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Abstract
Roadheaders play a crucial role in the excavation processes of tunnels and mines, offering efficient and precise cutting 
capabilities. The performance prediction of a roadheader is essential for optimizing operations and ensuring project suc-
cess. By understanding the various factors that influence performance, implementing predictive models, and continu-
ously improving machine design and operational strategies, the potential of roadheaders can be maximized. This article 
delves into the intricacies of performance prediction for roadheaders, exploring methods, case studies, challenges, and 
future directions in this critical aspect of tunneling and mining operations. The primary objective of this study is to de-
velop models that can predict the Instantaneous Cutting Rate (ICR), which is defined as the production rate during the 
actual cutting period (measured in tons or cubic meters per cutting hour), based on the properties of the rock formations 
being excavated as well as machine parameters. In this research, the Instantaneous Cutting Rate of roadheaders at the 
Tabas coal mine was analyzed by examining the characteristics of both the rock and the machinery involved. Addition-
ally, this study employed Firefly Algorithm (FA), Bat Algorithm (BA) and Support Vector Machine (SVM), which were 
assessed using coefficient of determination (R²), root mean square error (RMSE), mean squared error (MSE) and mean 
absolute error (MAE).The obtained results for Firefly Algorithm (FA) are found to be as R2 = 0.9104, RMSE = 0.0658, 
MSE= 0.0043 and MAE= 0.0039, for Bat Algorithm (BA) are found to be as R2 = 0.9421, RMSE = 0.0528, MSE= 0.0027 and 
MAE= 0.0024, and for Support Vector Machine (SVM) are found to be as R2 = 0.8795, RMSE = 0.0762, MSE= 0.0058 and 
MAE= 0.0052, respectively. It can be concluded that while predictive models produce satisfactory results, the Bat Algo-
rithm (BA) demonstrates a higher level of precision and realism in its outcomes.
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1. Introduction

In certain contexts, mechanical or mechanized exca-
vation presents a viable alternative to conventional exca-
vation and blasting techniques, with a notable increase 
in its application for the development of underground 
spaces in contemporary practices (Aydan et al., 2014). 
Mechanized methods offer several advantages over tra-
ditional approaches, including enhanced excavation 
speed, improved production efficiency, greater safety, 
and reduced need for supplementary excavation, lower 
maintenance requirements, and decreased personnel de-
mands. Among the various mechanized excavation 
equipment, roadheaders demonstrate significant effec-
tiveness in handling rocks with low to medium resist-
ance (Kahraman et al, 2017). This capability, combined 
with techniques such as Partial-face Excavation and Se-

lective Excavation, has contributed to the widespread 
adoption of these machines in both mining and tunneling 
operations. The primary objective of implementing 
mechanized excavating systems within the construction 
and mining sectors is to supplant the traditional methods 
of excavation and blasting with a more efficient and con-
tinuous approach (Teymen, 2021). This transition aims 
to enhance the accuracy, speed, and cost-effectiveness of 
excavation operations, thereby improving overall pro-
duction efficiency. Additionally, the adoption of such 
systems leads to a decrease in maintenance requirements 
and a reduced need for labor personnel (Ulusay et al., 
2014). These benefits, coupled with recent advance-
ments in equipment performance and machine reliabili-
ty, have resulted in an increasing market share for min-
ers utilizing mechanized systems in the mineral products 
industry (Rostami et al, 2024). Consequently, accura
tely forecasting the performance of these devices is 
crucial, as it directly influences production rates, accel-
erates operations, and ultimately enhances project pro
fitability. Roadheaders offer significant advantages, in-
cluding enhanced productivity, reliability, mobility, flex-
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ibility, safety, selective excavation capabilities, reduced 
strata disturbances, a smaller workforce, and lower capi-
tal and operational expenses. To realize these advantages 
and ensure the effective application of roadheaders, it is 
essential to accurately predict the machine’s perfor-
mance. This process typically involves considerations 
related to machine selection, production rates, and pick 
(bit) consumption.

The selection of the machine is based on the dimen-
sions of the tunnel and the geological conditions, includ-
ing the size and shape of the profile, the condition of the 
floor material (in terms of its resistance to the machine’s 
weight and ground pressure), and the slope, among other 
factors. Furthermore, performance prediction primarily 
focuses on evaluating the Instantaneous Cutting Rate 
(ICR), which is defined as the production rate during the 
actual cutting period (measured in tons or cubic meters 
per cutting hour), and the Pick Consumption Rate (PCR), 
which indicates the number of picks replaced per unit 
volume or weight of rock excavated (expressed as picks 
per cubic meter or cubic meters per pick). Mechanical 
excavation of rocks and coal is extensively utilized glob-
ally. Since the 1960s, roadheaders have been frequently 
employed for rock excavation in both tunnel and road-
way projects within the mining sector. Roadheaders rep-
resent sophisticated excavation equipment that is exten-
sively utilized in both tunneling and mining activities, 
primarily owing to their high efficiency and accuracy. 
The ability to forecast the performance of roadheaders is 
vital for the optimization of project schedules and finan-
cial expenditures. This article examines the multiple ele-
ments that affect roadheader performance, approaches 
for precise prediction, techniques for data gathering and 
analysis, practical case studies that highlight successful 
implementations, as well as the challenges and prospec-
tive developments within this domain. A comprehensive 
understanding of the complexities involved in predicting 
roadheader performance is critical for improving project 
results and fostering advancements across the industry 
(Guo et al., 2024). Evaluating the performance of a 
roadheader is crucial for effective planning and accurate 
cost estimation when undertaking tunnel or roadway 
projects. Numerous researchers have proposed predic-
tive models to assess the performance of roadheaders, 
Table 1 presents a selection of these models. In the pre-
sent study, a novel approach for predicting the perfor-
mance of roadheaders is proposed to improve the accu-
racy of statistical analysis results. This paper aims to 
develop new models for roadheader performance pre-
diction specifically in the Tabas coal mine, employing 
advanced techniques such as Support Vector Machine 
(SVM), Firefly Algorithm (FA), and Bat Algorithm 
(BA). The incorporation of optimization algorithms in 
this research is motivated by the necessity to identify 
solutions that adhere to specific constraints and address 
the problem at hand. Although the potential solutions to 
the problem may be numerous, optimization algorithms 
are designed to identify the most optimal solution.

