatite Dominance) exclusively 
contain Pegmatite samples. Their separation into distinct 
groups may indicate subtypes of Pegmatites or variations 
due to different geological environments at the sampling 
locations (e.g. Pengkalan Hulu North and Menglembu). 
Cluster 2 (Disseminated Samples), Composed primarily 
of Disseminated samples from Pengkalan Hulu North, 
highlights a stable geological environment conducive to 
Disseminated mineralization.

5.3. Clustering Significant

The trace elements analyzed not only differentiate 
mineralization types but also highlight the geological en-
vironments that favor specific deposit formations. For 
example, the higher concentrations of Ta and Nb in Peg-
matite samples align with their typical formation in mag-
matic environments, while elevated Fe and Mn levels in 
the Hydrothermal Vein samples are consistent with hy-
drothermal activity. The clustering results, supported by 
these geochemical variables, provide an understanding of 
the underlying processes governing tin deposit forma-
tion. The observed groupings enhance the interpretation 
of the mineralization processes and point towards areas 
that may require further geological investigation to iden-
tify economically viable deposits. By expanding on the 
geochemical data and integrating it with clustering out-
comes, this discussion clarifies the rationale behind the 

clustering and elucidates the influence of stable geologi-
cal environments on mineralization patterns.

5.4. Method Comparison

The clustering results revealed distinct advantages 
and limitations associated with each method applied. 
Spectral Clustering demonstrated its strength in detect-
ing non-convex clusters, which is beneficial for data 
with complex distributions; however, its sensitivity to 
parameter selection and computational intensity may 
limit its scalability for larger datasets (Ng et al., 2001). 
The Gaussian Mixture Model (GMM) provided flexible 
clustering that handled clusters of varying shapes and 
sizes well, although it struggled with high-dimensional 
data, sometimes leading to ambiguous assignments 
(Reynolds, 2009). The combination of Autoencoders 
and K-Means proved to be the most effective, as it re-
duced data dimensionality and improved cluster separa-
tion. Despite its higher computational requirements, this 
hybrid approach provided robust performance by effec-
tively capturing non-linear relationships. These insights 
suggest that while each method has strengths, the Au-
toencoder with K-Means approach is particularly advan-
tageous for high-dimensional geochemical data.

Comparing these findings with previous research in 
the field, studies such as those by Zuo et al. (2023) and 
Chen et al. (2023), our approach using a hybrid model 
aligns with trends seen in recent literature, where inte-
grated methods are used to enhance clustering accuracy. 
Unlike traditional clustering efforts focused solely on 
GMM or K-Means, our research demonstrates that com-
bining deep learning techniques like Autoencoders can 
yield superior results. This comparison underscores the 
potential for leveraging hybrid methods to push beyond 
conventional approaches in geological data analysis.

5.5. Limitations and uncertainties

Potential sources of error in this study include sample 
quality and measurement accuracy. The variability in the 
geochemical composition of samples, potentially stem-
ming from environmental exposure or collection incon-
sistencies, could impact the reliability of the clustering 
outcomes. Additionally, while advanced techniques like 
Autoencoder with K-Means reduce noise through dimen-
sionality reduction, uncertainties remain in model param-
eter tuning and data preprocessing. These factors may lead 
to subtle shifts in clustering assignments and interpreta-
tions. Acknowledging these uncertainties is crucial for ac-
curate analysis and suggests that future studies should in-
corporate improved sampling protocols and cross-valida-
tion with larger datasets to mitigate such issues.

6. Conclusions

This research contributes to the field of geosciences 
and the mining industry by demonstrating the efficacy of 
advanced clustering methods, particularly the combina-
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tion of Autoencoders with K-Means, in classifying tin 
deposits based on geochemical data. It highlights how 
modern machine learning techniques can improve the 
understanding of mineral distribution and inform explo-
ration practices. The study sets a precedent for employ-
ing hybrid machine learning models in geological analy-
sis, paving the way for more nuanced data interpreta-
tions and strategic mining operations. These contributions 
add to the existing body of knowledge by showcasing 
practical, data-driven solutions for mineral resource 
management.

The findings of this study offer practical implications 
for the mining industry by improving the efficiency of 
exploration strategies. For instance, the use of the Au-
toencoder with K-Means approach demonstrated supe-
rior cluster differentiation, which can be utilized to pri-
oritize exploration sites and reduce costs. Mining com-
panies can apply these methods to better categorize ore 
deposits, enhancing resource estimation and decision-
making. By adopting these techniques, operations can 
more effectively allocate resources and refine extraction 
processes. An example application could be integrating 
these models into geographic information systems (GIS) 
to create more detailed mineral maps that inform field-
work.

However, this study faced several limitations, includ-
ing a relatively small sample size and potential biases 
introduced by the haphazard selection of samples based 
on availability. While the clustering methods applied 
provided meaningful results, there were challenges in 
fine-tuning parameters that might influence consistency. 
The computational demands of advanced techniques, 
particularly the integration of Autoencoders, were also a 
constraint. Future research could overcome these limita-
tions by using larger and more balanced datasets, opti-
mizing parameter selection through automated process-
es, and implementing cross-validation techniques to 
improve reliability.

Moreover, for future research, it is recommended to 
expand the dataset by including additional sample sites 
that capture more diverse geological settings to enhance 
the generalizability of the results. Incorporating more 
advanced machine learning techniques, such as deep 
clustering algorithms or ensemble methods, could pro-
vide further insight into the complexities of tin deposit 
classification. Additionally, performing longitudinal 
studies to track how changes in environmental and geo-
logical conditions impact clustering results would offer 
valuable perspectives. Collaborative studies that inte-
grate field investigations with geochemical analysis us-
ing updated tools like high-resolution LA-ICP-MS are 
also encouraged to improve data accuracy.
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SAŽETAK

Napredne tehnike klasteriranja za klasifikaciju naslaga kositra u Maleziji:  
pristup strojnoga učenja

Ova studija istražuje primjenu naprednih tehnika klasteriranja – spektralno klasteriranje, Gaussove modele miješanja 
(GMM) i hibridni pristup koji kombinira autoenkodere s metodom k-means u svrhu klasifikacije naslaga kositra u Male-
ziji. Geokemijski podatci 28 uzoraka rude kositra u regijama Pengkalan Hulu North, Menglembu, Klian Intan i Sungai 
Lembing analizirani su kako bi se identificirali različiti obrasci mineralizacije. Rezultati su otkrili da je integracija auto-
enkodera s metodom k-means dala najvišu kvalitetu klasteriranja, sa Silhouette vrijednosti iznad 0,4 i Calinski-Harabasz 
indeksom od 90 na četiri klastera, nadmašujući ostale metode. Klasifikacija je učinkovito razlikovala pegmatitne, hidro-
termalne, polimetalne i diseminirane tipove ležišta, što je u skladu s geološkim karakteristikama regija. Ovi nalazi po-
boljšavaju razumijevanje distribucije naslaga kositra nudeći znatan potencijal za optimiziranje strategija istraživanja i 
rudarskih operacija, čime se pridonosi održivomu gospodarskom razvoju malezijske rudarske industrije kositra.

Ključne riječi: 
ležišta kositra, tehnike klasteriranja, geokemijska analiza, Malezija, istraživanje minerala
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