
95-118

95 

Rudarsko-geološko-naftni zbornik
(The Mining-Geology-Petroleum Engineering Bulletin)

DOI: 10.17794/rgn.2025.3.8

Review scientific paper

* Corresponding author: Dalia A. Hussein
e-mail address: dalia.alip31@eng.aun.edu.eg
Received: 12 September 2024. Accepted: 1 February 2025.
Available online: 3 July 2025

Satellite Image Enhancement  
Using Deep Learning and GIS Integration:  
A Comprehensive Review

Dalia A. Hussein1*  , Mohamed A. Yousef1 , Hassan A. Abdel-Hak1 , Yasser G. Mostafa2 

1 Faculty of Engineering, University of Assiut, Egypt.
2 Faculty of Engineering, University of Sohag, Egypt.

Abstract
A comprehensive review of 32 studies (20 journals, 11 proceedings, and one book chapter) published from 2016 to 2023 in 
the fields of deep learning (DL), image enhancement, super-resolution image, and Geographic Information System (GIS) 
is presented, focusing on the integration of DL methodologies with GIS to improve the quality of satellite images. The 
review summarizes the background, principles, enhancement quality, speed, and advantages of these technologies, com-
paring their performance based on metrics such as Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE), Structural Similarity Index Measure (SSIM), and computation time. Satellite remote sens-
ing technologies, which have provided an efficient means of gathering spatial information since the launch of Landsat 1 
by NASA in 1972, have recently advanced to enable the collection of high-resolution satellite (HRS) images (≤30 cm). 
However, factors such as atmospheric interference, shadowing, and underutilization of sensor capacity often degrade 
image quality. To address this, satellite images require enhancement, and DL has emerged as a powerful tool due to its 
ability to model complex relationships and accurately recover super-resolution images. While DL and neural networks 
have demonstrated significant success in natural image enhancement, their application to satellite images presents 
unique challenges. These challenges include insufficient consideration of the distinct characteristics of satellite imagery, 
such as varying spatial resolutions, sensor noise, and spectral diversity, as well as the reliance on modelling assumptions 
that may not align with the complexities of satellite data. This highlights the need for further investigation into advanced 
DL approaches tailored specifically for this domain.
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1. Introduction

During the past few decades, Geographical Informa-
tion Systems (GIS) have become a fundamental tool for 
scientific and decision-making analysis in diverse fields 
such as agriculture, environment, telecommunication, 
water management, construction, sports, transportation, 
and others. A key reason for GIS’s success lies in its abil-
ity to integrate, analyze, and visualize spatial data effec-
tively. In recent years, advancements in artificial intelli-
gence (AI) have further amplified GIS’s capabilities, 
enabling more sophisticated analyses and predictions. 
Among these advancements, deep-learning-based meth-
ods, particularly Convolutional Neural Networks 
(CNNs), have shown exceptional potential in processing 
and interpreting satellite imagery – an integral data 
source for GIS applications (Zhang et al., 2016). How-
ever, the effective use of deep learning in GIS requires 

sufficient computational resources, robust datasets, and 
careful tuning of hyperparameters (Goodfellow, 2016). 
When such resources are available, these AI-driven 
models can enhance tasks such as evaluation, classifica-
tion, clustering, function approximation, and data visu-
alization, providing new opportunities for innovation in 
GIS-based applications.

CNNs use has greatly enhanced a number of GIS 
tasks, including model training and the identification of 
separated objects across vast areas. However, conven-
tional approaches like image fusion, principal compo-
nent analysis (PCA) (Pohl et al., 1998), and histogram 
equalization were frequently used for satellite image en-
hancement before deep learning techniques were adopt-
ed. In order to provide the foundation for further re-
search, these techniques sought to preprocess and im-
prove the visual quality or analytical utility of satellite 
imagery. Even though remarkably deep learning models 
have been developed, their integration with GIS has 
opened new avenues for spatial data analysis, such as 
enhancing satellite image interpretation, automating 
land use classification, improving environmental moni-
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toring, and optimizing spatial decision-making process-
es (Zhang et al., 2016). However, the literature has not 
fully examined these crucial connections in recent years 
(Oveis et al., 2021). To give a thorough overview of the 
developments in deep learning methods for satellite im-
age augmentation, Table 1 classifies recent studies based 
on their methodologies, success rates, and comparative 
insights. This classification highlights the range of tech-
niques, from traditional convolutional neural networks 
(CNNs) to advanced generative adversarial networks 
(GANs) and hybrid approaches. The evolution of tech-
nology, the benefits and drawbacks of various strategies, 
and their suitability for particular use cases, such as veg-
etation monitoring and terrain, super-resolution are also 
highlighted. The table provides a succinct reference for 
comprehending cutting-edge methods and their influ-

ence on enhancing satellite imaging by arranging these 
investigations.

Deep learning (DL) with its deep hierarchical archi-
tectures for representation learning of patterns has 
shown strong capabilities as well as state-of-the-art per-
formance in many visual recognition and machine learn-
ing tasks, especially in image processing, analysis, and 
reconstruction. The very well-known deep architectures 
integrated with DL technology include deep stacked au-
toencoders (DSAE), convolutional deep belief networks 
(CDBN), and convolutional neural networks (CNN) or 
simply deep convolutional networks (DCN) (Chen et 
al., 2023).

One of the time-consuming, large-scale, and complex 
data types widely used for visualization and exploration 
of the Earth’s surface present in GIS is remote sensing 

Table 1. Classification of satellite image enhancement techniques

Category References Key Contributions
1. Methods
Generative Adversarial 
Networks (GANs)

- (Jiang et al., 2019)
- (Wang et al., 2018)
- (Wenlong et al., 2021)

- Introduced GAN-based models for super-resolution.
- Enhanced edge quality.
- ESRGAN showed perceptual quality improvements.
- RankSRGAN introduced ranking for better results.

Convolutional Neural 
Networks (CNNs)

- (Kattenborn et al., 2021)
- (Yamashita et al., 2018)
- (Lei et al., 2017)

- Reviewed CNN applications in vegetation and radiology.
-  Developed local-global optimization networks for enhanced 

super-resolution.
Dense Skip Connections - (Tong et al., 2017a) -  Introduced dense skip connections to improve image feature 

retention in super-resolution tasks.
Evolutionary Computation - (Wang et al., 2024) -  Surveyed evolutionary algorithms in enhancing GANs  

for image applications.
Hybrid Networks - (Fırat et al., 2023) -  Combined 3D/2D convolutional networks for hyper-spectral 

image classification.
2. Success Rates and Comparative Analysis
High Success  
in Super-Resolution

- (Shi et al., 2016)
- (Kim et al., 2016a, 2016b)

- Sub-pixel CNNs achieved real-time efficiency.
-  Very deep CNNs and recursive networks showed high 

accuracy in super-resolution.
Comparison Between  
Methods

- (Singla et al., 2022)
- (Zhang et al., 2022)

- Reviewed single-image super-resolution GANs.
- Developed terrain-specific super-resolution networks.

Limitations Addressed - (Sharma et al., 2021) -  Proposed improvements in satellite image enhancement 
techniques.

3. Progress of Technology
Emerging Techniques  
(2015–2017)

- (Dong et al., 2015)
- (Tong et al., 2017a)

- Early CNNs for super-resolution.
- Dense skip connections introduced.

Advanced Architectures 
(2018–2023)

- (Wang et al., 2018)
- (Lei et al., 2017)

-  Advanced GANs (e.g. ESRGAN) and global-local 
optimization for improved results.

Current Trends  
(2023–2024)

- (Wenlong et al., 2021)
- (Noshiri et al., 2023)

-  GANs with rankers for targeted applications  
(e.g. RankSRGAN).

- Focus on explainability and computational efficiency.
4. Key Comparative Insights
Best Performers - (Wang et al., 2018)

- (Wenlong et al., 2021)
-  GANs like ESRGAN and RankSRGAN achieved  

state-of-the-art results in perceptual quality and accuracy.
Trade-Offs - (Shi et al., 2016)

- (Kim et al., 2016a, 2016b)
-  Sub-pixel CNNs are efficient but may not achieve perceptual 

quality like GANs.
Specific Use Cases - (Kattenborn et al., 2021)

- (Zhang et al., 2022)
-  Applications in vegetation monitoring and terrain  

super-resolution.
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data, especially satellite images. These images are taken 
by Earth observation systems aboard satellites orbiting 
the Earth. They are then used to detect and extract infor-
mation in remotely located areas and time points on 
Earth’s surface, especially in geography, geosciences, 
GIS, environmental research, and climate change (Tsat-
saris et al., 2021).

In terms of recent research, the use of DL for satellite 
image reconstruction, enhancement, super-resolution, 
spectroscopy, pan-sharpening, shadow removal, cloud 
and fog removal, color correction, mosaicking, denois-
ing, fusion, in-painting, time series generation, and geo-
graphic feature classification is a quickly growing re-
search field. However, these DL satellite image enhance-
ments must be combined with the real-world utility of 
GIS to create practical impacts on satellite image data 
for real-world application domains.