2. Materials and methods

Optimization algorithms employ a methodical ap-
proach to identify the best solution for a specified prob-
lem. This is achieved through a repetitive examination 
of the search space. Typically, these algorithms utilize 
mathematical methods, and the solutions they produce 
may be either deterministic or probabilistic. Selecting 
the appropriate objective function is a critical step in the 
implementation of optimization algorithms. In certain 
cases, multiple objectives may be addressed concurrent-
ly within the optimization framework; these scenarios 
are referred to as multi-objective problems (Kaur et al., 
2019). A common approach to tackle such challenges 
involves constructing a new objective function as a lin-
ear combination of the original objectives, where the 
significance of each function is dictated by the weights 
assigned to them. Each optimization problem comprises 

Table 1. Roadheader performance prediction models

ModelAuthor
Gehring  
(1989)

Bilgin et al. 
(1990)

Rostami et al. 
(1995)

   
Copur et al. 
(1998)

Thuro and 
Plinninger 
(1999)
Balci et al. 
(2004)

Tumac et al. 
(2007)
Ocak and Bilgin 
(2010)
Ebrahimabadi  
et al. (2011)

Abdolreza  
and Yakhchali  
(2013)
Kahraman  
and Kahraman  
(2016)
Kahraman et al. 
(2019)
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several independent variables, known as design varia-
bles. The goal of the optimization process is to identify 
the design variables that will either minimize or maxi-
mize the objective function (Jawed and Sajid, 2022).

Optimization algorithms serve as vital instruments in 
addressing intricate challenges across a multitude of sec-
tors and fields. These algorithms are specifically crafted 
to identify the most advantageous solution from a col-
lection of viable options, thereby rendering them indis-
pensable for enhancing efficiency and reducing expens-
es. This article investigates various categories of optimi-
zation algorithms, their practical applications in 
real-world contexts, the essential elements that underpin 
their operation, and the approaches used to assess their 
effectiveness. Furthermore, it explores the obstacles en-
countered by these algorithms and highlights emerging 
trends that are influencing the evolution of optimization 
methodologies.

Optimization algorithms are diverse in nature, each 
designed to tackle particular categories of problems. No-
table examples include genetic algorithms, simulated 
annealing, particle swarm optimization, and linear pro-
gramming. These algorithms utilize mathematical 
frameworks and computational methods to progressive-
ly refine solutions until an optimal result is achieved. In 
practical scenarios, optimization algorithms find appli-
cations across various sectors, including finance, logis-
tics, engineering, and healthcare, where they serve to 
optimize processes, allocate resources effectively, and 
improve decision-making. A comprehensive understand-
ing of the mechanisms underlying these algorithms and 
their real-world applications is crucial for professionals 
aiming to harness their advantages in addressing com-
plex problems and enhancing decision-making process-
es (Jawed and Sajid, 2022).

2.1. Firefly Algorithm

The Firefly Algorithm represents a metaheuristic op-
timization approach that draws inspiration from the in-
triguing behaviors exhibited by fireflies in their natural 
environment. Utilizing the concepts of light intensity 
and attraction, this algorithm has garnered significant at-
tention for its efficacy in identifying optimal solutions 
across a range of fields. This article aims to explore the 
core principles, operational mechanisms, applications, 
benefits, and comparative analyses of the Firefly Algo-
rithm, thereby offering a thorough insight into this novel 
optimization technique. As scholars persist in investigat-
ing the possible applications of the Firefly Algorithm, its 
flexibility and adaptability are becoming increasingly 
apparent (Yang, 2009). The capacity of the algorithm to 
adeptly traverse intricate optimization terrains has estab-
lished it as an essential resource in disciplines including 
engineering, finance, and data science. By leveraging 
the principles of light intensity and attraction, the Firefly 
Algorithm presents a distinctive methodology for ad-
dressing problems, which consistently captivates and 

motivates researchers globally. As investigations into 
the possible uses of the Firefly Algorithm progress, its 
flexibility and adaptability are becoming increasingly 
apparent. The Firefly Algorithm employs a novel strate-
gy that draws inspiration from the natural behaviors ex-
hibited by fireflies, particularly their distinctive flashing 
patterns, to facilitate the optimization process (Kumar 
et al., 2018; Rajan and Malakar, 2015). This biologi-
cally inspired technique enables the exploration of a 
broad spectrum of solutions, leading to the identification 
of optimal results across various contexts. Its capacity to 
adapt and evolve in response to changing conditions dis-
tinguishes the Firefly Algorithm as a versatile and pow-
erful instrument for addressing intricate optimization 
problems (Gandomi et al., 2011).

The Firefly Algorithm draws its inspiration from the 
social behavior exhibited by natural fireflies that congre-
gate in sizable groups, and it is recognized as one of the 
most effective algorithms for addressing combinatorial 
optimization challenges (Gandomi et al., 2011). Vari-
ous algorithms derive from the firefly algorithm, all of 
which operate as multi-agent systems wherein the agents 
emulate artificial fireflies, mirroring the behavior of their 
natural counterparts. The firefly algorithm exemplifies 
collective intelligence, demonstrating that agents with 
limited individual capabilities can collaborate effective-
ly to attain impressive outcomes (Rokh et al., 2024). 
The flowchart of FA is shown in Figure 1.

Figure 1. The flowchart of FA  
(Kumar et al., 2018; Rajan and Malakar, 2015)
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The Firefly Algorithm (FA) seeks to identify the opti-
mal solution by simulating the behavior of a group of 
fireflies. Each firefly is assigned a value that reflects the 
fitness of its position, which serves as a representation of 
the concentration of firefly pigments. The algorithm up-
dates the positions of the fireflies through successive it-
erations. Specifically, each iteration consists of two pri-
mary phases: the pigment updating phase and the move-
ment phase. During the movement phase, fireflies are 
attracted to their neighbors that exhibit a higher concen-
tration of pigments. Consequently, through repeated it-
erations, the collective group of fireflies converges to-
wards a more optimal solution (Khan et al., 2016). This 
algorithm represents an innovative approach grounded 
in collective behavior, drawing inspiration from the so-
cial interactions observed among fireflies in their natural 
environment. In the firefly algorithm, the search mecha-
nism involves a comparative analysis among all fireflies. 
When a firefly emits less light than another, it is com-
pelled to move towards the brighter one. This behavior 
results in a clustering effect around the firefly that emits 
more light. In subsequent iterations of the algorithm, if a 
firefly with greater luminosity is present, the other fire-
flies will again be drawn towards it. The search process 
is defined by a predetermined maximum number of it-
erations (Kumar and Kumar, 2021). In this algorithm, 
the optimization process initiates randomly by distribut-
ing a population of n fireflies across various locations 
within the search space. Initially, each firefly possesses 
an identical quantity of luciferin, denoted as l. Each it-
eration of the algorithm comprises two distinct phases: 
one for updating the luciferin levels and another for ad-
justing the positions of the fireflies. The amount of lucif-
erin of each worm in each repetition is determined ac-
cording to the fitness value of that worm’s location 
(Wang, 2024). In this way, in each iteration, according 
to the amount of elegance and in proportion to that, an 
amount is added to the current Luci Frain of the cream. 
In addition, in order to model the gradual decline with 
time, a value of the current Luciferin is reduced by a fac-
tor less than 1. In this way, the relationship of updating 
Lucy Frein is presented as follows:

	 � (1)

Where , ,  represents the new luciferin 
value, the prior luciferin value, and the fitness associated 
with the position of worm i during iteration t of the algo-
rithm. The parameters ρ and γ are constants that are uti-
lized to simulate the gradual decrease and the influence 
of fitness on the luciferin dynamics.

In the movement phase, each worm probabilistically 
advances toward a neighboring worm that exhibits a 
higher lucy frein (Gandomi et al., 2013). This mecha-
nism facilitates the worms’ tendency to gravitate toward 
those neighbors that possess greater luminosity. For 
each firefly i, the likelihood of transitioning to the more 
luminous neighbor j is articulated as follows:

	 � (2)

Where  represents the set of fireflies neighboring 
firefly i at time t, if it is assumed that firefly j is chosen 
by firefly i (with a probability p derived from Equation 
2), the motion equation of the firefly in a time-discrete 
format can be expressed as follows:

	 � (3)

Where  is the next m vector of firefly i›s location at 
time t, ||.|| represents the Euclidean smooth operator and 
s is the step size of the movement. Assuming r0 as the 
initial neighborhood range for each firefly, the range of 
each firefly›s neighborhood is revised in accordance 
with Equation 4.

	 � (4)

Where β is a constant parameter and nt is a parameter to 
control the number of neighbors.

2.2. Bat Algorithm (BA)

The bat algorithm is founded on the echolocation ca-
pabilities exhibited by microbats. Approximately 1,240 
distinct species of bats exist, collectively representing 
20% of all mammalian species. The echolocation mech-
anism employed by smaller bats functions as a sophisti-
cated perceptual system, wherein ultrasonic waves are 
emitted to capture echoes. By analyzing the emitted and 
returned waves, the bat’s brain and nervous system are 
capable of constructing a detailed representation of its 
environment (Alsalibi et al., 2021). This remarkable 
ability enables microbats to locate their prey even in 
complete darkness. The sound intensity generated by 
these bats reaches 130 dB, utilizing frequencies ranging 
from 15 kHz to 200 kHz for hunting purposes, in con-
trast to the human auditory range of 20 Hz to 20 kHz. To 
accurately interpret the information gathered, bats must 
distinguish their own emitted sounds from the echoes 
they receive (Boudjemaa et al, 2020). Microbats em-
ploy two primary techniques to achieve this differentia-
tion: one involves echo detection through short time in-
tervals, allowing these bats to discern their emitted 
sounds based on timing relative to the reflected sounds. 
Echolocation utilizing extended periodic cycles: these 
bats emit a continuous sound while differentiating be-
tween pulses and echoes through frequency modulation. 
They possess the ability to adjust the pulse of any emit-
ted frequency in accordance with their flight velocity. 
Consequently, the echoes received remain within the ap-
propriate auditory range. The Bat Algorithm, which 
draws inspiration from the echolocation abilities of bats, 
has established itself as a significant metaheuristic opti-
mization method within the realm of computational in-
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telligence. This article offers a thorough examination of 
the Bat Algorithm, detailing its development, clarifying 
its algorithmic structure and operational principles, ex-
ploring its wide-ranging applications in different fields, 
assessing its effectiveness in comparison to other opti-
mization algorithms, and contemplating future advance-
ments and research opportunities. By investigating the 
theoretical underpinnings and practical applications of 
this groundbreaking algorithm, readers will acquire a 
detailed insight into its functionalities and its potential 
influence on addressing intricate optimization challeng-
es (Alsalibi et al., 2021). The flowchart of BA is shown 
in Figure 2.

The Bat Algorithm represents an innovative method-
ology that draws inspiration from the natural behaviors 
exhibited by bats to effectively identify optimal solu-
tions. By emulating the echolocation techniques em-
ployed by bats to detect their prey, this algorithm pro-
vides a fresh perspective on problem-solving, demon-
strating significant efficacy across various practical 
applications. Through an integrated approach that bal-
ances exploration and exploitation, the Bat Algorithm 
exhibits adaptability and evolution, rendering it a flexi-
ble instrument for addressing a diverse array of optimi-
zation problems. Its growing prominence in the optimi-

zation domain can be attributed to its capacity to adeptly 
navigate intricate problem landscapes and swiftly con-
verge on optimal solutions by harnessing the distinctive 
behaviors of bats.