This article thus gave a comprehensive survey and 
comprehensive review of various integrated deep learn-
ing methods, state-of-the-art benchmarks, international 
database test cases, the potential of deep reinforcement 
learning, and transfer learning approaches. The main ob-
jective of this review is to cover and organize a substan-
tial part of the research material, methodologies, deep 
learning techniques, and advancements focusing on the 
deep learning integrated with the GIS technique to en-
hance unsupervised and supervised satellite image clas-
sification, and also suggest future directions to this sci-
entific community to work on. Researchers are encour-
aged to use this review to rapidly gain some know-how 
of this novel scientific area and also get clarity in the-
matic aspects. This article organizes research related to 
the application of deep learning solutions in satellite im-
agery and the integration of GIS techniques aimed at en-
hancing various types of satellite images.

The growing importance of applications that involve 
satellite images has naturally boosted research in this 
area. With the growing demand for fast and efficient so-
lutions, the use of deep learning techniques stands out. 
In the search for applications that optimize the use of 
these techniques, researchers have increasingly sought 
to include geographic information in the processes, in-
cluding characteristics of spatial data, and grouping var-
ious GIS concepts in the proposed applications. The aim 
is to contribute to this area, identifying what has been 
covered by the review, bringing together research clus-
ters and possible developments. In addition to deep 
learning matters, in this review, we have also addressed 
the most important topics presented by the researchers.

2.  Enhanced remote sensing image 
processing techniques

Enhancing satellite images traditionally involves a se-
quence of procedures such as image distortion, noise re-
moval, enhancement, filtering, contrast stretching, and 

morphological processing and their associated inversion 
operation to improve the spatial resolution of images. 
Lee (1980) refined the low-pass-filtered image using a 
nonlinear function, followed by a median filtering oper-
ation to suppress grain noise. Sharma et al. (2021) pro-
posed a method for enhancement of remote sensing im-
ages based on the combination of the picking rule that 
preserves the radiometric mean value and entropy based 
on spatial frequency structures. However, while these 
traditional methods improve certain aspects of image 
clarity, they often struggle with enhancing image con-
trast effectively without introducing noise or distortion.

To achieve clearer image details, modern techniques 
focus on amplifying contrast while maintaining spatial 
and radiometric fidelity. One such approach combines 
multiple techniques, such as Compound Contrast Limit-
ed Adaptive Histogram Equalization (CLAHE), which 
reduces noise by limiting amplification in homogeneous 
regions, and the change-intensity-histogram method inte-
grated with a sigmoid function for non-linear contrast 
enhancement (Zhang et al., 2024). These techniques aim 
to provide a more refined enhancement by addressing the 
limitations of traditional methods, especially in terms of 
contrast enhancement and noise suppression. Fusion 
methods, such as those based on the ratio of limiting var-
iance and differential mean techniques, are also used to 
merge complementary features for better visual quality. 
Additionally, Poisson noise reduction techniques are em-
ployed to handle noise inherent in low-light or low-qual-
ity images (Chatterjee et al., 2011). These methods can 
be useful to enhance specific geographic features, but  
the proposed general outcome is based on a combination 
of multi-image wavelet and other deep learning. Hyper-
spectral Pixel Matching (HPM) was used to ensure ac-
curate mapping and classification by matching pixel in-
formation from hyper-spectral images to a reference, and 
learners should be informed about this technique with 
applications. It ensures that the class of the pixel gener-
ated is the same as the reference land cover class from 
which it was sampled (Fu et al., 2015).

The following subsections explore advanced tech-
niques for remote sensing image processing, including 
super-resolution (Section 2.1), which leverages deep 
learning to enhance low-quality satellite images; pan-
sharpening (Section 2.2), which integrates panchromatic 
and multi-spectral data for high-resolution outputs; and 
image fusion (Section 2.3), which combines spatial, 
spectral, and temporal information to enhance image 
quality.

2.1. Super-Resolution

The spatial resolution of satellite images is an essen-
tial factor in remote sensing. The high spatial resolution 
of satellite data enhances the ability for land-cover clas-
sification and change detection. However, most coun-
tries receive satellite data with lower resolution due to 
the higher cost of high-resolution satellite data. The cost 
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of the satellite images should be affordable to allow fre-
quent acquisition, which is essential for monitoring and 
management tasks (Chen, 2007; Fisher et al., 2018).

Deep learning has been gaining in popularity recently 
in a variety of domains, including natural language pro-
cessing and computer vision. This study investigates the 
use of deep learning techniques to improve satellite im-
agery, namely in the areas of categorization and super-
resolution. Super-resolution is the process of producing 
higher-quality images by computationally increasing the 
resolution of low-resolution images, usually with the use 
of sophisticated algorithms like deep learning. High-
resolution satellite data, on the other hand, is directly 
recorded by sophisticated satellite sensors with a finer 
native spatial resolution. When high-resolution data is 
limited, costly, or unavailable, super-resolution tech-
niques are extremely helpful. Applications like land 
cover classification, which aids in monitoring natural 
disasters, identifying unlawful farms or structures, and 
other vital duties, require high-resolution data. Since 
most satellite-captured images have a lower spatial reso-
lution than those from ground-based tools, super-resolu-
tion techniques are crucial for improving them including 
super-resolution (Ma et al., 2019).

2.2. Pan-Sharpening

Pan-sharpening, as a process, results in creating high 
spatial resolution multi-spectral images with panchro-
matic images. This operation has become important, es-
pecially with the increase in the use of satellite images 
for any changes or disasters. Reducing the spatial resolu-
tion of an image provides a better image, and merging 
this process with multi-spectral information provides 
better results. In the previous studies carried out for both 
pan-sharpening and deep learning, the aim was to im-
prove the results. The image created by deep neural net-
work models would not be pan-sharpened; it only en-
hances the low-resolution image (Santurri et al., 2012).

According to various studies, Landsat ETM+ and 
OLI-TIRS imagery have been utilized for different ap-
plications in remote sensing, including landslide predic-
tion and land-cover classification (Roy et al., 2014). A 
review of the literature reveals that a total of 24 spectral 
models have been identified, each tailored to specific re-
gions by combining different spectral bands. These com-
binations of bands are selected to highlight particular 
features relevant to the region, such as soil moisture or 
vegetation, which are crucial for accurate land-cover 
mapping and hazard assessment (Jensen, 2009).

Newer algorithms like wavelet-based fusion tech-
niques and Gram-Schmidt spectral sharpening were cre-
ated to overcome these constraints. Wavelet-based meth-
ods are useful for preserving spectral and spatial features 
since they enable multiscale picture decomposition. Re-
cent developments in wavelet-based methods have made 
strides in multi-resolution image fusion, especially in the 
context of satellite and remote sensing imagery, where 

maintaining high spectral fidelity while enhancing spatial 
resolution is crucial. For example, recent work has ex-
plored how the spectral response of sensors can be better 
integrated into these fusion algorithms, significantly im-
proving their utility in practical applications like satellite 
image enhancement and geospatial analysis (Dibs et al., 
2023). Further innovation is required because, in spite of 
these developments, these conventional approaches re-
main limited by their incapacity to adjust to different sen-
sor kinds and spatial resolutions.

To get over the drawbacks of conventional tech-
niques, deep learning techniques have been used more 
and more in pan-sharpening in recent years. Generative 
Adversarial Networks (GANs) and Convolutional Neu-
ral Networks (CNNs) have become effective tools for 
this. Deep learning models, in contrast to conventional 
techniques, are data-driven and are capable of learning 
complex associations between multi-spectral and pan-
chromatic images without the need for preset mathemat-
ical adjustments (Masi et al., 2016).

The application of CNNs to improve the spatial reso-
lution of multi-spectral photographs is one such instance. 
To teach these models the mapping needed for image 
enhancement, paired high-resolution and low-resolution 
images are used for training. Conversely, GANs use ad-
versarial training, in which a discriminator assesses the 
quality of high-resolution images produced by a genera-
tor. The integrity and quality of the fused images are en-
hanced by this adversarial approach (Deng et al., 2020).

Deep learning techniques are not without difficulties, 
though. The need for vast quantities of high-quality 
training data, which might not always be accessible for 
particular sensors or geographical areas, is one of the 
main problems. Widespread adoption may also be ham-
pered by the computing requirements of training and im-
plementing these models.

2.3. Image Fusion

Image fusion is the combination of information from 
different images/sources of a scene. Remote sensing im-
age fusion can be performed in three domains, namely, 
spatial, spectral, and temporal domain. Spatial domain 
fusion is the process of using different resolutions to rep-
resent the area of interest (Hong et al., 2016). For exam-
ple, higher spatial resolution images of one sensor can 
be fused with coarser spatial resolution images of other 
sensors. Another image fusion technique in this domain 
is to use a single imaging sensor to acquire images which 
are taken at slightly different viewing geometries such 
that the area of interest can have different illumination 
areas with different spatial resolutions. Spectral domain 
fusion is the fusion of spectral information from differ-
ent sensors, i.e. merging spectral bands with high spatial 
resolution and low spatial resolution. Temporal domain 
fusion is the process of combining images taken at dif-
ferent times to create an image with improved qualities, 
either by combining images captured closely or by com-
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bining images captured at different times (Belgiu et al., 
2019).

3.  Deep Learning techniques in super 
resolution satellite images

Earth exploration has long made use of remote sens-
ing imagery, and many techniques have been developed 
to recover lost data because of satellite technology limits 
and data transmission channels. The resolution and qual-
ity of gradient maps have greatly increased recently, im-
proving item classification accuracy. Researchers now 
have access to high-quality surface images thanks to ad-
vancements in satellite and aerial photography, which 
can be used to test and train machine learning algorithms 
to improve image quality. This has also made it possible 
to recover small details lost during compression by us-
ing super-resolution methods. In order to produce high-
resolution (HR) outputs with a higher pixel density, su-
per-resolution (SR) techniques use deep neural networks 
to train artificial intelligence models that predict objects 
and elements in low-resolution (LR) images. Dong et al. 
(2015) first proposed a three-layer autoencoder as the 
foundation for these techniques. Based on the generative 
adversarial networks (GAN) framework, Radford 
(2015) presented a novel image processing architecture 
in 2015 termed DCGAN (Deep Convolutional Genera-
tive Adversarial Network). Despite not being created 
especially for image upsampling, this work had a big in-
fluence on the advancement of super-resolution meth-
ods. The size of the necessary training dataset was de-
creased by streamlining the training procedure with the 
help of the GAN framework. Ledig et al. (2017) pro-
posed SRGAN, one of the first successful SR architec-
tures utilizing the GAN technique. When it came to re-
covering details in general-purpose photos, this neural 
network performed admirably. Nevertheless, it had 
 several shortcomings, including the tendency for the 
network to produce artefacts at abrupt gradient changes 
during training, and the frequency and quantity of these 
artifacts were correlated with the number of Residuals in 
Residual Dense Blocks (RRDB). Since deeper networks 
are necessary to successfully recreate surface features, 
this constraint made the architecture unsuitable for satel-
lite image restoration. In order to enhance SRGAN’s 
performance, recent studies have concentrated on reduc-
ing the creation of artefacts in high-resolution photos. 
The architecture was improved by the Wang et al. 
(2018) and Rakotonirina et al. (2020) teams, which in-
creased its stability during training. The new ESRGAN+ 
model has Gaussian noise and Residual Scaling (RS) 
layers instead of Batch Normalization (BN) layers, al-
though it still has a comparable high-level structure. 
These changes have made it possible to employ ESR-
GAN+ as a general-purpose super-resolution technique 
that may enhance missing portions while maintaining 
the high reconstruction accuracy of the original image. 

Furthermore, a new architecture called Progressive En-
hanced Generative Adversarial Network (PEGAN) was 
presented by Jing et al. (2022) for super-resolution with 
high-level image amplification. PEGAN uses an ensem-
ble of tiny networks to process the image, building on 
earlier ESRGAN work. Prior to being processed by two 
networks – one that uses an autoencoder to recover 
structural information and another that uses a multi-pass 
straight network to restore high-frequency features – it 
first extracts low-frequency components. The resulting 
resolution remained less than one meter per pixel after 
amplification, making this method inadequate for satel-
lite image processing with a precision of 1 pixel every 8 
meters, even if it produced images of nearly original 
quality when scaling by a factor of 4. By jointly learning 
a low-rank dictionary pair from overlapping hyper-spec-
tral and multi-spectral regions, Gao et al. (2020) pre-
sented a novel technique to improve the spectral resolu-
tion of multi-spectral images. But, as the authors pointed 
out, their method isn’t appropriate for complicated or 
large-scale instances. Sharshov et al. (2024) present a 
new method for super-resolution in remote sensing by 
combining CNN-based SRGAN with GIS data. In order 
to improve picture reconstruction, this technique uses 
ancillary data including Normalized Difference Vegeta-
tion Index (NDVI) composites, water extent, and terrain 
elevation in conjunction with a GIS Data Features block 
to increase residual scaling. With gains in the Peak Sig-
nal-to-Noise Ratio (PSNR) from 27.3630 to 27.3986 and 
the Structural Similarity Index (SSIM) from 0.9632 to 
0.9673, as well as better visual quality in reconstructed 
images, the suggested GESRGAN model outperformed 
ESRGAN. The approach improved training efficiency 
and decreased the requirement for huge datasets by pro-
cessing GIS data and implementing an effective gating 
mechanism. These developments open up the opportu-
nity for more improvements in GIS data processing and 
larger-scale applications by demonstrating the promise 
of GIS-integrated super-resolution techniques for satel-
lite image reconstruction, especially in situations where 
high-resolution data is scarce.

3.1. Convolutional Neural Networks (CNNs)

CNNs are suitable for working with grid data, includ-
ing raster map data. Image data can have different pat-
tern types because images are multidimensional data. A 
regular CNN model extracts the features based on the 
filter; however, feature extraction ignores the spatial re-
lationship between the features. In other words, CNN 
does not change the spatial data, but the feature extrac-
tion is changed. For spatial data, searching for local geo-
spatial structures (such as patches and objects) is an in-
teresting concept, and deep learning introduces this by 
analyzing the spatial data with an extra layer. Thus, a 
deep CNN model uses hierarchical features, which rep-
resent the entire structure of the spatial relationship. 
Since remote sensing images require high computation 
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time and complex classification algorithms, trying to 
find spatial patterns in the high data is time-consuming 
(Yamashita et al. 2018). Figure 1 illustrates the archi-
tecture of a convolutional neural network (CNN).

The primary building parts of CNN models are the 
Convolutional Layer, Pooling Layer (subsample Layer), 
Fully Connected Layer, Output Layer, and Flatten Lay-
er, aside from feature extraction. Convolutional kernels, 
also known as learned features, are the particular filters 
that are applied to the input image by the convolutional 
layer. Every time, the input and recommended filter are 
smaller than the learned filter kernels. Subsequently, the 
dot products between each object inside the filter’s influ-
ence range and the learned features are calculated by the 
convolutional layer. The item will be split and compared 
to the features in the convolutional layer if it is within 
the filter’s range. The outcome is a feature map that dis-
plays the positions and intensities of the input image’s 
learned features. Its weight is its most crucial character-
istic. This weight is input earlier rather than later. As an 
illustration, we can express the weight values as a ma-
trix, where each entry in the matrix is an element that 
needs to be multiplied by the input components.

3.2.  Autoencoders and Generative Adversarial 
Networks (GANs)

Autoencoders are a type of artificial neural network 
commonly used for dimensionality reduction and data 
compression tasks. They excel in unsupervised learning 
for convolutional or recurrent networks and effectively 
reduce training costs without requiring labeled data. For 
instance, Hinton et al., (2006) demonstrated the use of 
autoencoders for dimensionality reduction in high-di-
mensional data, significantly improving visualization 
tasks. Later advancements, such as denoising autoen-
coders, Vincent et al. (2008) showed improved robust-

ness by reconstructing corrupted input data, while the 
variational autoencoders Kingma (2013) introduced 
probabilistic modeling to learn latent variable distribu-
tions effectively.

Generative Adversarial Networks (GANs) extend 
deep learning applications by enabling the generation of 
high-quality synthetic data. Goodfellow et al. (2020), 
who introduced GANs, highlighted their ability to gener-
ate photorealistic images by adversarial training a gener-
ator and a discriminator. Comparatively, Radford (2015) 
proposed the Deep Convolutional GAN (DCGAN), 
which improved GAN stability and scalability using con-
volutional layers. Additionally, Karras (2019) intro-
duced StyleGAN, which significantly advanced image 
synthesis by offering control over image style at various 
levels. Despite these successes, GANs face challenges 
like mode collapse and training instability, as highlighted 
by Salimans et al. (2016), who proposed techniques 
such as feature matching to address these issues.

While autoencoders focus on dimensionality reduc-
tion and data reconstruction, GANs aim at high-quality 
data generation. Studies comparing the two such as Du-
moulin et al. (2016) suggest that autoencoders perform 
better in encoding compact representations, whereas 
GANs excel in creating realistic data, making them com-
plementary in tasks like semi-supervised learning and 
image enhancement.

3.3. Experimental case studies and analysis

We reviewed four different architectures of Deep 
Learning specifically focusing on four types of CNN and 
three types of GANs. The selected CNN models include 
the widely used Super Resolution Convolutional Neural 
Network (SRCNN), Local Global Combined Network 
(LGCNet), Progressively Enhanced Convolutional Neu-
ral Network (PECNN), and Deep Distillation Recursive 

Figure 1. Architecture of a convolutional neural network (CNN) (from Yamashita et al., 2018)
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Network (DDRN). For GANs, we examined Super-Res-
olution Generative Adversarial Networks (SRGAN), 
Enhanced Super-Resolution Generative Adversarial 
Networks (ESRGAN), and Edge-enhanced GAN (EE-
GAN) due to their relevance in remote sensing image 
enhancement tasks.

This section explores how each of these architectures 
contributes to improving satellite image quality, provid-
ing insight into their strengths and limitations. To ensure 
clarity, we have structured the discussion under separate 
headings for each model, focusing on its specific appli-
cations and performance in super-resolution, pan-sharp-
ening, and image fusion tasks.

3.3.1.  Types of CNN (convolutional neural 
network-based methods)

3.3.1.1.  Super Resolution Convolutional Neural 
Network (SRCNN)

CNNs consist of three primary components: pooling, 
nonlinear mapping, and convolution. By using these 
processes, CNNs can be trained and supervised to adap-
tively convert input picture space to an efficient feature 
space for a given job. The author only uses convolution 
and nonlinear mapping operations in the model since it 
is known that the image super resolution job, the image 
with low resolution will lose more detailed information 
after pooling, leading to a worse reconstructed outcome 
(Lei et al., 2017).