The Bat Algorithm’s novel approach to addressing 
challenges has rendered it an indispensable resource 
across multiple sectors, including engineering and fi-
nance, where the identification of optimal solutions is 
essential for achieving success. This algorithm not only 
excels in discovering the best possible outcomes but also 
provides a distinctive viewpoint on the problem-solving 
process. By emulating the natural echolocation tech-
niques of bats, the Bat Algorithm exemplifies the sig-
nificance of adaptability and creativity in overcoming 
complex issues. Its proficiency in navigating intricate 
problem landscapes distinguishes it as a vital instrument 
for industries in pursuit of advanced solutions. The Bat 
Algorithm distinguishes itself as an essential resource 
for industries in pursuit of advanced solutions due to its 
proficiency in navigating intricate problem domains. 
This algorithm is adaptable and can be utilized across 
various optimization challenges, rendering it a signifi-
cant asset for both researchers and practitioners. Inspired 
by the natural echolocation capabilities of bats, the Bat 
Algorithm exemplifies the effectiveness of adaptation 
and innovation in addressing complex issues. Its rapid 
convergence towards optimal solutions is achieved 
through a balanced approach of exploration and exploi-
tation, further enhancing its utility in diverse applica-
tions. The Bat Algorithm, inspired by the echolocation 
techniques employed by bats in their natural environ-
ment, serves as a metaheuristic optimization method. 
This algorithm adeptly navigates the dual requirements 
of exploring novel solutions while simultaneously ex-
ploiting established ones, thereby enhancing overall ef-
ficiency. Its distinctive methodology positions the Bat 
Algorithm as a formidable instrument for tackling a 
wide range of optimization issues across various sectors. 
Renowned for its rapid convergence towards optimal so-
lutions, the algorithm effectively mirrors the foraging 
behavior of bats, making it particularly useful for ad-
dressing intricate optimization challenges. As the Bat 
Algorithm progresses, it is giving rise to a range of nov-
el and intriguing applications. Its adaptability spans var-
ious fields, including engineering design, financial mod-
eling, and healthcare optimization, thereby facilitating 
innovative solutions across multiple sectors. By investi-
gating these new applications, researchers can fully real-
ize the Bat Algorithm’s potential in addressing real-
world challenges with accuracy and effectiveness. In 
summary, the Bat Algorithm exemplifies the creativity 
inherent in nature-inspired computing, providing a flex-
ible and effective method for tackling optimization is-
sues. As scholars continue to enhance and broaden the 
scope of this algorithm, its significance and utility are 
expected to expand across a variety of disciplines. By 
remaining informed about ongoing developments and 

Figure 2. The flowchart of BA (Maity, 2023)
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embracing opportunities for further innovation, we can 
leverage the distinctive strengths of the Bat Algorithm to 
confront increasingly intricate problems and foster a fu-
ture where computational intelligence leads to trans-
formative advancements (Boudjemaa et al, 2020).

This algorithm is predicated on three fundamental 
rules: First, bats possess the ability to gauge distances 
through echolocation, enabling them to differentiate be-
tween potential prey and stationary obstacles. Second, 
bats engage in a random search for food, characterized 
by a speed denoted as vi, a direction represented by xi, a 
minimum frequency fmin, a wavelength λ, and an initial 
sound intensity A0. Furthermore, they can autonomously 
modify the wavelength of their emitted signals and ad-
just their pulse emission rate in response to the proxim-
ity of their prey. Third, while the loudness of the emitted 
sounds can vary, it is assumed to transition from an ini-
tial level A0 to a minimum level Amin.

Each bat relies on the velocity vit and position xit at 
iteration t within a d-dimensional search or solution 
space. Among all the bats, there exists a singular optimal 
solution denoted as x*. Consequently, the three laws dis-
cussed in the preceding section can be determined using 
the following Equations:

	 � (5)

	 � (6)

	 � (7)

A random vector βЄ is generated from a uniform dis-
tribution over the interval [0,1]. In this context, either 
wavelength or frequency may be utilized for implemen-
tation purposes. The parameters fmin = 0 and fmax = 
100 are established, which are contingent upon the spe-
cific dimensions of the problem being addressed.

Initially, each bat is allocated a random frequency se-
lected uniformly from the range [fmin, fmax]. Conse-
quently, it can be characterized that the bat algorithm 
functions as a frequency scaling mechanism, facilitating 
an effective balance between exploration and exploita-
tion. The pulse duration and emission frequency create 
an inherent system for automatic area management and 
scaling, ultimately guiding the process toward optimal 
solutions (Chaudhary and Banati, 2019).

2.3. Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a type of super-
vised machine learning algorithm that classifies data 
points, which are represented as coordinates in a multi-
dimensional space, by employing a line or hyperplane 
for separation. This classification ensures that data points 
located on the same side of the line exhibit similarity and 
are categorized into the same group (Cortes and Vap-
nik, 1995). When new data points are introduced, they 
are assigned to one of the pre-existing groups based on 

their position within the defined space. Initially, we ana-
lyze the data classification in scenarios where the sam-
ples are linearly separable (Vapnik, 1995). In instances 
of linear separability, it is essential to identify the opti-
mal line or hyperplane that effectively distinguishes be-
tween the two classes. In the expression w.x+b=0, the 
vector w is called the weight vector, which is perpen-
dicular to the separating hyperplane, and b is the Bias 
value. The boundary planes are defined as follows:

	 � (8)

	 � (9)

The configurations observed on these planes are situ-
ated at the minimal distance from the optimal hyper-
plane, referred to as support vectors. The region deline-
ated by the two hyperplanes, H+ and H-, is known as the 
Margin (Vapnik, 1998). The flowchart of SVM is shown 
in Figure 3.

2.4. Description of Study Area

The Tabas coal mine, recognized as the largest and the 
sole fully mechanized coal mining operation in Iran, is 
positioned in the central region of the country, close to the 
city of Tabas in the South Khorasan Province, approxi-

Figure 3. The flowchart of SVM (Álvarez-Alvarado et al., 
2021)
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mately 75 kilometers from southern Tabas. The location 
and area of the Tabas coal mine are illustrated in Figure 4.

The Tabas coal mine is a prominent entity in the field 
of mining and resource extraction, boasting a historical 
legacy that traces back to its inception. Situated in an 
area renowned for its abundant mineral resources, the 
Tabas coal mine has been instrumental in shaping the 
economic framework of its region. A common perspec-
tive of the rock formations is shown in Figure 5.

2.5. Database

Input and output variables of the predictive models in 
the Tabas coal mine are shown in Table 2 and the de-
scriptive statistics of data are shown in Table 3.

2.6. Evaluation criteria

Some researchers used many evaluation criteria (Na-
bavi et al., 2023; Nabavi et al., 2024; Kazemi et al., 
2023). In the context of decision-making, the formula-
tion and application of explicit evaluation criteria are es-
sential for directing choices and evaluating results. 
These criteria act as standards for measuring perfor-

mance, effectiveness, and overall success. This article 
examines the core elements of evaluation criteria, in-
cluding their definition, importance, and essential com-
ponents. By recognizing the value of developing robust 
evaluation criteria, both individuals and organizations 
can refine their decision-making processes, increase 
transparency, and attain desired results with improved 
accuracy (Kazemi et al., 2023).

The present research utilized Coefficient of Determi-
nation (R²) , Root Mean Square Error (RMSE), mean 
squared error (MSE) and mean absolute error (MAE) to 
assess the accuracy and efficiency of the models, as out-
lined in Equations 10, 11, 12 and 13. The preferred val-
ues for these indicators are one for R² and zero for 
RMSE. Moreover, distribution diagrams and compara-
tive graphs of observational versus computational val-
ues were incorporated to further compare and analyze 
the results (Afradi and Ebrahimabadi, 2020).

2.6.1. Coefficient of Determination

The Coefficient of Determination is a critical metric 
that assesses the explanatory capacity of a model, re-
vealing the extent to which independent variables ac-

Figure 4. Position and region of Tabas coal mine (Shirani Faradonbeh et al., 2017)

Figure 5. A common perspective of the rock formations  
(all measurements are in meters)  

(Ebrahimabadi et al., 2011).

Table 3. Descriptive statistic of database  
(Ebrahimabadi, 2010)

Variable N Min. Max. Mean SD Variance
UCS (MPa) 62 14.10 28.20 19.61 5.47 29.985
BTS 62 3.60 5.30 4.08 0.30 0.093
RQD (%) 62 18 28 19.70 1.81 3.291
Alpha (°) 62 39 54 47.12 4.83 23.393
SE 62 4.38 6.62 5.30 0.86 0.740
ICR (m3/h) 62 14.60 46.20 28.75 10.23 104.774

Table 2. Input and output variables of the predictive models

Input UCS, BTS, RQD, Alpha, SE
Output ICR
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count for variations in the dependent variable. The over-
all variation in the dependent variable is the sum of the 
variation explained by the regression model and the 
variation that is not accounted for. This coefficient pro-
vides insight into the potential correlation between two 
data sets in future scenarios. It estimates the likely out-
comes of a specified parameter in the future, based on a 
mathematical model that is derived from existing data 
(Ebrahimabadi and Afradi, 2024). The Coefficient of 
Determination serves as a standard for evaluating the ef-
fectiveness of the regression line in accurately represent-
ing the variables involved (Afradi et al., 2024). A re-
gression line that successfully intersects all data points 
demonstrates a high degree of representational accuracy, 
whereas a line that strays from the points indicates a 
lower degree of accuracy. In essence, the Coefficient of 
Determination reflects the alignment between observed 
and predicted values, which can be assessed through 
various parsing and fitting methodologies. It quantifies 
the fraction of total variance in observed values that is 
explained by the predicted values. The Coefficient of 
Determination varies from zero to one, with a maximum 
value of one signifying that the predicted values perfect-
ly match the observed values (Afradi and Ebrahimab-
adi, 2021).

In the following Equation 10, Xi and Yi, respectively, 
are the computational and observational values of the 
time step i, N is the number of time steps,  and  are the 
average of computational and observational values, re-
spectively.

	 � (10)

2.6.2. Root mean squared error (RMSE)

Root mean square error is a function associated with 
the fit or objective function, and it is fundamentally the 
square of the mean squared error. This index measures 
the absolute deviation between predicted and actual val-
ues. Its values can vary from zero to infinity, with a low-
er RMSE indicating a superior simulation; the most fa-
vorable outcome is a value of zero. The expression for 
this statistical index is delineated in Equation 11.

	 � (11)

2.6.3. Mean Squared Error (MSE)

The Mean Square Error (MSE) is a measure that com-
putes the average of the squared differences between the 
predicted and observed values. MSE is attained as:

	 � (12)

2.6.4. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a statistical measure 
that quantifies the average size of the absolute discrepan-
cies between predicted values and their corresponding 
actual values. Mean Absolute Error (MAE) is a common-
ly employed statistical measure that offers a straightfor-
ward and comprehensible assessment of a predictive 
model’s accuracy. It calculates the average size of the er-
rors present in a series of predictions, disregarding their 
directional nature. Consequently, MAE emphasizes only 
the magnitude of the differences between predicted out-
comes and the actual observed results, treating all errors 
uniformly, irrespective of whether they represent overes-
timations or underestimations. MAE is attained as:

	 � (13)

2.7. Data preprocessing

Prior to the application of algorithms, it is crucial to 
preprocess the data to ensure its cleanliness, normaliza-
tion, and readiness for modeling. The preprocessing pro-
cedures encompass the following steps:

1. Data Cleaning:
a)  Elimination of missing or inconsistent data points. 

In instances where missing values are significant, inter-
polation or imputation techniques may be employed.

b)  Identification and removal of outliers to prevent 
extreme values, which could skew the model, from be-
ing included in the training dataset.