The size of inputs in this study is indicated by the sym-
bol X = HΗW×C, where C stands for the channel number 
of the remote sensing images. The outputs following con-
volution and nonlinear mapping for a network of L convo-
lutional layers can be calculated as follows:

 f1(X; W1, b1) = σ (W1∗X+b1) (1)

 fl (X; Wl,bl) = σ (Wl∗fl−1(X)+bl) (2)

where:
Wl, bl,
l∈ (1,…, L) are the network weights and bias, that 

will be learned.
Wl is the tensor with the size of kl×kl×nl−1×nl, in 

which kl denotes kernel size at layer one,
and nl denotes the number of the feature maps at the 

same layer (n0=C).
bl is the vector whose size equals nl.
Recently, most nonlinear functions are rectified linear 

functions (max (0, x)), and the nonlinear function σ is an 
element-wise operation. This allows CNNs to converge 
considerably faster than previous saturating nonlineari-
ties (Krizhevsky et al., 2012).

3.3.1.2.  Local Global Combined Network 
(LGCNet)

Lei et al. (2017) suggest local global combined net-
works (LGCNet), a novel single image super resolution 
technique for remote sensing pictures based on deep 
CNNs. With its complex “multifork” architecture, LGC-
Net is able to train multilevel representations of remote 
sensing images that incorporate both global environ-
mental priors and local features. Experimental results 
over multiple state-of-the-art algorithms show an overall 
improvement in both the accuracy and the visual perfor-
mance on a public remote sensing data set (UC Merced) 
(He et al., 2016; Kim et al., 2016a; Xu et al., 2016).

Multilevel data has a lot of potential for jobs involv-
ing image super-resolution, particularly when it comes 

Figure 2. Diagram illustrating the suggested super-resolution technique for remote sensing images (from Lei et al., 2017)
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to photos from remote sensing. Deep CNNs, which have 
many convolution layers, are hierarchical models that by 
nature, produce multilevel representations of the input 
images. At lower layers, the representations concentrate 
on local details, such as an object’s edge and contours. In 
comparison, at higher layers, they incorporate a greater 
degree of global prior information, such as the type of 
environment, see Figure 2. LGCNet consists of three 
primary components that are thoroughly explained as 
follows: it utilizes both the local and global representa-
tions to the fullest extent possible (Lei et al., 2017).

1-  Representation: In the first section, inputs are 
adaptively transformed into effective feature space 
using L convolutional layers, with each layer be-
ing followed by a nonlinear mapping, to provide 
various level representations. They selected the 
filter size kl and the number of the feature map-
pings nl in each layer relatively small: kl=3 and 
nl=32, respectively, because of a big convolutional 
filter size that would make the network be redun-
dant and slow.

2-  Local Global Combination: The foundation of 
multiscale learning in this section. The primary 
method of doing local-global combination is by 
concatenating the convolutional results of various 
layers using a “multi-fork” structure. For the final 
reconstruction, these aggregated representations 
are merged using a single convolutional layer. By 
making the filter size and the number of feature 
maps relatively large, where k=5 and n=64, a rich-
er representation of the combined layer can be ob-
tained. The concatenated representation fc can be 
defined as follows:

 fc=[fi,fj,fk,…] (3)

where:

fi , fj , fk are representations of different levels.
Then flgc the overall local global combined represen-

tation can be determined as follows:

 flgc=σ(Wlgc*fc+blgc) (4)

3-  Reconstruction: The last section of LGCNet di-
rectly uses one convolutional layer to recover re-
siduals, or high-frequency components, from the 
previously described local-global combined repre-
sentation.

 R=Wf*flgc+bf (5)

By adding its low-resolution component, the ultimate 
high-resolution image Y^ can be obtained further.

 Y^=X+R (6)

Setting L=5 to 5 in LGCNet facilitates a quick inquiry 
and verification of the suggested concept. Padding is 
used for each convolutional layer with a size of 1 for k=3 
and 2 for k=3 to ensure that the output feature maps 
match the inputs in size.

Figure 3 shows experiment results which are meas-
ured by the mean PSNR of the validation set with the 
training epochs proceeding. The models with related 
names are those that were created using various method-
ologies. Taking LGCNet-345 as an example, this model 
incorporates the third, fourth-, and fifth-layer represen-
tations. The combination of Layer, which incorporates 
more local and global representations, as predicted pro-
duces superior super-resolution results for the remote 
sensing images with more of layers combined.

The experimental findings demonstrate that combin-
ing several layers yields more precise reconstruction 
outcomes. Compared to many cutting-edge algorithms, 
our technique achieves overall increases in accuracy and 
visual performance (for all 21 classes). Additionally, re-

Figure 3. Results of the experiment of (mean PSNR) for validation set using various training epochs. Every model is trained 
using the same training configuration and an upscale factor of 3 (from Lei et al., 2017)
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al-world data studies validate the stability of our LGC-
Net, and the adoption of additional layers in the repre-
sentation portion results in slower quality gains.

3.3.1.3.  Progressively Enhanced Convolutional 
Neural Network (PECNN) (Jiang et al., 
2018)

The Progressively Enhanced Convolutional Neural 
Network (PECNN), a unique deep learning technique 
for super-resolving video satellite images, is presented 
in another previous study. The complicated imaging 
conditions of satellite photos, which frequently contain 
small ground targets, poor texturing, and severe com-
pression distortion, provide issues that the network is 
built to handle (Dong et al., 2015; Haeusser et al., 
2017; Kim et al., 2016a; Tong et al., 2017b). The low-
resolution image (ILR) and super-resolution image 
(ISR) are viewed as the suggested PECNN’s input and 
output, respectively, in this study. The term “up-scaling 
ratio” (r) is used. The C color channels of low- and high-
resolution image are depicted as real-valued tensors with 
sizes of WΗH×C and Wr×Hr×C, respectively.

A pre-trained CNN-based network and a dense con-
nection network are the two subnetworks that make up 
the PECNN. From the low-resolution (LR) input image, 
the pre-trained network extracts low-level features to 
create a basic high-resolution (HR) image that is called 
the base image. In order to improve fine details, the 
dense connection network extracts high-frequency re-
siduals from the base image. This network employs a 
transition unit to gather structural data, which is essen-
tial for enhancing the output of super-resolution (SR).

A subpixel convolution layer is added to the pre-
trained network after a basic three-layer CNN to enable 
upscaling of the picture without the need for conven-
tional interpolation techniques. An initial SR image is 
produced by this network and is used as the dense con-
nection network’s input. A more thorough representation 
can be obtained due to the intricate patterns of the sev-
eral feature maps in the final filters. The following is a 
description of this operation:

 IBR=PS(fn(ILR))=PS(Wn×fn−1(ILR)+bn) (7)

Where:
fn−1(ILR) denotes output of the (n−1)th layer, and
Wn and bn represent the weight and bias of the nth 

layer, respectively.
f(⋅) refers to the convolution operation, followed by 

the rectified linear unit for activation.
PS(⋅) represents a periodic shuffling operator (SP-

conv) (Shi et al., 2016) that can rearrange the elements 
of a H×W×C⋅r2 tensor into a renewed tensor of 
rH×rW×C.

To obtain the base image by the factor of r, it has been 
mathematically optimized the loss function as follows:

 θ^(IBR,θ1)=arg minθ1∑||IHR−f(ILR,θ1)||22 (8)

The ground truth picture is denoted by IHR, the pre-
trained network’s base output is indicated by f(ILR,θ1), 
and the model parameters are represented by θ1. Spe-
cifically, after the pretrained network was optimized, the 
model parameters were fixed and maintained.

A transition unit in the dense connection network per-
forms pixel offset, projection, and concatenation on the 
basis picture to produce structure-related information. In 
order to improve information propagation and provide 
improved feature extraction and expression, the network 
makes use of dense connections between residual blocks.

By combining the residual image generated by this 
network with the base image, the final output is created. 
The issue that lessens the impact on the front layers aris-
es as depth grows. In order to extract and express fea-
tures, a transition unit and a densely connected network 
have been used, as Figure 5 illustrates.

The transition unit is made up of operations such as 
projection, pixel offset, and concatenation, as seen in 
Figure 4 (top panel). The pixel offset is used to extract a 
set of images with comparable structures from the un-
derlying image. After that, we project them from the HR 
space to the LR space in order to produce structure-relat-
ed information. This involves down sampling the base 
images using a bicubic kernel with a down sampling 
value of r and applying a Gaussian filter to each basic 

Figure 4. A summary of the suggested gradually upgraded network (PECNN). The pretrained portion is indicated by  
the components in the red box, and the dense connection subnetwork is indicated by the components in the green box  

(from Jiang et al., 2018).
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image in order to extract structure information. Ulti-
mately, the transition unit’s structure-related data and 
the pretrained network’s low-level characteristics are 
combined for a final extraction in residual blocks (Jiang, 
Wang, Yi, & Jiang, 2018).

Second, the primary elements of the dense connection 
network are depicted in Figure 4 (middle panel). In con-
trast to traditional skip-connection-based networks, a 
more beneficial dense connection pattern has been used 
to improve information propagation between every two 
blocks, hence improving the fine feature expression.

Lastly, a residual block is depicted in Figure 5 (bot-
tom panel), which extracts local features using three 
convolution layers. In order to minimize the parameters 
and combine the data, a 1x1 convolution layer is incor-
porated into the conclusion.

Image SR is a naturally occurring ill-posed problem 
with a non-unique solution. The network model’s con-
vergence rate and approximation accuracy during train-
ing are significantly impacted by the loss function. The 
commonly used loss functions include pixel-based l1-
norm (Lai et al., 2017) and l2-norm (Dong et al., 2015; 
Kim et al., 2016b, 2016a), and feature-based cosine dis-
tance. Typically, they match the target results exactly 
with the learned visuals.