2. Normalization:
The range of variables, such as Machine Parameters 

and mining data, can exhibit considerable variation. To 
standardize the features and mitigate the risk of any sin-
gle feature disproportionately influencing the model due 
to differences in scale, normalization or standardization 
is applied. This process typically involves transforming 
the data to a range between 0 and 1 or adjusting the data 
to achieve a zero mean and unit variance.

3. Feature Selection:
Certain features may lack contribution to the model›s 

predictive capability or may introduce extraneous noise. 
Techniques for feature selection, including correlation 
analysis, mutual information assessment, and recursive 
feature elimination (RFE), are utilized to identify and 
retain the most pertinent features for prediction.

4. Data Splitting:
The dataset is partitioned into three subsets: training, 

validation, and testing. Generally, 80% of the data is al-
located for training the model, 10% for validation, and 
the remaining 10% for final testing. The training subset 
is employed to develop the model, the validation subset 
is utilized for hyperparameter tuning, and the testing 
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subset is reserved for assessing the model›s performance 
on previously unseen data.

3. Results

3.1. ICR Prediction in Tabas coal mine by FA

Initialization typically occurs through a random pro-
cess. The firefly search algorithm comprises four distinct 
steps. Initially, a new function, denoted as alpha, is intro-
duced to modify the initial value of the parameter α; it is 

important to note that this step is optional within the fire-
fly algorithm. The second step involves the implementa-
tion of the fitness function f(s). In the third step, the or-
der function FA organizes the population of fireflies 
based on their respective fitness values. The fourth step 
entails the function for identifying the best firefly, which 
selects the most suitable candidate from the population. 
Lastly, the motion function FA facilitates the movement 
of fireflies within the search space, directing them to-
wards more attractive solutions. The entire firefly search 
process is governed by the maximum evaluation limit 
set by the fitness function.

The predictive model is illustrated through the distri-
bution diagram and the matching diagram of the meas-
ured ICR values, as well as the target and predicted ICR 
values, as depicted in Figures 6 and 7, respectively.

3.2. ICR Prediction in Tabas coal mine by BA

There are several assumptions and simplifications for 
the bat algorithm, including the following:

1.  Echolocation: all bats use echolocation to sense 
distance and also “know” the difference between food/
prey and obstacles in the background. This capability al-
lows them to move easily in complex environments.

2.  Random movement and frequency tuning: bats fly 
randomly with speed v i at position x i. They can auto-
matically adjust the frequency (or wavelength) of their 
emitted pulses and change the pulse emission rate r  [0, 
1] according to the proximity to their target. These fea-
tures make it easier for bats to move towards closer tar-
gets or avoid obstacles.

3.  Changes in loudness: although loudness can 
change in many ways, we assume that the loudness de-

Figure 7. Matching diagram obtained by FA

Figure 6. Distribution diagram obtained by FA
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creases from a large (positive) value A 0 to a minimal 
value A min. These assumptions are used in the algorithm 
to simplify and simulate the real behavior of bats.

The predictive model is illustrated through the distri-
bution diagram and the matching diagram of the meas-
ured ICR values, as well as the target and predicted ICR 
values, as depicted in Figures 8 and 9, respectively.

3.3. ICR Prediction in Tabas coal mine by SVM

A Support Vector Machine (SVM) represents a robust 
and adaptable class of supervised machine learning al-

gorithms, predominantly utilized for the classification of 
data points. Within the SVM framework, data points are 
depicted as coordinates in a multidimensional space, 
with each dimension corresponding to a specific feature 
of the data. This multidimensional representation ena-
bles SVM to effectively manage intricate datasets char-
acterized by multiple features. The fundamental princi-
ple of SVM is to determine the optimal hyperplane that 
most effectively distinguishes between the various class-
es of data points. A hyperplane is defined as a flat affine 
subspace that is one dimension lower than its surround-
ing space; in a two-dimensional context, it manifests as 
a line, while in three dimensions, it appears as a plane. 
The objective of the SVM is to locate the hyperplane 
that maximizes the margin, which is defined as the dis-
tance between the hyperplane and the closest data points 
from each class. These closest points are known as sup-
port vectors, and they play a crucial role in the efficacy 
of the model. Training an SVM involves several essen-
tial steps:

1.  Data Preparation: the initial phase entails prepar-
ing the dataset, which includes selecting pertinent fea-
tures, addressing missing values, and normalizing or 
scaling the data as required.

2.  Kernel Selection: SVMs can be categorized as lin-
ear or non-linear, contingent upon the characteristics of 
the data. For datasets that are linearly separable, a linear 
kernel suffices. Conversely, for more complex datasets 
where classes are not linearly separable, SVMs can uti-
lize various kernel functions (such as polynomial, radial 
basis function (RBF), or sigmoid) to map the data into a 
higher-dimensional space where linear separation be-
comes feasible.

Figure 9. Matching diagram obtained by BA

Figure 8. Distribution diagram obtained by BA
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3.  Model Training: in the training phase, the SVM 
algorithm seeks to identify the optimal hyperplane by 
addressing a constrained optimization problem. This 
process involves maximizing the margin while concur-
rently minimizing classification errors. Techniques such 
as the Sequential Minimal Optimization (SMO) algo-
rithm are typically employed to facilitate the optimiza-
tion process.

4.  Prediction Generation: after the SVM model has 
been trained, it is capable of making predictions based 
on new data inputs. The predictive model is represented 

by the distribution diagram and the correlation diagram 
of the measured ICR values, alongside the target and 
predicted ICR values, as shown in Figures 10 and 11, 
respectively.

3.4. �Results of the evaluation criteria  
for predictive models

The results of the evaluation criteria of the prediction 
models are presented in Table 4 and Figure 12. The re-
sults show that all models have excellent performance, 
with the difference that BA has better performance than 
the other models.

3.5. Sensitivity analysis (SA)

Sensitivity analysis functions as a systematic tech-
nique for determining the input parameters that have the 
most significant impact on the resulting outputs. The co-
sine amplitude method, as outlined by Yang and Zang 
(1997), can be utilized to aid in this assessment. This 
methodology is encapsulated in Equation 14.

	 � (14)

In this framework, bi represents the input parameters 
and bj indicates the output parameters, with n denoting 
the overall count of datasets. The results of the sensitiv-
ity analysis in Figure 13 and Table 5.

3.6. Convergence curves of objective function

In the fields of optimization and numerical analysis, 
convergence refers to the process by which an iterative 

Figure 11. Matching diagram obtained by SVM

Figure 10. Distribution diagram obtained by SVM
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Figure 12. Evaluation criteria

Figure 13. Schematic of parameter sensitivity analysis

Table 4. Results of the evaluation criteria for predictive 
models

Model R2 RMSE MSE MAE
FA 0.9104 0.0658 0.0043 0.0039
BA 0.9421 0.0528 0.0027 0.0024
SVM 0.8795 0.0762 0.0058 0.0052

Table 5. Sensitivity analysis 

Input parameters Rij

UCS 0.9843
BTS 0.9432
RQD 0.9467
Alpha 0.9345
SE 0.9786

Figure 14. Convergence curves of objective function

algorithm gradually approaches a definitive solution or a 
specific value as the number of iterations increases. This 
concept is fundamental to understanding how algorithms 
behave over time and is crucial for assessing their effec-
tiveness and reliability. When an algorithm is said to 
converge, it means that as we perform more iterations, 
the results produced by the algorithm become increas-

ingly close to the true solution or the desired outcome. 
This can be visualized as a sequence of approximations 
that narrows down towards a target value, whether that 
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be a root of a function, an optimal point in a multidimen-
sional space, or a solution to a system of equations. Con-
vergence curves of objective function are shown in Fig-
ure 14.

4. Discussion

Optimization algorithms are essential tools in various 
fields, including engineering, economics, logistics, and 
artificial intelligence, as they provide a systematic meth-
odology for identifying the optimal solution to a wide 
range of problems. The optimization process is charac-
terized by a continuous exploration of the search space, 
which is the domain of all possible solutions. This ex-
ploration can be thought of as navigating through a land-
scape where the goal is to find the highest peak (maxi-
mum) or the lowest valley (minimum) that represents 
the best solution to the problem at hand.

Typically, optimization algorithms employ mathe-
matical techniques to guide this exploration. These tech-
niques can yield solutions that are either deterministic, 
where the same input will always produce the same out-
put, or probabilistic, where randomness plays a role in 
the solution process. The choice between these ap-
proaches often depends on the nature of the problem and 
the desired characteristics of the solution.

A critical component of implementing optimization 
algorithms is the selection of an appropriate objective 
function. The objective function quantifies the goal of 
the optimization process, providing a measure that the 
algorithm seeks to minimize or maximize. The formula-
tion of this function is crucial, as it directly influences 
the effectiveness and efficiency of the optimization pro-
cess. In many cases, problems may involve multiple ob-
jectives that need to be considered simultaneously. These 
are known as multi-objective problems, which add a 
layer of complexity to the optimization task.

To manage the intricacies of multi-objective optimi-
zation, a common strategy is to create a new objective 
function that is a linear combination of the original ob-
jectives. This approach allows for the simultaneous con-
sideration of multiple goals by assigning weights to each 
objective, reflecting their relative importance in the de-
cision-making process. The weights can be adjusted 
based on the specific context of the problem, enabling a 
flexible approach to finding a balanced solution that sat-
isfies various criteria.

Each optimization problem is defined by several inde-
pendent variables, known as design variables. These 
variables represent the parameters that can be adjusted 
or controlled within the optimization framework. The 
primary aim of the optimization process is to determine 
the optimal values of these design variables that will ei-
ther minimize or maximize the objective function. This 
involves not only finding the best solution but also en-
suring that the solution adheres to any constraints or 
limitations that may be imposed by the problem context.

In summary, optimization algorithms are powerful 
methodologies that systematically explore the search 
space to identify optimal solutions. By leveraging math-
ematical techniques and carefully selecting objective 
functions, these algorithms can effectively tackle both 
single and multi-objective problems, ultimately guiding 
decision-makers toward the most favorable outcomes 
based on their specific goals and constraints. Due to their 
unique capabilities, roadheaders have found extensive 
application in various underground mining operations, 
including coal, gypsum, and potash extraction, as well as 
in tunneling projects for transportation infrastructure 
such as subways, highways, and railways. Their ability 
to operate continuously and with minimal disruption to 
surrounding areas makes them a preferred choice for 
many contractors and mining companies.

The performance of roadheaders is influenced by sev-
eral factors, including the geological characteristics of 
the rock being excavated, the operational parameters of 
the machine, and the skill of the operator. Therefore, 
evaluating and predicting the performance of these ma-
chines is crucial for ensuring their optimal use. This in-
volves analyzing factors such as cutting speed, advance 
rate, and the wear and tear of cutting tools, as well as 
understanding the rock mechanics involved in the exca-
vation process.

By accurately assessing these performance metrics, 
operators can make informed decisions regarding the se-
lection of appropriate equipment, the planning of exca-
vation strategies, and the management of operational 
costs. Furthermore, predictive modeling and perfor-
mance evaluation can help in identifying potential chal-
lenges and optimizing the overall efficiency of road-
header operations, ultimately leading to improved pro-
ductivity and reduced downtime in underground projects. 
In summary, roadheaders are invaluable assets in the 
field of underground excavation, and their effective uti-
lization hinges on a thorough understanding of their per-
formance characteristics and the geological conditions 
in which they operate.