This study proposes a new progressively upgraded 
network for super resolving video satellite imagery, 
called PECNN. It is made up of a dense link network and 
a pretrained network. Specifically, an efficient transition 
unit is incorporated into the network’s core to capture 
information pertaining to the profile structure and also 
encourages the expression of features through the use of 
progressive feature learning and more efficient dense 
connections. Large-scale satellite imagery can benefit 
from the built network’s strong SR performance within 
tolerable computing complexity because it requires few-
er depths and filters but denser connections between 

l ayers. The Jilin-1 video satellite imagery and the Kag-
gle Open Source Dataset experimental results demon-
strate their superiority over the SRCNN, VDSR, and 
Bicubic (Jiang et al., 2018).

To compare the suggested ESRGAN with the original 
SRGAN and other cutting-edge techniques, a number of 
in-depth studies have been carried out. The DIV2K, 
Flickr2K, and OST datasets, which offered a wide range 
of textures, were used to train their models.

• The results of the investigation demonstrated that 
BN layer removal enhanced generalization and de-
creased computational complexity.

• Textures with greater detail and sharper edges are a 
result of the Relativistic Discriminator.

• Accurate brightness and crisper edges were caused 
by features present prior to activation in the percep-
tual loss.

• Texture recovery was further improved, and noise 
was decreased by combining the RRDB architec-
ture with a deeper network.

• ESRGAN continuously outperforms earlier tech-
niques in terms of quantitative measures and visual 
quality:

• Perceptual Quality: Based on comparisons on 
benchmark datasets such as Set5, Set14, BSD100, 
and Urban100, ESRGAN produced more natural 
textures with fewer artefacts than SRGAN and oth-
er approaches.

• PIRM-SR Challenge: The ESRGAN variant dem-
onstrated its superior ability to produce high-quali-
ty super-resolution images by winning the first 
place in PIRM-SR Challenge (region 3) with the 
best perceptual index.

The following are the ramifications of the ESRGAN 
enhancements discussed in the paper:

Visual Clarity Against PSNR: A key topic is the trade-
off between perceptual quality and PSNR, which may be 

Figure 5. Overviews of ResNet and the suggested transition unit. Concatenation and addition are indicated by the symbols 
“C” and “+,” respectively (from (Jiang et al., 2018)).
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fine-tuned based on the application using the network 
interpolation technique.

3.3.1.4.  Deep Distillation Recursive Network 
(DDRN) (Jiang et al., 2018)

This paper presents the deep distillation recursive net-
work (DDRN), a straightforward yet powerful CNN 
framework for video satellite image SR. A collection of 
ultra-dense residual blocks (UDB), a reconstruction 
module, and a multiscale purifying unit (MSPU) com-
prise the DDRN. In particular, it is possible to efficiently 
communicate features produced from several parallel 
convolution layers by adding rich interactive linkages 
within and between multiple-path units in each UDB. 
When compared to traditional models based on dense 
connections, DDRN has the following primary charac-
teristics.

(1) More linking nodes with the same convolution 
layers can be found in DDRN.

(2) Additionally, a method for feature distillation and 
compensation is created that operates at various network 
levels. Specifically, MSPU allows for the compensation 
of high-frequency components lost during the informa-
tion propagation.

(3) The feature maps taken from UDB and the cor-
rected components acquired from MSPU can help the 
final SR image.

DDRN performs better than various state-of-the-art 
feature extraction techniques as well as the traditional 
CNN-based baselines in experiments conducted using 
the Kaggle Open-Source Dataset and Jilin-1 video satel-
lite images.

The suggested model, depicted in Figure 6, is a deep 
recursive neural network that may be broadly classified 
into three substructures: feature distillation, feature ex-
traction and fusion, and feature compensation and SR 
reconstruction. Except for the upsampling process, which 
is inspired by earlier SISR research (Dong et al., 2015; 
Kim et al., 2016b; Shi et al., 2016; Tong et al., 2017a), 
the entire process of the local feature extraction and fu-
sion is in the LR space. 𝐼𝐿𝑅 and 𝐼𝑆𝑅 are considered the 
LR input and HR output of the proposed DDRN. 𝐹𝑖 and 
𝐵𝑗 refer to output in the 𝑖𝑡ℎ layer and the 𝑗𝑡ℎ block, respec-
tively. In this study, the LR RGB images are directly fed 
into the network and processed with initial convolution-
al layers (two layers with 3 × 3 kernel) to extract features 
as follows:
	 𝐹1=𝐻(𝐼𝐿𝑅), (9)

Figure 6. Graphical summary (from Jiang et al., 2018).

Figure 7. A summary of the deep distillation recursive network (DDRN) that is being suggested.  
The distillation process with a unique distilled ratio of 𝛼 is represented by the red distillation symbol that comes  

after the UDB (from (Jiang et al., 2018)
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	 𝐹2=𝐻(𝐹1), (10)

Where:
𝐻(·) denotes convolution operation.
𝐹1and 𝐹2 represent the shallow feature maps extracted 

through the initial convolutional layers, served as the in-
put of the UDB.

Additionally, the suggested residual block UDB 
serves as the foundational module in DDRN for the local 
feature extraction. Not only may the data for each UDB 
be exchanged between layers and the multiple-path 
units, but it can also be used as an input for the ultra-
densely connected residual blocks that follow. Through 
the sequential combination of multiscale coarse-and-fine 
features, these strategies enforce the information trans-
mission and result in fine feature expression.

As illustrated in Figure 7 and Figure 8, our suggested 
approach may adaptively distil and preserve feature 
maps by partially selecting information from current 
output while maintaining its integrity. This is in contrast 
to the traditional network, whose output in each of the 
blocks is directly sent to the following segment. Prior to 
the reconstruction process, these feature maps that were 
gathered from various phases are then combined and re-
fined in MSPU in order to deduce and account for the 
high-frequency information.

uses sub-pixel convolution layers to boost resolution. 
The purpose of the discriminator network is to distin-
guish between actual high-resolution images and the 
super-resolved images that the network produces.

Using the feature maps of the VGG19 network, a per-
ceptual loss is used to calculate the content loss (see Fig-
ure 10). Instead of pixel-by-pixel similarity, this loss is 
intended to be more akin to perceived similarity. By us-
ing the adversarial loss, the generator is pushed towards 
the natural image manifold and encouraged to produce 
images that are indistinguishable from real images (see 
Figure 9). The adversarial loss and content loss are add-
ed together to form the combined loss function, also 
known as perceptual loss.

A sizable ImageNet image dataset was used to train 
the networks. Using a bicubic kernel, the high-resolution 
images were down scaled to produce the low-resolution 
versions. In-depth tests are conducted in the research us-
ing scale factors of 4×, which means that the photos 
were upscaled by four times their original size using 
benchmark datasets (Set5, Set14, and BSD100).

Quantitative Metrics: The Structural Similarity Index 
(SSIM) and Peak Signal-to-Noise Ratio (PSNR) are two 
metrics used in the paper to evaluate the performance of 
SRGAN with alternative approaches. While not attain-
ing the maximum PSNR, SRGAN considerably enhanc-
es the perceived quality of images.

MOS, or mean opinion score: human raters evaluated 
the visual quality of the photographs in a subjective as-
sessment. In comparison to alternative approaches, SR-
GAN achieved better MOS ratings, indicating superior 
perceptual quality as shown in Figure 11.

SRGAN produced high-quality, photo-realistic imag-
es better than state-of-the-art techniques, especially for 
large upscaling factors (4×). According to the MOS 
tests, images generated using SRGAN were judged to be 
more similar to the original high-resolution photographs 
than images created using other techniques. Additional-
ly, the study discovered that improving texture detail and 
perceptual quality required careful consideration of the 
content loss option (VGG loss from deeper layers).

The authors talk about the shortcomings of conven-
tional measurements like PSNR and SSIM, which fre-
quently fall short of capturing an image’s perceived 
quality. This gap is filled by SRGAN, which emphases 

Figure 8. The process of distillation and compensation.  
The distilled feature maps 𝐵𝑖×𝛼 in the current UDB are 

adaptively conserved, as indicated by the red components. 
The distillation ratio for the current UDB output, 𝐵𝑖Bi, is 

shown by 𝛼α. The further purification operation is referred 
to as MSPU (from Jiang et al., 2018).

3.3.2. GAN-based methods:

3.3.2.1.  Super-Resolution Generative Adversarial 
Networks (SRGAN) (Ledig et al., 2017)

In order to produce photo-realistic high-resolution 
images and enhance the quality of single-image super-
resolution (SISR), the research presents a novel tech-
nique called the Super-Resolution Generative Adversar-
ial Network (SRGAN). The process includes a few es-
sential elements:

The generator network is composed of 16 residual 
blocks and is based on a deep residual network (ResNet) 
with skip connections. Two convolutional layers with 
batch normalization and parametric ReLU as the activa-
tion function are present in each block. The generator 

Figure 9. Comparing super-resolved images with SRResNet, 
bicubic interpolation, and SRGAN demonstrates how 
SRGAN improves perception (from Ledig et al., 2017)
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perceptual loss and yields more aesthetically acceptable 
outcomes. The study recommends that in order to further 
enhance the harmony between fidelity and perceptual 
quality, future research should investigate various net-
work topologies and loss functions.

3.3.2.2.  Enhanced Super-Resolution Generative 
Adversarial Networks (ESRGAN)  
(Wang et al., 2018)

The authors want to improve the Super-Resolution 
Generative Adversarial Network (SRGAN) in order to 
improve the visual quality of super-resolution for a sin-
gle image. They emphasize three essential elements:

The primary building unit they introduce is the Resid-
ual-in-Residual Dense Block (RRDB), which increases 
the model’s capacity without requiring the use of Batch 
Normalization (BN). By combining dense connections 
and residual networks, the RRDB improves performance 

in recovering high-resolution information and enables a 
deeper design.

Relativistic Average GAN (RaGAN), which the au-
thors use, is a discriminator that forecasts relative real-
ness between pictures as opposed to absolute realness. 
With this change, the generator is able to recover tex-
tures that are more realistic.

By utilizing attributes prior to activation, they enhance 
perceptual loss by offering more robust supervision for 
texture recovery and brightness consistency. They present 
a network interpolation technique that seamlessly transi-
tions between a PSNR-oriented network and a GAN-
based network in order to strike a compromise between 
perceived quality and PSNR (Peak Signal-to-Noise Ra-
tio). To compare the suggested ESRGAN with the origi-
nal SRGAN and other cutting-edge techniques, the au-
thors carried out a number of in-depth studies. The DI-
V2K, Flickr2K, and OST datasets, which offered a wide 
range of textures, were used to train their models.

Figure 10. Structure of the SRGAN Generator and Discriminator Networks (from Ledig et al., 2017)

Figure 11. Distribution of MOS scores on the BSD100 dataset across approaches, demonstrating the superiority  
of SRGAN (from Ledig et al., 2017).
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The results of the investigation demonstrated that BN 
layer removal enhanced generalization and decreased 
computational complexity. Relativistic discriminator: a 
tool for producing textures with higher detail and sharper 
edges. More precise brightness and sharper edges were 
produced by features present before to activation in the 
perceptual loss. A deeper network and the RRDB archi-
tecture improved texture recovery and decreased noise 
even further, as shown in Figure 12 and Figure 13.

In terms of both quantitative metrics and visual qual-
ity, ESRGAN continuously performs better than previ-
ous methods. In comparison to SRGAN and other tech-
niques, it produces more realistic textures with fewer 
artefacts on benchmark datasets including Set5, Set14, 
BSD100, and Urban100. When ESRGAN won first 
place in the PIRM-SR Challenge (region 3) with the best 
perceptual index, demonstrating its remarkable capacity 
to generate high-quality super-resolution images, this 
excellent performance was further confirmed.

The following are the ramifications of the ESRGAN 
enhancements discussed in the paper: Visual Clarity 
Against PSNR: A key topic is the trade-off between 
PSNR and perceived quality, which may be fine-tuned 
based on the application using the network interpolation 
technique. The authors propose that texture recovery-
focused perceptual loss functions be investigated fur-

ther, and that ESRGAN could be employed for various 
picture restoration applications, see Figure 14.

3.3.2.3.  Edge-enhanced GAN (EEGAN)  
(Jiang et al., 2019)

In this work, an adversarial learning method that is 
immune to noise was combined with a generative adver-
sarial network (GAN)-based edge-enhancement net-
work (EEGAN) for robust satellite image SR recon-
struction. Specifically, EEGAN is composed of two pri-
mary subnetworks: the edge-enhancement subnetwork 
(EESN) and the ultra-dense subnetwork (UDSN). A col-
lection of 2-D dense blocks is constructed in UDSN in 
order to extract features and provide an intermediate 
high-resolution result that appears sharp but is weakened 
by noise and artifacts, much as earlier GAN-based tech-
niques. Then, using mask processing to remove the 
noise-contaminated components, EESN is built to ex-
tract and improve the image contours. A result with 
strong credibility and well-defined contents can be pro-
duced by combining the improved edges with the re-
stored intermediate image. Extensive studies using Ji-
lin-1 video satellite pictures, Digital globe, and Kaggle 
Open Source Data set demonstrate better reconstruction 
performance than the state-of-the-art SR techniques.

Figure 12. Super-resolution findings are compared between SRGAN, ESRGAN, and ground truth;  
ESRGAN displays textures that are sharper and more detailed (from: Wang et al., 2018)

Figure 13. Diagram showing how the RRDB architecture differs from the original SRGAN (Wang et al., 2018)
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Figure 14. Comparative analyses using benchmark datasets that highlight ESRGAN’s enhanced visual quality  
(from: Wang et al., 2018).
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The Ultra-Dense Subnetwork (UDSN) and the Edge-
Enhancement Subnetwork (EESN) are the two subnet-
works that make up the EEGAN structure as a whole, as 
seen in Figure 15. It demonstrates how the intermediary 
steps convert the low-resolution (LR) input into the final 
super-resolved (SR) output.

The EESN’s edge extraction and enhancement proce-
dure is shown in Figure 16. It describes how to extract 
the intermediate edge maps, clean them up with the 
mask branch, and create enhanced edge maps.

An Edge-Enhanced Generative Adversarial Network 
(EEGAN) for super resolution (SR) remote sensing im-
age processing is proposed in this research. The tech-
nique is meant to deal with issues like recovering high-
frequency edge details in imaging settings where noise 
is present. The two primary parts of the EEGAN are as 
follows:

UDSN, or ultra-dense subnetwork: The intermediate 
high-resolution (HR) image produced by this subnet-
work, which is in charge of feature extraction, appears 
crisp but could include noise and artifacts.

Edge-Enhancement Subnetwork (EESN): Using a 
mask-processing technique, this subnetwork refines the 
edges derived from the intermediate HR picture. Next, 
the intermediate image and the improved edges are com-
bined to create the final SR image.

The EEGAN framework uses a generative adversarial 
network (GAN) approach in which the discriminator dis-
tinguishes between the generated image and the actual HR 
image, and the generator attempts to create an HR image 
that is close to the ground truth. The Edge-Enhancement 
Subnetwork (EESN) architecture is the subject of Figure 
17, which illustrates the progression of activities from 
edge extraction to noise reduction and enhancement. Sev-
eral loss functions are involved in the process:

1.  Content Loss: promotes the generation of an inter-
mediate HR image that is close to the actual data.

2.  Adversarial Loss: by training the discriminator to 
recognize phony images, this technique aids in the 
creation of realistic textures.

3.  Consistency Loss: verifies that the final SR picture 
and the ground truth are consistent.

Figure 15. The suggested edge-enhancement network (EEGAN) in its schematic form (from: Jiang et al., 2019)

Figure 16. Description of the suggested edge improvement (from: Jiang et al., 2019)
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The comparison of EEGAN with cutting-edge SR 
techniques like SRCNN, VDSR, and SRGAN is the 
main emphasis of the analysis. Metrics such as the Fea-
ture Similarity Index (FSIM), Structural Similarity In-
dex (SSIM), and Peak Signal-to-Noise Ratio (PSNR) are 
used to assess the performance. In order to verify the 
contributions of the various EEGAN components, abla-
tion studies are also included in the publication. The out-
comes show that EEGAN performs noticeably better 
than competing SR techniques on a number of datasets, 
including Digital Globe imagery, Jilin-1 video satellite 
pictures, and Kaggle Open Source. Significant findings 
include the following:

EEGAN performs better at preserving clean, clear 
edges while lowering noise and artifacts. Quantitative 
measures and visual quality both significantly improve 
when the edge-enhancement approach successfully im-
proves the image contours. Furthermore, the approach is 
robust under unknown degradation situations, which 
makes it extremely useful for real-world satellite imag-
ing SR tasks.

The study emphasizes how well the EEGAN frame-
work handles the problems caused by SR in remote sens-
ing imagery. The capacity of the suggested procedure to 
produce visually appealing outcomes while preserving 
distinct and finely detailed edges is highlighted. The re-
search also addresses the possibility of using the EE-
GAN framework for picture restoration applications 
other than remote sensing.

We have compiled the main characteristics, benefits, 
and drawbacks of the approaches covered in Sections 
3.3.1 and 3.3.2 in Table 2 to enable a clear comparison 
of them. In order to give readers a rapid and thorough 
grasp of each technique’s suitability for remote sensing 
image enhancement tasks, this table attempts to high-
light each technique’s advantages and disadvantages. By 
combining this data, we hope to make it easier to choose 
the best approaches for particular use cases and promote 
more research into their possibilities in this area.

4. Integration of Deep Learning and GIS

Integrating a deep learning model for super-resolution 
image processing with GIS can significantly enhance 
satellite imagery by automatically improving the image 
quality (Asif Raihan, 2023). This integration can have 
numerous applications in fields like environmental mon-
itoring, urban planning, agriculture, and more. Here’s 
how such an integration might work.

The deep learning model used could be something 
like ESRGAN (Enhanced Super-Resolution Generati- 
ve Adversarial Networks), SRCNN (Super-Resolution 
Convolutional Neural Network), or other advanced su-
per-resolution techniques. The model would take lower-
resolution satellite images as input and output high-res-
olution images by predicting finer details and enhancing 
the image quality (Singla et al., 2022).

The GIS platform would serve as the interface for in-
putting satellite images. Users can select regions of inter-
est and specify the resolution they desire. Upon upload-
ing or selecting a satellite image in the GIS platform, the 
deep learning model automatically processes the image 
in the background, enhancing its resolution. The en-
hanced image is then integrated back into the GIS envi-
ronment, where it can be used for various spatial analy-
ses. Higher resolution images provide more detailed data, 
improving the accuracy of analyses like land use classifi-
cation, change detection, and feature extraction.