5. Conclusions

The role of roadheaders in the excavation of tunnels 
and mines is of paramount importance, as they deliver 
both efficient and precise cutting capabilities. Accurate 
prediction of roadheader performance is critical for opti-
mizing operational processes and ensuring the success 
of projects. A comprehensive understanding of the fac-
tors influencing performance, along with the application 
of predictive models and ongoing enhancements in ma-
chine design and operational techniques, can significant-
ly enhance the effectiveness of roadheaders. This article 
examines the nuances of performance prediction for 
roadheaders, highlighting methodologies, relevant case 
studies, challenges faced, and future prospects in this vi-
tal field of tunneling and mining.
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This study employs a range of input parameters for 
the model, which includes rock quality designation 
(RQD), uniaxial compressive strength (UCS), Brazilian 
tensile strength (BTS), the Alpha angle that indicates the 
angle between the tunnel axis and the planes of weak-
ness, and specific energy (SE), defined as the energy ex-
pended to excavate a unit volume of rock. The output of 
the model is represented by ICR.

Data obtained from sensors undergoes processing 
through algorithms and software to evaluate perfor-
mance trends, detect possible problems, and enhance 
roadheader operations for improved efficiency. In this 
study, ICR at the Tabas coal mine was evaluated through 
an analysis of the properties of both the geological mate-
rial and the equipment utilized. This study utilized the 
Firefly Algorithm (FA), Bat Algorithm (BA), and Sup-
port Vector Machine (SVM) for analysis, evaluating 
their performance through various metrics including the 
coefficient of determination (R²), root mean square error 
(RMSE), mean squared error (MSE), and mean absolute 
error (MAE). The results indicated that the Firefly Algo-
rithm (FA) achieved R² = 0.9104, RMSE = 0.0658, MSE 
= 0.0043, and MAE = 0.0039. In contrast, the Bat Algo-
rithm (BA) yielded R² = 0.9421, RMSE = 0.0528, MSE 
= 0.0027, and MAE = 0.0024. The Support Vector Ma-
chine (SVM) produced R² = 0.8795, RMSE = 0.0762, 
MSE = 0.0058, and MAE = 0.0052. These findings sug-
gest that while all predictive models exhibit commend-
able performance, the Bat Algorithm (BA) stands out for 
its superior accuracy and realism in the results obtained. 
For future research, it is suggested to explore other opti-
mization algorithms, apply the models to different types 
of mines, or integrate machine learning techniques.
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SAŽETAK

Procjena radnih karakteristika strojeva za sukcesivni iskop  
pomoću metode potpornih vektora, algoritma krijesnice i algoritma šišmiša

Strojevi za sukcesivni iskop imaju ključnu ulogu u iskopima tunela i rudnika jer pružaju učinkovite i precizne mogućno-
sti iskopa. Procjena njihovih radnih karakteristika bitna je za optimiziranje operacija i osiguranje uspjeha u projektima. 
Uzimanjem u obzir različitih čimbenika koji utječu na izvedbu, implementacijom prediktivnih modela i stalnim pobolj-
šanjem dizajna strojeva i operativnih strategija mogu se maksimalno povećati mogućnosti strojeva za sukcesivni iskop. 
Ovaj članak dublje istražuje radne karakteristike strojeva za sukcesivni iskop, istražuje metode, studije slučaja, izazove i 
buduće smjerove u ovome kritičnom aspektu iskopa tunela i rudarskih zahvata. Primarni je cilj ove studije razviti mode-
le koji mogu predvidjeti trenutačnu brzinu rezanja (ICR), koja se definira kao stopa proizvodnje tijekom stvarnoga peri-
oda rezanja (mjereno u tonama ili kubnim metrima po satu rezanja), na temelju svojstava stijenske mase koja se iskopa-
va i tehničkih karakteristika stroja. U ovome istraživanju analizirana je trenutačna brzina rezanja strojeva za sukcesivni 
iskop u rudniku ugljena Tabas ispitivanjem karakteristika stijene i uključenih strojeva. Osim toga, ova studija primijeni-
la je algoritam krijesnice (firefly algorithm, FA), algoritam šišmiša (bat algorithm, BA) i metodu potpornih vektora 
(support vector machine, SVM), koji su procijenjeni pomoću koeficijenta determinacije (R²), korijena srednje kvadratne 
pogreške (RMSE), srednje kvadratne pogreške (MSE) i srednje apsolutne pogreške (MAE). Dobiveni rezultati za algori-
tam krijesnice (FA) iznose R2 = 0,9104, RMSE = 0,0658, MSE = 0,0043 i MAE = 0,0039, za algoritam šišmiša (BA) iznose 
R2 = 0,9421, RMSE = 0,0528, MSE = 0,0027 i MAE = 0,0024, a za metodu potpornih vektora (SVM) iznose R2 = 0,8795, 
RMSE = 0,0762, MSE = 0,0058 odnosno MAE = 0,0052. Može se zaključiti da, iako prediktivni modeli daju zadovoljava-
juće rezultate, algoritam šišmiša (BA) pokazuje višu razinu preciznosti i realističnosti.

Ključne riječi: 
predviđanje učinka, strojevi za sukcesivni iskop, trenutačna brzina rezanja, algoritam krijesnice, algoritam šišmiša

Author’s contribution

Arash Ebrahimabadi (PhD, Professor) formed the object and the subject of the research, proposed the idea, developed 
the idea for the work and the methodology for achieving results, analysis of the research, provided technical suggestions, 
project administration, supervision; conceptualization and wrote the article. Alireza Afradi (PhD) wrote the article, 
software; developed approaches and the presentation of the results.
All authors have read and agreed to the published version of the manuscript.

https://doi.org/10.17794/rgn.2025.3.6
https://doi.org/10.1007/s12065-024-00913-y
https://doi.org/10.1007/s12065-024-00913-y
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-04944-6_14