GIS is strongly reliant on these computational skills, 
and significant advances in computer power are rapidly 
opening up new opportunities, especially in the field of 
DL. Particularly in the areas of 3D modelling, map crea-
tion, and route calculation, the combination of GIS with 
DL has shown great promise as a useful tool (Bogus-

Figure 17. A description of the suggested EESN subnetwork 
(from: Jiang et al., 2019)

Table 2. Advantages and Disadvantages of CNN and GAN Models in Satellite Image Enhancement

Method Advantages Disadvantages
SRCNN Simple architecture, computationally efficient Limited ability to capture complex features
LGCNet Captures local-global relationships effectively Higher computational cost
PECNN Gradual refinement improves fine details Substantial training time required
DDRN High reconstruction accuracy, efficient feature extraction Complex architecture may increase the computational load
SRGAN Generates realistic textures Prone to artefacts at abrupt gradient changes
ESRGAN Superior texture recovery and artifact reduction High computational cost, complex training process
EEGAN Preserves fine edge details Sensitive to noise and requires significant preprocessing
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lawski et al., 2022). The system’s analytical capabilities 
are improved when remotely sensed data is combined 
with other geographical variables inside a GIS frame-
work (Bilotta et al., 2023). In several phases of the Ar-
tificial Intelligence (AI) workflow, GIS is essential. As 
an example, GIS plays can be used to provide geograph-
ic coordinates to photos that are detected using DL algo-
rithms. Furthermore, an algorithm can be used in GIS to 
recognize and examine photographs. For the storage, 
retrieval, analysis, and visualization of data, Artificial 
Neural Networks (ANNs) require a compatible environ-
ment. One possible remedy has been suggested: the 
combination of GIS and ANN (Liao et al., 2023). Ac-
cording to Ferchichi et al. (2022), the integration of GIS 
and DL has great promise for a variety of applications, 
such as the classification of RS imagery and attribute 
data analysis. It may be possible to improve environ-
mental mapping and the identification and retrieval of 
objects inside an integrated database by integrating a 
GIS database with sophisticated DL models (Chen, 
2022). Since neural network classifiers are independent 
of previous statistical models for input data, they can op-
erate as broad pattern recognition systems and show 
flexibility in integrating various data types. As a result, 
they can be used to incorporate GIS information into the 
classification of remote sensing photos (Fırat et al., 
2023). There are numerous previously published studies 
that used GIS data in their investigations. The work by 
Benediktsson et al. (1990), which used topographic 
data in conjunction with Landsat Multi-spectral Scanner 
(MSS) data for the goal of mapping ground cover, serves 
as an example of this. Landscape height information ob-
tained from a digital terrain model (DTM) was used as 
an additional input for a multi-layer perceptron neural 
network in a different study carried out by the Joint Re-
search Committee in 1991. Two sets of SPOT (a series 
of French high-resolution optical imaging Earth obser-
vation satellites) High-Resolution Visible (HRV) photos 
taken at various times were used to train this neural net-
work. Classifying land cover in satellite photos was the 
project’s goal. In this case, the overall accuracy of the 
categorization process was significantly improved by in-
tegrating DTM data into a GIS framework. Additionally, 
the neural network’s training time was decreased signifi-
cantly as a result of this integration, essentially half the 
duration. The application of GIS data to neural networks 
is a relatively new field with little actual research to sup-
port it. However, the minimal amount of data suggests 
that this strategy could end up being a profitable one 
(Huang et al., 2022). For real-time applications, the sys-
tem could be set up to process images on-the-fly, allow-
ing users to see the enhanced results almost immediately 
after image acquisition (Sarker, 2021).

Geospatial data and particularly remote sensing data 
are known in the study of urban areas for the purpose of 
gathering comprehensive data about and monitoring the 
changing aspects of different constituents of urban areas 

(Ouchra et al., 2022). This is important for urban plan-
ning, monitoring, and supporting decision-makers with 
insightful information for making informed decisions 
about the different facets and systems within urban areas 
(Wu et al., 2020). GIS is an essential tool in enabling the 
simulation and illustration of different aspects of urban 
life (Sinjari & Kosovrasti, 2015). They make use of the 
spatial data available, which are sets of data with vary-
ing attributes and characteristics, allowing for the explo-
ration and analysis of the relationships between different 
aspects of urban life (Kareem Jebur, 2021; Sinjari et 
al., 2015). These systems are widely used due to their 
ability to integrate, analyze, map, and depict spatial data 
for the purpose of monitoring and guiding the develop-
ment and change of urban areas over time (Yu et al., 
2023).

5.  Evaluation Metrics for Image 
Enhancement

The evaluation of the performance of a model is an 
important aspect of deep learning models. It refers to 
how well a model generates an output from an input as 
per the task defined. The evaluation includes measuring 
the performance of the model in a meaningful way rela-
tive to the data distribution, how to optimize the perfor-
mance, and how it must measure the model’s accuracy. 
The performance of any model first must be reviewed 
against the ground truth. Based on the application of the 
model developed and their architecture, these applica-
tions have pre-defined evaluation metrics, and they 
range from simple measures such as accuracy to more 
comprehensive measures such as recall and precision in-
cluding Mean Square Error, Structural Similarity Index, 
Peak Signal-to-Noise Ratio, and their function for satel-
lite image processing (Mohammed et al., 2023).

All the evaluation metrics like mean squared errors, 
structural similarity indices, peak signal-to-noise ratio, 
and corresponding functions are developed to signal 
overlap among different images or signal files. Current-
ly, there are no such specialized or tailored evaluation 
metrics developed exclusively to evaluate the generated 
enhanced pair of images due to image enhancement or 
super-resolution tasks as there is no explicit ground truth 
image (Sara et al., 2019). As there is no universal metric 
developed to assess the quality of the generated images 
like denoisegans, super-resolving GANs, and so on, one 
has to make the final decision based on these general-
purpose image similarity indices to select the model 
leading to this major challenge and lack of standard 
evaluation metric give rise to inconsistent results quoted 
in the literature leading to Web Object Creation (WOG) 
approach. In this study, a detailed summation of evalua-
tion metrics used to appraise the image quality enhance-
ment techniques using deep learning advanced or tai-
lored specifically Graphical Information System opera-
tions tailored for satellite images are reviewed (Sara et 
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al., 2019; Wang et al., 2024; Wenlong et al., 2021). 
The derivation of these symbolic algebra is also provid-
ed. To the best of the author’s knowledge, this is the first 
review of its kind in literature. The outcomes from this 
study help scientists select the appropriate model for en-
hancing a given type of satellite image (Sara et al., 
2019).

5.1. Peak Signal-to-Noise Ratio (PSNR)

The signal-to-noise ratio (SNR) or the peak signal-to-
noise ratio (PSNR) is a widely used algorithm for com-
puting the quality metric in an image processing system. 
The higher the value of SNR, the better the image qual-
ity. Document Image Binarization Contest (DIBCO) 
2010 used it to measure the effectiveness of the proposed 
algorithm. It is often applied for denoising, transform-
ing, or enhancing satellite images and functions (Petro-
vic et al., 2016). Its method is straightforward and com-
mon, which is the ratio of the peak value of a signal to 
the effective noise. The normalized form of the signal-
to-noise ratio is expressed in decibels as a relatively 
comprehensible measure (Noor Azam et al., 2022). The 
conventional transformation is used to convert the ratio 
from amplitude to decibels. PSNR is a simple, yet effec-
tive, method that can be used. Various types of encoders 
deal with testing into different transmissions, lossy cod-
ing, decompressed video, and images with a marked 
SNR. It is often employed as an objective rating for 
graphic processing and Computer-Generated Imagery 
(CGI) production effects to assess graphic fidelity (Horé 
et al., 2010).

5.2. Structural Similarity Index (SSI)

Structural Similarity Index (SSI) is a widely used 
metric that considers the changes in structural informa-
tion in the original and enhanced images. To do this, the 
SSI index is first computed and then used as a factor to 
enhance GS satellites’ input images. SSI is calculated as 
the product of three functions: luminance, contrast, and 
structure (Chebbi et al., 2014). However, these three 
functions can be specifically tuned to contain abundant 
local structural information. Therefore, the SSI has the 
ability to weigh up structures not just in the whole do-
main, but also locally based on visually hidden human 
visual perception. Using human visual psychological 
factors to simulate the pixel processing process boosts 
the enhancement effects (Peng et al., 2020; Renieblas 
et al., 2017).

In general, three model assumptions are used to slim 
down the number of solutions. These assumptions are: 
(I) the pixel values in the dark channel H* have a Gauss-
ian distribution; (II) the condition p(H(ti)|Ei, A (ti), T 
(ti), θi) is a Gaussian distribution; (III) the variance 
σ^2(H(ti)) concerning the A and T are independent of the 
width of dark channel edges in H. These assumptions 
allow the semidark channel estimation equation to de-

rive the enhancement model E (ti) for its pixel values. 
The enhanced satellite input image is then reconstructed 
with selected estimation, rendering the enhancement 
color-consistent with human vision. In the experiments, 
well-known classic bio visual perception theories are 
used as golden standard visual models – to parameterize 
and learn unbiased filters to predict the low-frequency 
visual black-gray model for enhancement. Promising re-
sults based on the GS satellite input from the World-
View-3 dataset are reported (Renieblas et al., 2017).

5.3. Mean Squared Error (MSE)

Mean squared error (MSE) is the average of the 
squared errors or deviations over all pairs of true and 
predicted values in a dataset. Specifically, for the pair of 
true and predicted values from an image, the square of 
their difference is calculated (Over et al., 2021).

  (11)

Where:
yi is the ith observed value.
ŷi is the corresponding predicted value.
n = the number of observations.
Then, the mean of these different squared values (one 

for each pair of true and predicted pixels in the image) 
results in MSE. An MSE value closer to zero denotes a 
more accurate model. Particularly, zero MSE suggests a 
100% accurate model. This error function penalizes a 
large error. Hence, larger MSE values point to increased 
disparities between true and predicted labels. In the con-
text of deep learning, lower MSE values imply better 
regression models for a wide array of datasets as well as 
applications such as advanced computer vision (Zhao et 
al., 2024).

6.  Future Directions and Emerging Trends 
and Applications

Due to the promising results of satellite image en-
hancement using the DL model, researchers have been 
setting their focus to explore other exciting and interest-
ing avenues. These unique perspectives are likely to 
transform a nascent field into an exhilarating domain of 
in-depth research (Zhang et al., 2022). This article re-
views the current critical pressing questions and discuss-
es the direction of future efforts, including a wide variety 
of directions that could be pursued (Wang et al., 2018).

It would be interesting to know other innovative and 
compelling approaches for enhancing satellite imagery. 
The current approaches of performing pan-sharpening, 
i.e. super resolution for satellite images, are necessary 
(Wang et al., 2018), yet still need to be upgraded with 
cutting-edge techniques to improve satellite image en-
hancement.
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In conclusion, DL could learn a sophisticated trans-
formation from low-quality to high-quality satellite im-
ages while concurrently improving our geographical 
maps (Liu et al., 2021; Wang et al., 2018). This promis-
ing technique could bolster broader satellite image as-
sessments, leading to results with more accurate images 
and thus vital improvements. Moreover, the outcome of 
the intended model should also be assessed with the aid 
of more semantic depth radiometric correction and true 
validation (Zhang et al., 2022). Additional annotations 
to train the model would augment pan-sharpening effec-
tively, making it more accurate and suitable for wider 
applications (Liu et al., 2021; Zhang et al., 2022). All 
in all, combining DL integrated with GIS represents an 
exciting opportunity for the development and advance-
ment of high-resolution remote sensing in more in-depth 
and substantial fashions to benefit various fields. With 
the progression of this technology, beneficial applica-
tions for urban remote sensing will drastically widen, 
significantly improving everyday life (Abdalla, 2024). 
Deep learning has the potential to strengthen GIS-relat-
ed applications, including real-time mapping, historical 
map validation, image resolution enhancement, imagery 
analysis, disease detection, traffic prediction, question-
and-answer GIS platforms, object detection in large-
scale maps, species detection and count, forecasting of 
municipal services, map navigation, and many other di-
verse real-world GIS problems (Kiwelekar et al., 2020).

Deep learning can enhance GIS science, handle on-
line GIS data effectively, and give users useful informa-
tion. Deep learning models can be taught and evaluated 
to extract significant patterns and insights from big data-
sets, including crowdsourced GIS data, satellite photog-
raphy, and aerial imagery. These models use input data, 
such as geographic datasets and high-resolution image-
ry, and training data, which usually consists of labelled 
samples to teach the model particular tasks, such as item 
detection or land use categorization. The accuracy and 
generalization capacity of the model are then assessed 
using test data. Deep learning integration is crucial to 
realizing the national spatial data infrastructure’s vision 
and helps build the spatial data infrastructures accessible 
via Google Earth, Wikimapia, Google Maps, Bing Maps, 
TomTom, OpenStreetMap, and other platforms (Bill et 
al., 2022). To further integrate satellite and aerial images 
with GIS and progress both domains at the same time, 
the GIS and deep learning communities should collabo-
rate (Williamson et al., 2007). Working concurrently 
with deep learning, we can make great strides in advanc-
ing the state of GIS practice, thereby also enhancing the 
lives and decision-making skills of ordinary users (Ho-
sen et al., 2023).

7. Conclusions

The survey showed that deep learning models are 
more reliable for enhancing specialized information than 

commonly used image enhancement tools in GIS for 
multi-temporal/sensor satellite images, except for very 
high resolution (VHR) images Particularly, due to the in-
ability of the developed model to extract large context 
information, there were certain problems in the applica-
tion to VHR images. Therefore, it is expected that studies 
will be conducted to create a more flexible structure to 
use higher content information and context, especially in 
VHR images. It is expected that the inclusion of higher-
level abstraction information in the network structure 
will allow the model to take a more comprehensive ap-
proach to the context it is in and perform better.

In addition, the desired image quality parameters will 
be the priority. If there is no satisfactory realization of 
enhanced results, deep learning models will not be very 
preferred because of the high computational costs of 
these methods. Since the deep learning concept has 
come to the fore as a very popular and beautiful concept 
of the day and everyone follows and applies it in its field, 
studies to be conducted on this subject will appear with 
different methods, approaches, data, and results. Recent 
conclusions are expected to become a shortcut and guide 
for further deep-learning image enhancement applica-
tions. Another important finding of the work is the deter-
mination of the necessity for spectral index generation 
and enhancement based on these indices, independent of 
the selected transfer learning architecture. This flexibil-
ity allowed a generalist model to be developed, and dif-
ferent deep-based learning models tailored specifically 
to the object were compared. It is considered as a sig-
nificant point as it is beneficial in terms of providing 
speed, consistency, and model complexity reduction 
based on the application of the developed model, and 
hence the very high computing cost and infrastructure 
required in the background.

The current review on using deep learning approach-
es in enhancing satellite image resolutions combined 
with GIS models showcased the efficiency of using deep 
learning in solving such spatial expertise. It discussed 
various combinations of deep learning methods to re-
solve the current inadequacy in obtaining GIS data and 
proposed a potential combination of deep learning mod-
els. As the advancements in studying the earth phenom-
enon are rapidly increasing, the usage of GIS data is in-
crementing. Alongside with that, the increase of data 
from satellite images from UAVs and from other sources 
may increase the demand for high-resolution GIS-based 
analysis, which includes a lot of ground truth informa-
tion. The collaboration of deep learning with other GIS 
models has great potential in the optimization of GIS 
and the model scenarios.

To ensure the applications are more successful, stud-
ies are increasing their attention to the training method-
ology and problems that hinder the model’s application. 
Publicly shared code and models can also improve the 
models’ potential for application in real-world scenarios. 
Additionally, with an increase in the models’ use, it may 
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be carefully considered setting an ecological framework 
that may include, but not just focus on, increasing the 
prediction of data or the precision of data resolution 
quality with less truth value and examination. The po-
tential use of deep learning in geospatial data is enor-
mous, and hand in hand, GIS and deep learning models 
will reshape future geospatial data globally.
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SAŽETAK

Poboljšanje satelitske slike korištenjem dubokoga učenja i GIS integracije, 
sveobuhvatan pregled

U radu se donosi opsežan pregled 32 studije (20 časopisa, 11 zbornika i jedno poglavlje u knjizi) objavljenih od 2016. do 
2023. u područjima dubokoga učenja (DL), poboljšanja slike, slike u superrezoluciji i geografskoga informacijskog susta-
va (GIS) usredotočujući se na integraciju DL metodologija s GIS-om radi poboljšanja kvalitete satelitskih slika. Pregled 
sažima pozadinu, načela, kvalitetu poboljšanja, brzinu i prednosti ovih tehnologija uspoređujući njihovu izvedbu na 
temelju metrike kao što su vršni omjer signala i šuma (PSNR), srednja kvadratna pogreška (MSE), korijen srednje kva-
dratne pogreške (RMSE), mjerenje indeksa strukturne sličnosti (SSIM) i vrijeme izračuna. Tehnologije satelitskoga da-
ljinskog opažanja, koje su omogućile učinkovit način prikupljanja prostornih informacija od NASA-ina lansiranja Land-
sata 1 1972., nedavno su napredovale kako bi omogućile prikupljanje satelitskih (HRS) slika visoke rezolucije (≤ 30 cm). 
Međutim, čimbenici kao što su atmosferske smetnje, zasjenjenje i nedovoljna iskorištenost kapaciteta senzora često 
smanjuju kvalitetu slike. Kako bi se to riješilo, satelitske slike zahtijevaju poboljšanje, a DL se pokazao kao moćan alat 
zbog svoje sposobnosti modeliranja složenih odnosa i točnoga oporavka slika superrazlučivosti. Iako su DL i neuronske 
mreže pokazale znatan uspjeh u poboljšanju prirodne slike, njihova primjena na satelitske slike predstavlja jedinstven 
izazov. Ovi izazovi uključuju nedovoljno uzimanje u obzir različitih karakteristika satelitskih slika, kao što su različite 
prostorne rezolucije, šum senzora i spektralna raznolikost te oslanjanje na pretpostavke modeliranja koje se možda neće 
uskladiti sa složenošću satelitskih podataka. To naglašava potrebu za daljnjim istraživanjem naprednih DL pristupa po-
sebno skrojenih za ovo područje.

Ključne riječi: 
duboko učenje, GIS, neuronske mreže, satelitske slike, poboljšanje slike, superrezolucija
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